Optical Coherence Tomography Imaging and Angiography of Skull Base Tumors Presenting as a Middle Ear Mass in Clinic
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Volumetric OCT Representative Examples
3.1.1. Normal Ear
3.1.2. Glomus Tumor
3.1.3. Cholesteatoma
3.1.4. Facial Nerve Schwannoma
3.2. Volumetric OCT Quantitative Results
3.3. OCT Angiography
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tan, H.E.I.; Santa Maria, P.L.; Wijesinghe, P.; Francis Kennedy, B.; Allardyce, B.J.; Eikelboom, R.H.; Atlas, M.D.; Dilley, R.J. Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review. Otolaryngol. Head Neck Surg. 2018, 159, 424–438. [Google Scholar] [CrossRef] [PubMed]
- Matthews, T.J.; Adamson, R. Optical Coherence Tomography: Current and Future Clinical Applications in Otology. Curr. Opin. Otolaryngol. Head Neck Surg. 2020, 28, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Mariampillai, A.; Standish, B.A.; Moriyama, E.H.; Khurana, M.; Munce, N.R.; Leung, M.K.K.; Jiang, J.; Cable, A.; Wilson, B.C.; Vitkin, I.A.; et al. Speckle Variance Detection of Microvasculature Using Swept-Source Optical Coherence Tomography. Opt. Lett. 2008, 33, 1530–1532. [Google Scholar] [CrossRef] [PubMed]
- Moiseev, A.; Snopova, L.; Kuznetsov, S.; Buyanova, N.; Elagin, V.; Sirotkina, M.; Kiseleva, E.; Matveev, L.; Zaitsev, V.; Feldchtein, F.; et al. Pixel Classification Method in Optical Coherence Tomography for Tumor Segmentation and Its Complementary Usage with OCT Microangiography. J. Biophotonics 2018, 11, e201700072. [Google Scholar] [CrossRef]
- Rajabi-Estarabadi, A.; Eber, A.E.; Tsatalis, J.; Vazquez, T.; Perper, M.; Nouri, K.; Tosti, A. Optical Coherence Tomography in Evaluation of Glomus Tumours: A Report of Three Cases. J. Eur. Acad. Dermatol. Venereol. 2019, 33, e331–e334. [Google Scholar] [CrossRef]
- Kim, W.; Long, R.; Yang, Z.; Oghalai, J.S.; Applegate, B.E. Optical Coherence Tomography Otoscope for Imaging of Tympanic Membrane and Middle Ear Pathology. J. Biomed. Opt. 2024, 29, 086005. [Google Scholar] [CrossRef]
- Lui, C.G.; Kim, W.; Dewey, J.B.; Macías-Escrivá, F.D.; Ratnayake, K.; Oghalai, J.S.; Applegate, B.E. In Vivo Functional Imaging of the Human Middle Ear with a Hand-Held Optical Coherence Tomography Device. Biomed. Opt. Express 2021, 12, 5196–5213. [Google Scholar] [CrossRef]
- Bacallao, R.; Sohrab, S.; Phillips, C. Guiding Principles of Specimen Preservation for Confocal Fluorescence Microscopy. In Handbook of Biological Confocal Microscopy, 3rd ed.; Springer: New York, NY, USA, 2006; pp. 368–380. [Google Scholar]
- Huang, Y.; Zhang, Q.; Thorell, M.R.; An, L.; Durbin, M.; Laron, M.; Sharma, U.; Gregori, G.; Rosenfeld, P.J.; Wang, R.K. Swept-Source OCT Angiography of the Retinal Vasculature Using Intensity Differentiation Based OMAG Algorithms. Ophthalmic Surg. Lasers Imaging Retina 2014, 45, 382–389. [Google Scholar] [CrossRef]
- Won, J.; Monroy, G.L.; Dsouza, R.I.; Spillman, D.R.; McJunkin, J.; Porter, R.G.; Shi, J.; Aksamitiene, E.; Sherwood, M.; Stiger, L.; et al. Handheld Briefcase Optical Coherence Tomography with Real-Time Machine Learning Classifier for Middle Ear Infections. Biosensors 2021, 11, 143. [Google Scholar] [CrossRef]
- Cho, N.H.; Jung, U.; Jang, J.H.; Jung, W.; Kim, J.; Lee, S.H.; Boppart, S.A. Optical Coherence Tomography for the Diagnosis of Human Otitis Media. Nano-Bio Sens. Imaging Spectrosc. 2013, 8879, 88790N. [Google Scholar] [CrossRef]
- Monroy, G.L.; Pande, P.; Shelton, R.L.; Nolan, R.M.; Spillman, D.R.; Porter, R.G.; Novak, M.A.; Boppart, S.A. Non-Invasive Optical Assessment of Viscosity of Middle Ear Effusions in Otitis Media. J. Biophotonics 2017, 10, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Won, J.; Monroy, G.L.; Huang, P.C.; Hill, M.C.; Novak, M.A.; Porter, R.G.; Spillman, D.R.; Chaney, E.J.; Barkalifa, R.; Boppart, S.A. Assessing the Effect of Middle Ear Effusions on Wideband Acoustic Immittance Using Optical Coherence Tomography. Ear Hear. 2020, 41, 811–824. [Google Scholar] [CrossRef] [PubMed]
- Preciado, D.; Nolan, R.M.; Joshi, R.; Krakovsky, G.M.; Zhang, A.; Pudik, N.A.; Kumar, N.K.; Shelton, R.L.; Boppart, S.A.; Bauman, N.M. Otitis Media Middle Ear Effusion Identification and Characterization Using an Optical Coherence Tomography Otoscope. Otolaryngol. Head Neck Surg. 2020, 162, 367–374. [Google Scholar] [CrossRef]
- Morgenstern, J.; Schindler, M.; Kirsten, L.; Golde, J.; Bornitz, M.; Kemper, M.; Koch, E.; Zahnert, T.; Neudert, M. Endoscopic Optical Coherence Tomography for Evaluation of Success of Tympanoplasty. Otol. Neurotol. 2020, 41, e901–e905. [Google Scholar] [CrossRef]
- Morgenstern, J.; Kreusch, T.; Golde, J.; Steuer, S.; Ossmann, S.; Kirsten, L.; Walther, J.; Zahnert, T.; Koch, E.; Neudert, M. In Vivo Thickness of the Healthy Tympanic Membrane Determined by Optical Coherence Tomography. Otol. Neurotol. 2024, 45, E256–E262. [Google Scholar] [CrossRef]
- Won, J.; Porter, R.G.; Novak, M.A.; Youakim, J.; Sum, A.; Barkalifa, R.; Aksamitiene, E.; Zhang, A.; Nolan, R.; Shelton, R.; et al. In Vivo Dynamic Characterization of the Human Tympanic Membrane Using Pneumatic Optical Coherence Tomography. J. Biophotonics 2021, 14, e202000215. [Google Scholar] [CrossRef]
- Kirsten, L.; Schindler, M.; Morgenstern, J.; Erkkilä, M.T.; Golde, J.; Walther, J.; Rottmann, P.; Kemper, M.; Bornitz, M.; Neudert, M.; et al. Endoscopic Optical Coherence Tomography with Wide Field-of-View for the Morphological and Functional Assessment of the Human Tympanic Membrane. J. Biomed. Opt. 2018, 24, 031017. [Google Scholar] [CrossRef]
- Steuer, S.; Morgenstern, J.; Kirsten, L.; Bornitz, M.; Neudert, M.; Koch, E.; Golde, J. In Vivo Microstructural Investigation of the Human Tympanic Membrane by Endoscopic Polarization-Sensitive Optical Coherence Tomography. J. Biomed. Opt. 2023, 28, 121203. [Google Scholar] [CrossRef]
- Yang, Z.; Kim, W.; Morán, M.A.; Long, R.; Oghalai, J.S.; Applegate, B.E. Analysis of Ear Symmetry as a Diagnostic Tool Enabled by Optical Coherence Tomography. In Imaging, Therapeutics, and Advanced Technology in Head and Neck Surgery and Otolaryngology 2024; SPIE: Washington, DC, USA, 2024; Volume 12818, p. 1281802. [Google Scholar]
- Burkhardt, A.; Walther, J.; Cimalla, P.; Mehner, M.; Koch, E. Endoscopic Optical Coherence Tomography Device for Forward Imaging with Broad Field of View. J. Biomed. Opt. 2012, 17, 071302. [Google Scholar] [CrossRef]
- Meller, A.; Shakhova, M.; Rilkin, Y.; Novozhilov, A.; Kirillin, M.; Shakhov, A. Optical Coherence Tomography in Diagnosing Inflammatory Diseases of ENT. Photonics Lasers Med. 2014, 3, 323–330. [Google Scholar] [CrossRef]
- Kim, W.; Kim, S.; Huang, S.; Oghalai, J.S.; Applegate, B.E. Picometer Scale Vibrometry in the Human Middle Ear Using a Surgical Microscope Based Optical Coherence Tomography and Vibrometry System. Biomed. Opt. Express 2019, 10, 4395. [Google Scholar] [CrossRef] [PubMed]
- MacDougall, D.; Morrison, L.; Morrison, C.; Morris, D.P.; Bance, M.; Adamson, R.B.A. Optical Coherence Tomography Doppler Vibrometry Measurement of Stapes Vibration in Patients with Stapes Fixation and Normal Controls. Otol. Neurotol. 2019, 40, E349–E355. [Google Scholar] [CrossRef] [PubMed]
- Djalilian, H.R.; Rubinstein, M.; Wu, E.C.; Naemi, K.; Zardouz, S.; Karimi, K.; Wong, B.J.F. Optical Coherence Tomography of Cholesteatoma. Otol. Neurotol. 2010, 31, 932–935. [Google Scholar] [CrossRef] [PubMed]
- Giannios, P.; Toutouzas, K.G.; Matiatou, M.; Stasinos, K.; Konstadoulakis, M.M.; Zografos, G.C.; Moutzouris, K. Visible to Near-Infrared Refractive Properties of Freshly-Excised Human-Liver Tissues: Marking Hepatic Malignancies. Sci. Rep. 2016, 6, 27910. [Google Scholar] [CrossRef]
- Ding, H.; Lu, J.Q.; Wooden, W.A.; Kragel, P.J.; Hu, X.H. Refractive Indices of Human Skin Tissues at Eight Wavelengths and Estimated Dispersion Relations between 300 and 1600 Nm. Phys. Med. Biol. 2006, 51, 1479–1489. [Google Scholar] [CrossRef]
- Burwood, G.W.S.; Fridberger, A.; Wang, R.K.; Nuttall, A.L. Revealing the Morphology and Function of the Cochlea and Middle Ear with Optical Coherence Tomography. Quant. Imaging Med. Surg. 2019, 9, 858–881. [Google Scholar] [CrossRef]
- Dziennis, S.; Reif, R.; Zhi, Z.; Nuttall, A.L.; Wang, R.K. Effects of Hypoxia on Cochlear Blood Flow in Mice Evaluated Using Doppler Optical Microangiography. J. Biomed. Opt. 2012, 17, 1060031–1060037. [Google Scholar] [CrossRef]
- Reif, R.; Qin, J.; Shi, L.; Dziennis, S.; Zhi, Z.; Nuttall, A.L.; Wang, R.K. Monitoring Hypoxia Induced Changes in Cochlear Blood Flow and Hemoglobin Concentration Using a Combined Dual-Wavelength Laser Speckle Contrast Imaging and Doppler Optical Microangiography System. PLoS ONE 2012, 7, e52041. [Google Scholar] [CrossRef]
- Subhash, H.M.; Davila, V.; Sun, H.; Nguyen-Huynh, A.T.; Shi, X.; Nuttall, A.L.; Wang, R.K. Volumetric In Vivo Imaging of Microvascular Perfusion within the Intact Cochlea in Mice Using Ultra-High Sensitive Optical Microangiography. IEEE Trans. Med. Imaging 2011, 30, 224–230. [Google Scholar] [CrossRef]
- Greig, E.C.; Duker, J.S.; Waheed, N.K. A Practical Guide to Optical Coherence Tomography Angiography Interpretation. Int. J. Retin. Vitr. 2020, 6, 1–17. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, D.W.; Morán, M.A.; Kim, W.; Yang, Z.; Applegate, B.E.; Oghalai, J.S. Optical Coherence Tomography Imaging and Angiography of Skull Base Tumors Presenting as a Middle Ear Mass in Clinic. Diagnostics 2025, 15, 732. https://doi.org/10.3390/diagnostics15060732
Pan DW, Morán MA, Kim W, Yang Z, Applegate BE, Oghalai JS. Optical Coherence Tomography Imaging and Angiography of Skull Base Tumors Presenting as a Middle Ear Mass in Clinic. Diagnostics. 2025; 15(6):732. https://doi.org/10.3390/diagnostics15060732
Chicago/Turabian StylePan, Dorothy W., Marcela A. Morán, Wihan Kim, Zihan Yang, Brian E. Applegate, and John S. Oghalai. 2025. "Optical Coherence Tomography Imaging and Angiography of Skull Base Tumors Presenting as a Middle Ear Mass in Clinic" Diagnostics 15, no. 6: 732. https://doi.org/10.3390/diagnostics15060732
APA StylePan, D. W., Morán, M. A., Kim, W., Yang, Z., Applegate, B. E., & Oghalai, J. S. (2025). Optical Coherence Tomography Imaging and Angiography of Skull Base Tumors Presenting as a Middle Ear Mass in Clinic. Diagnostics, 15(6), 732. https://doi.org/10.3390/diagnostics15060732