Association of Thyroid Function with Blood Pressure and Cardiovascular Disease: A Mendelian Randomization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mendelian Randomization
2.2. Association with Exposures
2.3. Association with the Outcomes
2.4. Outcome Phenotypes
2.5. Statistical Analysis
3. Results
Association of TSH Levels with Outcomes
4. Discussion
Strengths and Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Huang, C.; Meng, Z.; Fan, Y.; Yang, Q.; Zhang, W.; Gao, Y.; Yang, Z.; Cai, H.; Bian, B.; et al. Gender-Specific Differences on the Association of Hypertension with Subclinical Thyroid Dysfunction. Int. J. Endocrinol. 2019, 2019, 6053068. [Google Scholar] [CrossRef] [Green Version]
- Bano, A.; Chaker, L.; de Maat, M.P.M.; Atiq, F.; Kavousi, M.; Franco, O.H.; Mattace-Raso, F.U.S.; Leebeek, F.W.G.; Peeters, R.P. Thyroid Function and Cardiovascular Disease: The Mediating Role of Coagulation Factors. J. Clin. Endocrinol. Metab. 2019, 104, 3203–3212. [Google Scholar] [CrossRef]
- Klein, I.; Ojamaa, K. Thyroid Hormone and the Cardiovascular System. N. Engl. J. Med. 2001, 344, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Jabbar, A.; Pingitore, A.; Pearce, S.H.S.; Zaman, A.; Iervasi, G.; Razvi, S. Thyroid hormones and cardiovascular disease. Nat. Rev. Cardiol. 2016, 14, 39–55. [Google Scholar] [CrossRef]
- Danzi, S.; Klein, I. Thyroid hormone and blood pressure regulation. Curr. Hypertens. Rep. 2003, 5, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, A.K.; Weetman, A.P. Hypertension and hypothyroidism. J. Hum. Hypertens. 1998, 12, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Cappola, A.R.; Fried, L.P.; Arnold, A.M.; Danese, M.D.; Kuller, L.H.; Burke, G.L.; Tracy, R.P.; Ladenson, P.W. Thyroid status, cardiovascular risk, and mortality in older adults. J. Am. Med. Assoc. 2006, 295, 1033–1041. [Google Scholar] [CrossRef] [PubMed]
- Gencer, B.; Collet, T.H.; Virgini, V.; Bauer, D.C.; Gussekloo, J.; Cappola, A.R.; Nanchen, D.; Den Elzen, W.P.J.; Balmer, P.; Luben, R.N.; et al. Subclinical thyroid dysfunction and the risk of heart failure events an individual participant data analysis from 6 prospective cohorts. Circulation 2012, 126, 1040–1049. [Google Scholar] [CrossRef] [Green Version]
- Neves, J.S.; Fontes-Carvalho, R.; Borges-Canha, M.; Leite, A.R.; Martins, S.; Oliveira, A.; Guimarães, J.T.; Carvalho, D.; Leite-Moreira, A.; Azevedo, A. Thyroid Hormones within the Normal Range and Cardiac Function in the General Population: The EPIPorto Study. Eur. Thyroid J. 2021, 10, 150–160. [Google Scholar] [CrossRef]
- Shimizu, Y.; Kawashiri, S.Y.; Noguchi, Y.; Nagata, Y.; Maeda, T.; Hayashida, N. Normal range of anti-thyroid peroxidase antibody (TPO-Ab) and atherosclerosis among eu-thyroid population: A cross-sectional study. Medicine 2020, 99, e22214. [Google Scholar] [CrossRef]
- Tan, M.; Korkmaz, H.; Aydin, H.; Kumbul Doğuç, D. Fabp4 levels in hypothyroidism and its relationship with subclinical atherosclerosis. Turk. J. Med. Sci. 2019, 49, 1490–1497. [Google Scholar] [CrossRef]
- Rivas, A.M.; Pena, C.; Kopel, J.; Dennis, J.A.; Nugent, K. Hypertension and Hyperthyroidism: Association and Pathogenesis. Am. J. Med. Sci. 2021, 361, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Ellervik, C.; Roselli, C.; Christophersen, I.E.; Alonso, A.; Pietzner, M.; Sitlani, C.M.; Trompet, S.; Arking, D.E.; Geelhoed, B.; Guo, X.; et al. Assessment of the Relationship between Genetic Determinants of Thyroid Function and Atrial Fibrillation: A Mendelian Randomization Study. JAMA Cardiol. 2019, 4, 144–152. [Google Scholar] [CrossRef]
- Grover, S.; Del Greco, F.M.; Stein, C.M.; Ziegler, A. Statistical Human Genetics. In Methods in Molecular Biology; Elston, R., Ed.; Humana Press: New York, NY, USA, 2012; Volume 1666. [Google Scholar] [CrossRef]
- Pickrell, J.K.; Berisa, T.; Liu, J.Z.; Ségurel, L.; Tung, J.Y.; Hinds, D.A. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet. 2016, 48, 709–717. [Google Scholar] [CrossRef] [Green Version]
- Teumer, A.; Chaker, L.; Groeneweg, S.; Li, Y.; Di Munno, C.; Barbieri, C.; Schultheiss, U.T.; Traglia, M.; Ahluwalia, T.S.; Akiyama, M.; et al. Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation. Nat. Commun. 2018, 9, 4455. [Google Scholar] [CrossRef] [Green Version]
- Bowden, J.; Del Greco, M.F.; Minelli, C.; Davey Smith, G.; Sheehan, N.; Thompson, J. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 2017, 36, 1783–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrivankova, V.W.; Richmond, R.C.; Woolf, B.A.R.; Davies, N.M.; Swanson, S.A.; Vander Weele, T.J.; Timpson, N.J.; Higgins, J.P.T.; Dimou, N.; Langenberg, C.; et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): Explanation and elaboration. BMJ 2021, 375, n2233. [Google Scholar] [CrossRef] [PubMed]
- Medici, M.; Porcu, E.; Pistis, G.; Teumer, A.; Brown, S.J.; Jensen, R.A.; Rawal, R.; Roef, G.L.; Plantinga, T.S.; Vermeulen, S.H.; et al. Identification of Novel Genetic Loci Associated with Thyroid Peroxidase Antibodies and Clinical Thyroid Disease. PLoS Genet. 2014, 10, e1004123. [Google Scholar] [CrossRef]
- Berglund, G.; Elmstähl, S.; Janzon, L.; Larsson, S.A. The Malmo Diet and Cancer Study. Design and feasibility. J. Intern. Med. 1993, 233, 45–51. [Google Scholar] [CrossRef]
- Giontella, A.; Sjögren, M.; Lotta, L.A.; Overton, J.D.; Baras, A.; Minuz, P.; Fava, C.; Melander, O. Clinical Evaluation of the Polygenetic Background of Blood Pressure in the Population-Based Setting. Hypertension 2020, 77, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Giontella, A.; Lotta, L.A.; Overton, J.D.; Baras, A.; Minuz, P.; Melander, O.; Gill, D.; Fava, C. Causal effect of adiposity measures on blood pressure traits in 2 urban swedish cohorts: A mendelian randomization study. J. Am. Heart Assoc. 2021, 10, 20405. [Google Scholar] [CrossRef]
- Verbanck, M.; Chen, C.Y.; Neale, B.; Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018, 50, 693–698. [Google Scholar] [CrossRef]
- Burgess, S.; Davey Smith, G.; Davies, N.M.; Dudbridge, F.; Gill, D.; Glymour, M.M.; Hartwig, F.P.; Holmes, M.V.; Minelli, C.; Relton, C.L.; et al. Guidelines for performing Mendelian randomization investigations. Wellcome Open Res. 2020, 4, 186. [Google Scholar] [CrossRef] [PubMed]
- Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R.; et al. The MR-base platform supports systematic causal inference across the human phenome. Elife 2018, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Hemani, G.; Tilling, K.; Davey Smith, G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017, 13, e1007081. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, 7. [Google Scholar] [CrossRef]
- Iglesias, P.; Acosta, M.; Sanchez, R.; Fernandez-Reyes, M.J.; Mon, C.; Diez, J.J. Ambulatory blood pressure monitoring in patients with hyperthyroidism before and after control of thyroid function. Clin. Endocrinol. 2005, 63, 66–72. [Google Scholar] [CrossRef]
- Hurxthal, L.M. Blood pressure before and after operation in hyperthyroidism. Arch. Intern. Med. 1931, 47, 167–181. [Google Scholar] [CrossRef]
- Kuś, A.; Chaker, L.; Teumer, A.; Peeters, R.P.; Medici, M. The Genetic Basis of Thyroid Function: Novel Findings and New Approaches. J. Clin. Endocrinol. Metab. 2020, 105, 1707–1721. [Google Scholar] [CrossRef]
- Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef] [Green Version]
- Heeringa, J.; Hoogendoorn, E.H.; Van Der Deure, W.M.; Hofman, A.; Peeters, R.P.; Hop, W.C.J.; Den Heijer, M.; Visser, T.J.; Witteman, J.C.M. High-normal thyroid function and risk of atrial fibrillation: The Rotterdam study. Arch. Intern. Med. 2008, 168, 2219–2224. [Google Scholar] [CrossRef] [Green Version]
- Larsson, S.C.; Allara, E.; Mason, A.M.; Michaëlsson, K.; Burgess, S. Thyroid Function and Dysfunction in Relation to 16 Cardiovascular Diseases. Circ. Genom. Precis. Med. 2019, 12, e002468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marouli, E.; Kus, A.; Del Greco, M.F.; Chaker, L.; Peeters, R.; Teumer, A.; Deloukas, P.; Medici, M. Thyroid Function Affects the Risk of Stroke via Atrial Fibrillation: A Mendelian Randomization Study. J. Clin. Endocrinol. Metab. 2020, 105, 2634–2641. [Google Scholar] [CrossRef]
- Selmer, C.; Olesen, J.B.; Hansen, M.L.; Lindhardsen, J.; Olsen, A.M.S.; Madsen, J.C.; Faber, J.; Hansen, P.R.; Pedersen, O.D.; Torp-Pedersen, C.; et al. The spectrum of thyroid disease and risk of new onset atrial fibrillation: A large population cohort study. BMJ 2012, 345, e7895. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.L.; Tam, H.K.V.; Fok, C.K.V.; Lam, P.K.E.; Fung, L.M. Thyrotoxic Atrial Fibrillation: Factors Associated with Persistence and Risk of Ischemic Stroke. J. Thyroid Res. 2017, 2017, 425183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boroumand, M.; Ziaee, S.; Zarghami, N.; Anvari, M.S.; Cheraghi, S.; Abbasi, S.H.; Jalali, A.; Pourgholi, L. The Kalirin Gene rs9289231 Polymorphism as a Novel Predisposing Marker for Coronary Artery Disease. Lab. Med. 2014, 45, 302–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doll, S.; Dreßen, M.; Geyer, P.E.; Itzhak, D.N.; Braun, C.; Doppler, S.A.; Meier, F.; Deutsch, M.A.; Lahm, H.; Lange, R.; et al. Region and cell-type resolved quantitative proteomic map of the human heart. Nat. Commun. 2017, 8, 1469. [Google Scholar] [CrossRef]
- Wu, J.H.; Fanaroff, A.C.; Sharma, K.C.; Smith, L.S.; Brian, L.; Eipper, B.A.; Mains, R.E.; Freedman, N.J.; Zhang, L. Kalirin promotes neointimal hyperplasia by activating rac in smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 702–708. [Google Scholar] [CrossRef] [Green Version]
- Hemani, G.; Bowden, J.; Davey Smith, G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum. Mol. Genet. 2018, 27, R195–R208. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Manouchehri, A.M.; Shaffer, C.M.; Vaitinadin, N.S.; Hellwege, J.N.; Salem, J.-E.; Davis, L.K.; Simmons, J.H.; Roden, D.M.; Shoemaker, M.B.; et al. Genetic Thyrotropin Regulation of Atrial Fibrillation Risk Is Mediated Through an Effect on Height. J. Clin. Endocrinol. Metab. 2021, 106, 2124–2132. [Google Scholar] [CrossRef]
IVW | MR Egger | Weighted Median | |||||||
---|---|---|---|---|---|---|---|---|---|
TSH | |||||||||
β | SE | p | β | SE | p | β | SE | p | |
SBP | −0.83 | 0.38 | 0.03 | −1.37 | 0.92 | 0.14 | −0.74 | 0.62 | 0.23 |
DBP | −0.08 | 0.51 | 0.88 | −0.12 | 0.30 | 0.69 | −0.07 | 0.21 | 0.74 |
FT4 | |||||||||
β | SE | p | β | SE | p | β | SE | p | |
SBP | 0.18 | 0.31 | 0.56 | −0.22 | 0.68 | 0.75 | 0.12 | 0.41 | 0.77 |
DBP | 0.29 | 0.30 | 0.33 | −0.42 | 0.66 | 0.53 | 0.19 | 0.40 | 0.63 |
Hypothyroidism | |||||||||
β | SE | p | β | SE | p | β | SE | p | |
SBP | −0.56 | 0.49 | 0.25 | −1.91 | 2.12 | 0.40 | −0.41 | 0.47 | 0.38 |
DBP | 0.11 | 0.23 | 0.62 | 0.16 | 1.02 | 0.88 | −0.04 | 0.24 | 0.86 |
Hyperthyroidism | |||||||||
β | SE | p | β | SE | p | β | SE | p | |
SBP | 0.49 | 0.25 | 0.05 | 0.83 | 1.27 | 0.54 | 0.33 | 0.033 | 0.32 |
DBP | 0.10 | 0.13 | 0.50 | −0.39 | 0.68 | 0.59 | 0.03 | 0.17 | 0.84 |
TPOAb | |||||||||
β | SE | p | β | SE | p | β | SE | p | |
SBP | 3.25 | 5.9 | 0.59 | −38.6 | 33.2 | 0.37 | −0.64 | 6.2 | 0.37 |
DBP | 1.29 | 3.84 | 0.74 | −34.4 | 14.6 | 0.14 | −1.9 | 3.2 | 0.56 |
IVW | MR Egger | Weighted Median | |||||||
---|---|---|---|---|---|---|---|---|---|
TSH | |||||||||
β | SE | p | β | SE | p | β | SE | p | |
CVD | 0.03 | 0.06 | 0.56 | 0.11 | 0.16 | 0.48 | −0.10 | 0.08 | 0.89 |
Atrial fibrillation | −0.204 | 0.07 | 0.004 | −0.455 | 0.169 | 0.009 | −0.295 | 0.087 | 0.001 |
Stroke | 0.06 | 0.07 | 0.40 | 0.03 | 0.19 | 0.89 | −0.01 | 0.10 | 0.92 |
FT4 | |||||||||
β | SE | p | β | SE | p | β | SE | p | |
CVD | −0.01 | 0.08 | 0.87 | −0.002 | 0.18 | 0.99 | −0.02 | 0.10 | 0.81 |
Atrial fibrillation | −0.06 | 0.09 | 0.53 | −0.17 | 0.20 | 0.40 | −0.19 | 0.12 | 0.10 |
Stroke | −0.14 | 0.09 | 0.11 | −0.20 | 0.20 | 0.31 | −0.23 | 0.13 | 0.08 |
Hypothyroidism | |||||||||
β | SE | p | β | SE | p | β | SE | p | |
CVD | 0.02 | 0.05 | 0.71 | 0.03 | 0.209 | 0.89 | −0.001 | 0.005 | 0.98 |
Atrial fibrillation | −0.56 | 0.49 | 0.25 | −1.91 | 2.12 | 0.4 | −0.4 | 0.48 | 0.39 |
Stroke | −0.04 | 0.07 | 0.54 | −0.01 | 0.32 | 0.97 | −0.07 | 0.08 | 0.37 |
Hyperthyroidism | |||||||||
β | SE | p | β | SE | p | β | SE | p | |
CVD | −0.01 | 0.05 | 0.75 | 0.06 | 0.26 | 0.81 | 0.007 | 0.05 | 0.88 |
Atrial fibrillation | 0.11 | 0.06 | 0.08 | 0.44 | 0.30 | 0.19 | 0.11 | 0.05 | 0.03 |
Stroke | −0.04 | 0.05 | 0.45 | −0.27 | 0.297 | 0.40 | −0.02 | 0.07 | 0.72 |
TPOAb | |||||||||
β | SE | p | β | SE | p | β | SE | p | |
CVD | 0.40 | 0.93 | 0.66 | −7.95 | 3.79 | 0.17 | −0.07 | 0.82 | 0.94 |
Atrial fibrillation | −1.48 | 0.67 | 0.03 | −6.75 | 4.09 | 0.24 | −1.16 | 0.88 | 0.19 |
Stroke | −0.06 | 0.79 | 0.94 | 0.72 | 4.86 | 0.89 | −0.14 | 0.94 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giontella, A.; Lotta, L.A.; Overton, J.D.; Baras, A.; on behalf of Regeneron Genetics Center; Sartorio, A.; Minuz, P.; Gill, D.; Melander, O.; Fava, C. Association of Thyroid Function with Blood Pressure and Cardiovascular Disease: A Mendelian Randomization. J. Pers. Med. 2021, 11, 1306. https://doi.org/10.3390/jpm11121306
Giontella A, Lotta LA, Overton JD, Baras A, on behalf of Regeneron Genetics Center, Sartorio A, Minuz P, Gill D, Melander O, Fava C. Association of Thyroid Function with Blood Pressure and Cardiovascular Disease: A Mendelian Randomization. Journal of Personalized Medicine. 2021; 11(12):1306. https://doi.org/10.3390/jpm11121306
Chicago/Turabian StyleGiontella, Alice, Luca A. Lotta, John D. Overton, Aris Baras, on behalf of Regeneron Genetics Center, Andrea Sartorio, Pietro Minuz, Dipender Gill, Olle Melander, and Cristiano Fava. 2021. "Association of Thyroid Function with Blood Pressure and Cardiovascular Disease: A Mendelian Randomization" Journal of Personalized Medicine 11, no. 12: 1306. https://doi.org/10.3390/jpm11121306
APA StyleGiontella, A., Lotta, L. A., Overton, J. D., Baras, A., on behalf of Regeneron Genetics Center, Sartorio, A., Minuz, P., Gill, D., Melander, O., & Fava, C. (2021). Association of Thyroid Function with Blood Pressure and Cardiovascular Disease: A Mendelian Randomization. Journal of Personalized Medicine, 11(12), 1306. https://doi.org/10.3390/jpm11121306