Association of Mobile-Enhanced Remote Patient Monitoring with Blood Pressure Control in Hypertensive Patients with Comorbidities: A Multicenter Pre–Post Evaluation
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Gender-Specific Response Patterns
3.3. Disease-Specific Responses
3.4. Blood Pressure Response to RPM Implementation (Overall Blood Pressure Trends)
3.5. BP Trajectories
3.6. Blood Pressure Control Rates
3.7. Age-Stratified Blood Pressure Trajectories
3.8. Medications
4. Discussion
4.1. RPM’s Convergence Effect on Blood Pressure Values
4.2. Gender-Specific Response Patterns
4.3. Disease-Specific Heterogeneity in Blood Pressure Response
4.4. Age-Related Considerations in RPM Implementation
4.5. Medication Effects
4.6. Mechanisms Underlying RPM Efficacy
4.7. Strengths, Limitations, and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- PP, A.S.U.; Ameya, K.P.; Sekar, D. Revolutionary advances in hypertension detection: Gold nanoparticle-enhanced miRNA-based electrochemical biosensors and emerging nanotechnologies. Hum. Gene 2025, 44, 201401. [Google Scholar] [CrossRef]
- Yuting, Z.; Xiaodong, T.; Qun, W. Effectiveness of a mHealth intervention on hypertension control in a low-resource rural setting: A randomized clinical trial. Front. Public Health 2023, 11, 1049396. [Google Scholar] [CrossRef]
- Zhou, B.; Carrillo-Larco, R.M.; Danaei, G.; Riley, L.M.; Paciorek, C.J.; Stevens, G.A.; Gregg, E.W.; Bennett, J.E.; Solomon, B.; Singleton, R.K.; et al. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021, 398, 957–980. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, Y.; Tang, Y. Is remote blood pressure monitoring and management a better approach for patients with hypertension? A narrative review. J. Clin. Hypertens. 2023, 25, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Murala, D.K.; Panda, S.K.; Dash, S.P. MedMetaverse: Medical Care of Chronic Disease Patients and Managing Data Using Artificial Intelligence, Blockchain, and Wearable Devices State-of-the-Art Methodology. IEEE Access 2023, 11, 138954–138985. [Google Scholar] [CrossRef]
- Islam, M.M.; Alam, M.J.; Maniruzzaman, M.; Ahmed, N.A.M.F.; Ali, M.S.; Rahman, M.J.; Roy, D.C. Predicting the risk of hypertension using machine learning algorithms: A cross sectional study in Ethiopia. PLoS ONE 2023, 18, e0289613. [Google Scholar] [CrossRef]
- Lee, J.E.; Lee, J.; Shin, R.; Oh, O.; Lee, K.S. Treatment burden in multimorbidity: An integrative review. BMC Prim. Care 2024, 25, 352. [Google Scholar] [CrossRef]
- Omboni, S.; Ferrari, R. The Role of Telemedicine in Hypertension Management: Focus on Blood Pressure Telemonitoring. Curr. Hypertens. Rep. 2015, 17, 21. [Google Scholar] [CrossRef]
- Tsoi, K.; Yiu, K.; Lee, H.; Cheng, H.-M.; Wang, T.-D.; Tay, J.-C.; Teo, B.W.; Turana, Y.; Soenarta, A.A.; Sogunuru, G.P.; et al. Applications of artificial intelligence for hypertension management. J. Clin. Hypertens. 2021, 23, 568–574. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, B. Advanced applications in chronic disease monitoring using IoT mobile sensing device data, machine learning algorithms and frame theory: A systematic review. Front. Public Health 2025, 13, 1510456. [Google Scholar] [CrossRef]
- McManus, R.J.; Mant, J.; Franssen, M.; Nickless, A.; Schwartz, C.; Hodgkinson, J.; Bradburn, P.; Farmer, A.; Grant, S.; Greenfield, S.M. Efficacy of self-monitored blood pressure, with or without telemonitoring, for titration of antihypertensive medication (TASMINH4): An unmasked randomised controlled trial. Lancet 2018, 391, 949–959. [Google Scholar] [CrossRef]
- Margolis, K.L.; Asche, S.E.; Dehmer, S.P.; Bergdall, A.R.; Green, B.B.; Sperl-Hillen, J.M.; Nyboer, R.A.; Pawloski, P.A.; Maciosek, M.V.; Trower, N.K. Long-term outcomes of the effects of home blood pressure telemonitoring and pharmacist management on blood pressure among adults with uncontrolled hypertension: Follow-up of a cluster randomized clinical trial. JAMA Netw. Open 2018, 1, e181617. [Google Scholar] [CrossRef]
- Margolis, K.L.; Asche, S.E.; Bergdall, A.R.; Dehmer, S.P.; Groen, S.E.; Kadrmas, H.M.; Kerby, T.J.; Klotzle, K.J.; Maciosek, M.V.; Michels, R.D. Effect of home blood pressure telemonitoring and pharmacist management on blood pressure control: A cluster randomized clinical trial. Jama 2013, 310, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef] [PubMed]
- Bian, H.; Zhu, S.; Zhang, Y.; Fei, Q.; Peng, X.; Jin, Z.; Zhou, T.; Zhao, H. Artificial Intelligence in Chronic Obstructive Pulmonary Disease: Research Status, Trends, and Future Directions--A Bibliometric Analysis from 2009 to 2023. Int. J. Chronic Obstr. Pulm. Dis. 2024, 19, 1849–1864. [Google Scholar] [CrossRef]
- Petrie, J.R.; Guzik, T.J.; Touyz, R.M. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can. J. Cardiol. 2018, 34, 575–584. [Google Scholar] [CrossRef]
- Visco, V.; Izzo, C.; Mancusi, C.; Rispoli, A.; Tedeschi, M.; Virtuoso, N.; Giano, A.; Gioia, R.; Melfi, A.; Serio, B.; et al. Artificial Intelligence in Hypertension Management: An Ace up Your Sleeve. J. Cardiovasc. Dev. Dis. 2023, 10, 74. [Google Scholar] [CrossRef]
- Rakers, M.; van Hattem, N.; Simic, I.; Chavannes, N.; van Peet, P.; Bonten, T.; Vos, R.; van Os, H. Tailoring remote patient management in cardiovascular risk management for healthcare professionals using panel management: A qualitative study. BMC Prim. Care 2024, 25, 122. [Google Scholar] [CrossRef]
- Wu, C.-T.; Wang, S.-M.; Su, Y.-E.; Hsieh, T.-T.; Chen, P.-C.; Cheng, Y.-C.; Tseng, T.-W.; Chang, W.-S.; Su, C.-S.; Kuo, L.-C.; et al. A Precision Health Service for Chronic Diseases: Development and Cohort Study Using Wearable Device, Machine Learning, and Deep Learning. IEEE J. Transl. Eng. Health Med. 2022, 10, 2700414. [Google Scholar] [CrossRef]
- Hu, Y.; Huerta, J.; Cordella, N.; Mishuris, R.G.; Paschalidis, I.C. Personalized hypertension treatment recommendations by a data-driven model. BMC Med. Inform. Decis. Mak. 2023, 23, 44. [Google Scholar] [CrossRef]
- Patel, P.M.; Green, M.; Tram, J.; Wang, E.; Murphy, M.Z.; Abd-Elsayed, A.; Chakravarthy, K. Beyond the Pain Management Clinic: The Role of AI-Integrated Remote Patient Monitoring in Chronic Disease Management—A Narrative Review. J. Pain. Res. 2024, 17, 4223–4237. [Google Scholar] [CrossRef]
- Wei, H.; Jiang, K.; Zhao, Y.; Pu, C. Equity of health resource allocation in Chongqing, China, in 2021: A cross-sectional study. BMJ Open 2024, 14, e078987. [Google Scholar] [CrossRef]
- Jia, P.; Wang, Y.; Yang, M.; Wang, L.; Yang, X.; Shi, X.; Yang, L.; Wen, J.; Liu, Y.; Yang, M. Inequalities of spatial primary healthcare accessibility in China. Soc. Sci. Med. 2022, 314, 115458. [Google Scholar] [CrossRef]
- Jing, R.; Tang, J.; Song, Y.; Ni, C. Enhancing health system efficiency in China: Considering the interaction between use of primary care and the demand for secondary and tertiary care. Health Policy Plan. 2025, 40, 876–888. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Zhu, X.; Qiu, X.; Zhao, J.; Li, X.; Du, Y. Healthcare preferences of chronic disease patients under China’s hierarchical medical system: An empirical study of Tianjin’s reform practice. Sci. Rep. 2024, 14, 11631. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Xue, Y.; Peng, H.; Li, G.; Chen, W.; Zhao, X.; Pang, J.; Zhou, B. Wearable real-time multi-health parameter monitoring system. Int. J. Cloth. Sci. Technol. 2023, 36, 17–33. [Google Scholar] [CrossRef]
- Qiao, J.; Zhao, Y.; Lu, Y.; Li, Q.; Dong, H.-J. Assessing the impact of educational eHealth and mHealth interventions on health outcomes in continuity of care for enterostomy patients: A meta-analysis. Eur. J. Oncol. Nurs. 2024, 72, 102676. [Google Scholar] [CrossRef]
- Bober, T.; Rollman, B.L.; Handler, S.; Watson, A.; Nelson, L.A.; Faieta, J.; Rosland, A.-M. Digital Health Readiness: Making Digital Health Care More Inclusive. JMIR mHealth uHealth 2024, 12, e58035. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, P.J. Improving health literacy using the power of digital communications to achieve better health outcomes for patients and practitioners. Front. Digit. Health 2023, 5, 1264780. [Google Scholar] [CrossRef]
- Shao, Y.; Hu, H.; Liang, Y.; Hong, Y.; Yu, Y.; Liu, C.; Xu, Y. Health literacy interventions among patients with chronic diseases: A meta-analysis of randomized controlled trials. Patient Educ. Couns. 2023, 114, 107829. [Google Scholar] [CrossRef]
- Song, T.; Deng, N.; Cui, T.; Qian, S.; Liu, F.; Guan, Y.; Yu, P. Measuring Success of Patients’ Continuous Use of Mobile Health Services for Self-management of Chronic Conditions: Model Development and Validation. J. Med. Internet Res. 2021, 23, e26670. [Google Scholar] [CrossRef]
- Zou, H.; Liu, J.; Jiang, D.; Hou, L.; Wang, W.; Zhang, L. The Effect of Health Literacy on Disease Management Self-Efficacy in Chronic Disease Patients: The Mediating Effects of Social Support and the Moderating Effects of Illness Perception. Patient Prefer. Adherence 2024, 18, 657–666. [Google Scholar] [CrossRef]
- Holtz, B.E.; Urban, F.A.; Oesterle, J.; Blake, R.; Henry, A. The Promise of Remote Patient Monitoring. Telemed. E-Health 2024, 30, 2776–2781. [Google Scholar] [CrossRef]
- Li, H.; Xia Dou, Y. Resource optimization in smart electronic health systems using IoT for heart disease prediction via feedforward neural networks. Clust. Comput. 2024, 28, 21. [Google Scholar] [CrossRef]
- Acharya, M.; Ali, M.M.; Bogulski, C.A.; Pandit, A.A.; Mahashabde, R.V.; Eswaran, H.; Hayes, C.J. Association of Remote Patient Monitoring with Mortality and Healthcare Utilization in Hypertensive Patients: A Medicare Claims–Based Study. J. Gen. Intern. Med. 2024, 39, 762–773. [Google Scholar] [CrossRef]
- De Guzman, K.R.; Snoswell, C.L.; Taylor, M.L.; Gray, L.C.; Caffery, L.J. Economic Evaluations of Remote Patient Monitoring for Chronic Disease: A Systematic Review. Value Health 2022, 25, 897–913. [Google Scholar] [CrossRef]
- Hummel, J.P.; Leipold, R.J.; Amorosi, S.L.; Bao, H.; Deger, K.A.; Jones, P.W.; Kansal, A.R.; Ott, L.S.; Stern, S.; Stein, K.; et al. Outcomes and costs of remote patient monitoring among patients with implanted cardiac defibrillators: An economic model based on the PREDICT RM database. J. Cardiovasc. Electrophysiol. 2019, 30, 1066–1077. [Google Scholar] [CrossRef]
- Pong, C.; Tseng, R.M.W.W.; Tham, Y.C.; Lum, E. Current Implementation of Digital Health in Chronic Disease Management: Scoping Review. J. Med. Internet Res. 2024, 26, e53576. [Google Scholar] [CrossRef]
- Muntner, P.; Shimbo, D.; Carey, R.M.; Charleston, J.B.; Gaillard, T.; Misra, S.; Myers, M.G.; Ogedegbe, G.; Schwartz, J.E.; Townsend, R.R.; et al. Measurement of Blood Pressure in Humans: A Scientific Statement from the American Heart Association. Hypertension 2019, 73, e35–e66. [Google Scholar] [CrossRef]
- Stergiou, G.S.; Palatini, P.; Parati, G.; O’Brien, E.; Januszewicz, A.; Lurbe, E.; Persu, A.; Mancia, G.; Kreutz, R.; European Society of Hypertension Council and the European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. 2021 European Society of Hypertension practice guidelines for office and out-of-office blood pressure measurement. J. Hypertens. 2021, 39, 1293–1302. [Google Scholar] [CrossRef]
- Mancia, G.; Kreutz, R.; Brunström, M. 2G23 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension Endorsed by the European Renal Association (ERA) and the International Society of Hypertension (ISH). J. Hypertens. 2023, 41, 1874–2071. [Google Scholar]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults. J. Am. Coll. Cardiol. 2018, 71, e127–e248. [Google Scholar] [CrossRef]
- Choudhry, N.K.; Kronish, I.M.; Vongpatanasin, W.; Ferdinand, K.C.; Pavlik, V.N.; Egan, B.M.; Schoenthaler, A.; Houston Miller, N.; Hyman, D.J.; on behalf of the American Heart Association Council on Hypertension; et al. Medication Adherence and Blood Pressure Control: A Scientific Statement from the American Heart Association. Hypertension 2022, 79, 1. [Google Scholar] [CrossRef]
- Dalli, L.L.; Kilkenny, M.F.; Arnet, I.; Sanfilippo, F.M.; Cummings, D.M.; Kapral, M.K.; Kim, J.; Cameron, J.; Yap, K.Y.; Greenland, M.; et al. Towards better reporting of the proportion of days covered method in cardiovascular medication adherence: A scoping review and new tool TEN-SPIDERS. Brit. J. Clin. Pharma. 2022, 88, 4427–4442. [Google Scholar] [CrossRef]
- Parikh, M.A.; Ramachandran, S.; Nsiah, I.; Campbell, P.J.; Castora-Binkley, M.; Karmakar, T.; Black, H.; Bentley, J.P. Estimating optimal thresholds for adherence to RASA medications among older adults with hypertension. JMCP 2025, 31, 25–32. [Google Scholar] [CrossRef]
- Li, T.; Ding, W.; Li, X.; Lin, A. Mobile health technology (WeChat) for the hierarchical management of community hypertension: Protocol for a cluster randomized controlled trial. Patient Prefer. Adherence 2019, 13, 1339–1352. [Google Scholar] [CrossRef]
- Sun, T.; Zhao, H.; Ding, Z.; Xie, H.; Ma, L.; Zhang, Y.; Wang, Y.; Yang, Y.; Xu, C.; Sun, Y.; et al. Evaluating a WeChat-Based Health Behavioral Digital Intervention for Patients with Hypertension: Protocol for a Randomized Controlled Trial. JMIR Res. Protoc. 2023, 12, e46883. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.-S. 2018 Chinese guidelines for prevention and treatment of hypertension—A report of the revision committee of Chinese guidelines for prevention and treatment of hypertension. J. Geriatr. Cardiol. 2019, 16, 182–241. [Google Scholar]
- Brunström, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; Agabiti-Rosei, E.; Algharably, E.A.E.; Azizi, M.; Benetos, A. 2023 ESH Guidelines for the management of arterial hypertension the Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J. Hypertens. 2023, 41, 1874–2071. [Google Scholar]
- Bani, N.A.; Hassan, M.Z.; Kaidi, H.M.; Hashim, N.F.M.; Dziyauddin, R.A.; Musa, R.; Suhot, M.A.; Usman, S.; Muhammad-Sukki, F.; Abu-Bakar, S.H. Assessment of health status of the elderly and pre-elderly at a Malaysia elderly care Centre. Int. J. Integr. Eng. 2018, 10, 10–22. [Google Scholar] [CrossRef]
- Katz, M.E.; Mszar, R.; Grimshaw, A.A.; Gunderson, C.G.; Onuma, O.K.; Lu, Y.; Spatz, E.S. Digital health interventions for hypertension management in US populations experiencing health disparities: A systematic review and meta-analysis. JAMA Netw. Open 2024, 7, e2356070. [Google Scholar] [CrossRef]
- Grover, S.; Mishra, H.P.; Gupta, R.; Gupta, L.K. Effect of telemonitoring and home blood pressure monitoring on blood pressure reduction in hypertensive adults: A network meta-analysis. J. Hypertens. 2025, 43, 1091–1098. [Google Scholar] [CrossRef]
- Boima, V.; Doku, A.; Agyekum, F.; Tuglo, L.S.; Agyemang, C. Effectiveness of digital health interventions on blood pressure control, lifestyle behaviours and adherence to medication in patients with hypertension in low-income and middle-income countries: A systematic review and meta-analysis of randomised controlled trials. eClinicalMedicine 2024, 69, 102432. [Google Scholar] [CrossRef]
- Vu, M.; Alattas, K.; Bouteraa, Y.; Ghaderpour, E.; Mohammadzadeh, A. Personalized Blood Pressure Control by Machine Learning for Remote Patient Monitoring. IEEE Access 2024, 12, 83994–84004. [Google Scholar] [CrossRef]
- Henry, B.; Merz, M.; Hoang, H.; Abdulkarim, G.; Wosik, J.; Schoettker, P. Cuffless Blood Pressure in clinical practice: Challenges, opportunities and current limits. Blood Press. 2024, 33, 2304190. [Google Scholar] [CrossRef]
- Reckelhoff, J.F. Gender differences in the regulation of blood pressure. Hypertension 2001, 37, 1199–1208. [Google Scholar] [CrossRef]
- Wahlström, M.; Medin, J.; Karlsson, M.R. Gender differences in health-related quality of life, blood pressure and heart rate among patients with paroxysmal atrial fibrillation after performing MediYoga. Int. J. Cardiol. Heart Vasc. 2023, 49, 101274. [Google Scholar] [CrossRef]
- Mihevc, M.; Lukančič, M.M.; Črt, Z.; Potočnik, T.V.; Šter, M.P.; Klemenc-Ketiš, Z.; Susič, A.P. Towards Integrated Care for the Elderly: Exploring the Acceptability of Telemonitoring for Hypertension and Type 2 Diabetes Management. Int. J. Integr. Care 2024, 24, 16. [Google Scholar] [CrossRef]
- Duda-Sikuła, M.; Kurpas, D. Enhancing Chronic Disease Management: Personalized Medicine Insights from Rural and Urban General Practitioner Practices. J. Pers. Med. 2024, 14, 706. [Google Scholar] [CrossRef]
- Parisi, R. Wereable Device Remote Monitoring to Prevent Frailty Progression in Elderly: A Pilot Study. 2024. Available online: https://iris.unimol.it/handle/11695/147229 (accessed on 10 August 2025).
- Bryant, K.B.; Sheppard, J.P.; Ruiz-Negrón, N.; Kronish, I.M.; Fontil, V.; King, J.B.; Pletcher, M.J.; Bibbins-Domingo, K.; Moran, A.E.; McManus, R.J.; et al. Impact of Self-Monitoring of Blood Pressure on Processes of Hypertension Care and Long-Term Blood Pressure Control. J. Am. Heart Assoc. 2020, 9, e016174. [Google Scholar] [CrossRef]
- Ralston, J.D.; Cook, A.J.; Anderson, M.L.; Catz, S.L.; Fishman, P.A.; Carlson, J.; Johnson, R.; Green, B.B. Home blood pressure monitoring, secure electronic messaging and medication intensification for improving hypertension control: A mediation analysis. Appl. Clin. Inform. 2014, 5, 232–248. [Google Scholar] [CrossRef] [PubMed]
- Maglidt, D.R. Providing Education on Telemonitoring Chronic Disease Management to Increase Patient Adherence and Satisfaction. 2023. Available online: https://scholarspace.manoa.hawaii.edu/items/929434d5-627f-452e-a6e1-621e39168d80 (accessed on 26 May 2025).
- Ahmad, I.; Mathiyakom, W.; Tantisuwat, A. Balance, gait, and postural control impairment and fall risk in patients with chronic obstructive pulmonary disease and breathing pattern disorder: A case-control study. Medicine 2025, 104, e43609. [Google Scholar] [CrossRef]
- Küfeoğlu, S. SDG-9: Industry, Innovation and Infrastructure. In Emerging Technologies; Sustainable Development Goals Series; Springer International Publishing: Cham, Switzerland, 2022; pp. 349–369. [Google Scholar] [CrossRef]
- Küfeoğlu, S. SDG-10: Reduced Inequalities. In Emerging Technologies; Sustainable Development Goals Series; Springer International Publishing: Cham, Switzerland, 2022; pp. 371–384. [Google Scholar] [CrossRef]
- Küfeoğlu, S. SDG-11: Sustainable Cities and Communities. In Emerging Technologies; Sustainable Development Goals Series; Springer International Publishing: Cham, Switzerland, 2022; pp. 385–408. [Google Scholar] [CrossRef]




| Variables | Values (N = 6874) | |
|---|---|---|
| Gender | Male | 3361 (48.9) |
| Age | 66.89 (13.66) | |
| Type of Insurance | Urban and Rural Residents Insurance | 2474 (36) |
| Insurance for Employees | 4298 (62.5) | |
| Own Expenses | 88 (1.3) | |
| Insurance for Retired People | 14 (0.3) | |
| Comorbidity of multiple diseases | General Symptoms | 1657 (24.1) |
| Cardiovascular Diseases | 2007 (29.2) | |
| Neoplasms | 55 (0.8) | |
| Infectious Diseases | 18 (0.3) | |
| Cerebrovascular Diseases | 1210 (17.6) | |
| Respiratory Diseases | 1299 (18.9) | |
| Neurological Diseases | 37 (0.5) | |
| Gastrointestinal Diseases | 265 (3.9) | |
| Endocrine and Metabolic Diseases | 140 (2.0) | |
| Musculoskeletal Diseases | 110 (1.6) | |
| Circulatory Diseases | 52 (0.8) | |
| Renal Diseases | 24(0.3) | |
| Occupation | Self Employed | 1108 (16.1) |
| Retired Personnel | 3179 (46.2) | |
| Unemployed persons | 390 (5.7) | |
| Farmer | 919 (13.4) | |
| Worker | 151 (2.2) | |
| Staff | 962 (14) | |
| Others | 165 (2.4) | |
| Address (districts) | Banan | 1204 (17.5) |
| Beibei | 49 (0.7) | |
| Jiangjin | 68 (1) | |
| Wanzhou | 31 (0.5) | |
| Dazu | 67 (1) | |
| Jiulongpo | 142 (2.1) | |
| Fuling | 95 (1.4) | |
| Changshou | 95 (1.4) | |
| Rongchang | 22 (0.3) | |
| Tongnan | 46 (0.7) | |
| Sichuan | 363 (5.3) | |
| Nanan | 2006 (29.2) | |
| Chongqing city | 499 (7.3) | |
| Wulong | 33 (0.5) | |
| Yubei | 401 (5.8) | |
| Jiangbei | 527(7.5) | |
| Yuzhong | 899 (13.1) | |
| Shapingba | 113 (1.6) | |
| Liangping | 23 (0.3) | |
| Hechuan | 75 (1.1) | |
| Qianjing | 116 (1.7) | |
| Blood Pressure measurements | ||
| SBP 1 month before RPM | 140 ± 35 | |
| DBP 1 month before RPM | 72 ± 10 | |
| SBP 6 months before RPM | 125 ± 14 | |
| DBP 6 months before RPM | 72 ± 10 | |
| SBP 1 month after RPM | 118 ± 16 | |
| DBP 1 month after RPM | 72 ± 10 | |
| SBP 2 months after RPM | 116 ± 15 | |
| DBP 2 months after RPM | 73 ± 11 | |
| SBP 4 months after RPM | 116 ± 15 | |
| DBP 4 months after RPM | 73 ± 11 | |
| SBP 6 months after RPM | 116 ± 15 | |
| DBP 6 months after RPM | 73 ± 11 | |
| Time Point | Gender | Mean SBP | Change in SBP from 1 Month Before | Mean DBP | Change in DBP from 1 Month Before |
|---|---|---|---|---|---|
| 1 month Before | Male | 140 ± 34 | 0 | 72 ± 10 | 0 |
| 1 month Before | Female | 140 ± 35 | 0 | 72 ± 10 | 0 |
| 6 Months Before | Male | 125 ± 15 | −15 | 72 ± 10 | +0 |
| 6 Months Before | Female | 125 ± 15 | −15 | 73 ± 10 | +1 |
| 1 Month After | Male | 118 ± 16 | −22 | 72 ± 10 | +0 |
| 1 Month After | Female | 117 ± 16 | −23 | 72 ± 10 | +0 |
| 2 Months After | Male | 116 ± 15 | −24 | 74 ± 11 | +2 |
| 2 Months After | Female | 116 ± 16 | −24 | 73 ± 11 | +1 |
| 4 Months After | Male | 116 ± 15 | −24 | 74 ± 11 | +2 |
| 4 Months After | Female | 116 ± 15 | −24 | 73 ± 11 | +1 |
| 6 Months After | Male | 116 ± 15 | −24 | 74 ± 11 | +2 |
| 6 Months After | Female | 116 ± 15 | −24 | 73 ± 11 | +1 |
| Diagnosis Group (N = 6874) | 1 Month Before SBP (Baseline) | 1 Month Before DBP (Baseline) | 6 Months After SBP | 6 Months After DBP | SBP Change | p-Value (Within Group) | DBP Changes | p-Value (Within Group) |
|---|---|---|---|---|---|---|---|---|
| Cardiovascular diseases (n = 2007) | 139 ± 35 | 72 ± 10 | 116 ± 15 | 73 ± 11 | −23 | <0.001 | 1 | <0.001 |
| Endocrine and metabolic diseases (n = 341) | 138 ± 34 | 73 ± 10 | 116 ± 15 | 76 ± 11 | −22 | <0.001 | 3 | <0.001 |
| Respiratory diseases (n = 1298) | 140 ± 34 | 73 ± 10 | 116 ± 15 | 74 ± 11 | − 24 | <0.001 | 1 | <0.001 |
| Cerebrovascular diseases (n = 333) | 141 ± 35 | 72 ± 11 | 113 ± 15 | 73 ± 11 | −28 | <0.001 | 1 | 0.130 |
| Gastrointestinal diseases (n = 600) | 140 ± 35 | 72 ± 10 | 115 ± 15 | 74 ± 11 | −25 | <0.001 | 2 | <0.001 |
| Musculoskeletal disorders (n = 245) | 144 ± 34 | 73 ± 10 | 115 ± 16 | 74 ± 11 | −29 | <0.001 | 1 | 0.069 |
| General (n = 1654) | 140 ± 35 | 72 ± 10 | 116 ± 15 | 73 ± 11 | −24 | <0.001 | 1 | <0.001 |
| Others (n = 396) | 139 ± 31 | 75 ± 12 | 114 ± 15 | 74 ± 11 | −25 | <0.001 | −1 | 0.137 |
| Analysis of Variance (Between-Group Comparison of Change Scores) | ||||||||
| Measure | Statistical Test | Result | p-value (Between Group) | |||||
| SBP Change (ΔSBP) | One-Way ANOVA | F (7, 6866) = 4.73 | <0.001 | |||||
| DBP Change (ΔDBP) | One-Way ANOVA | F (7, 6866) = 7.85 | <0.001 | |||||
| Time Point | SBP (mmHg) | DBP (mmHg) | p-Value vs. Baseline (SBP) | p-Value vs. Baseline (DBP) |
|---|---|---|---|---|
| 1 month before (baseline) | 140 ± 35 | 72 ± 10 | — | — |
| 1 month after | 118 ± 16 | 72 ± 10 | <0.001 | >0.999 |
| 2 months after | 116 ± 15 | 73 ± 11 | <0.001 | 0.157 |
| 4 months after | 116 ± 15 | 73 ± 11 | <0.001 | 0.157 |
| 6 months after | 116 ± 15 | 73 ± 11 | <0.001 | 0.157 |
| Medication Class/Number of Agents | Baseline (Pre-RPM) n (%) | 1 Month Post-RPM n (%) | 6 Months Post-RPM n (%) | Cochran’s Q Value | p | Odds Ratio (95% CI) for 6 Months vs. Baseline | Effect Size (Cramér’s V) |
|---|---|---|---|---|---|---|---|
| Irregular medication | 790 (11.5) | 517 (7.5) | 181 (2.6) | 1958.4 | <0.001 | 0.21 (0.18–0.25) | 0.38 |
| ACE Inhibitor | 687 (10.0) | 721 (10.5) | 735 (10.7) | 5.7 | 0.058 | 1.07 (0.96–1.19) | 0.02 |
| ARB | 1988 (28.9) | 2450 (35.6) | 2589 (37.7) | 318.5 | <0.001 | 1.50 (1.40–1.61) | 0.15 |
| Beta-Blocker | 1531 (22.3) | 1689 (24.6) | 1722 (25.0) | 31.7 | <0.001 | 1.16 (1.08–1.25) | 0.05 |
| CCBs | 2145 (31.2) | 2890 (42.0) | 3011 (43.8) | 781.1 | <0.001 | 1.72 (1.61–1.84) | 0.21 |
| Diuretic | 895 (13.0) | 1550 (22.5) | 1680 (24.4) | 684.9 | <0.001 | 2.16 (1.98–2.36) | 0.23 |
| Number of Agents | |||||||
| 0 | 790 (11.5) | 517 (7.5) | 181 (2.6) | 1958.4 | <0.001 | 0.21 (0.18–0.25) | 0.38 |
| 1 | 2240 (32.6) | 1989 (28.9) | 1754 (25.5) | 163.4 | <0.001 | 0.71 (0.66–0.76) | 0.09 |
| 2 | 2101 (30.6) | 2756 (40.1) | 2890 (42.0) | 537.9 | <0.001 | 1.64 (1.53–1.76) | 0.16 |
| ≥3 | 986 (14.3) | 1552 (22.6) | 1918 (27.9) | 715.1 | <0.001 | 2.34 (2.14–2.56) | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ullah, A.; Ahmad, I.; Deng, W. Association of Mobile-Enhanced Remote Patient Monitoring with Blood Pressure Control in Hypertensive Patients with Comorbidities: A Multicenter Pre–Post Evaluation. Diagnostics 2026, 16, 244. https://doi.org/10.3390/diagnostics16020244
Ullah A, Ahmad I, Deng W. Association of Mobile-Enhanced Remote Patient Monitoring with Blood Pressure Control in Hypertensive Patients with Comorbidities: A Multicenter Pre–Post Evaluation. Diagnostics. 2026; 16(2):244. https://doi.org/10.3390/diagnostics16020244
Chicago/Turabian StyleUllah, Ashfaq, Irfan Ahmad, and Wei Deng. 2026. "Association of Mobile-Enhanced Remote Patient Monitoring with Blood Pressure Control in Hypertensive Patients with Comorbidities: A Multicenter Pre–Post Evaluation" Diagnostics 16, no. 2: 244. https://doi.org/10.3390/diagnostics16020244
APA StyleUllah, A., Ahmad, I., & Deng, W. (2026). Association of Mobile-Enhanced Remote Patient Monitoring with Blood Pressure Control in Hypertensive Patients with Comorbidities: A Multicenter Pre–Post Evaluation. Diagnostics, 16(2), 244. https://doi.org/10.3390/diagnostics16020244

