Photon-Counting CT Scan Phantom Study: Stability of Radiomics Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phantom Characteristics and Imaging Parameters
- -
- Spectral reconstruction mono-energy: {40, 60} keV
- -
- Reconstruction kernel: {Br36, Br40}
- -
- Quantum Iterative Reconstruction (QIR) strength: {2, 3, 4}
- -
- Matrix size: {512 × 512, 1024 × 1024}
2.2. Parameters Combination and Set Selection
- -
- Set 1: Br36, QIR 4, 1024 × 1024, 60 keV
- -
- Set 2: Br36, QIR 4, 1024 × 1024, 40 keV
- -
- Set 3: Br36, QIR 4, 512 × 512, 40 keV
- -
- Set 4: Br40, QIR 4, 1024 × 1024, 40 keV
- -
- Set 5: Br40, QIR 4, 512 × 512, 40 keV
40 keV | 60 keV |
---|---|
Br36, QIR 2, 512 × 512 | Br36, QIR 2, 512 × 512 |
Br36, QIR 3, 512 × 512 | Br36, QIR 3, 512 × 512 |
Br36, QIR 4, 512 × 512 | Br36, QIR 4, 512 × 512 |
Br36, QIR 2, 1024 × 1024 | Br36, QIR 2, 1024 × 1024 |
Br36, QIR 3, 1024 × 1024 | Br36, QIR 3, 1024 × 1024 |
Br36, QIR 4, 1024 × 1024 | Br36, QIR 4, 1024 × 1024 |
Br40, QIR 2, 512 × 512 | Br40, QIR 2, 512 × 512 |
Br40, QIR 3, 512 × 512 | Br40, QIR 3, 512 × 512 |
Br40, QIR 4, 512 × 512 | Br40, QIR 4, 512 × 512 |
Br40, QIR 2, 1024 × 1024 | Br40, QIR 2, 1024 × 1024 |
Br40, QIR 3, 1024 × 1024 | Br40, QIR 3, 1024 × 1024 |
Br40, QIR 4, 1024 × 1024 | Br40, QIR 4, 1024 × 1024 |
Reconstruction Sets | Reader A | Reader B | Reader C | Reader D | Reader E | Reader F | Reader G | Reader H | Reader I | Reader J | Score (Mean) | Preferred Sets |
---|---|---|---|---|---|---|---|---|---|---|---|---|
60 keV, Br36, QIR2, 1024 × 1024 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | |
60 keV, Br36, QIR3, 1024 × 1024 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0.40 | |
60 keV, Br36, QIR4, 1024 × 1024 | 3 | 0 | 4 | 5 | 0 | 0 | 0 | 0 | 0 | 1 | 1.30 | Set 1 |
60 keV, Br36, QIR2, 512 × 512 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | |
60 keV, Br36, QIR3, 512 × 512 | 4 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0.60 | |
60 keV, Br36, QIR4, 512 × 512 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0.40 | |
60 keV, Br40, QIR2, 1024 × 1024 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0.50 | |
60 keV, Br40, QIR3, 1024 × 1024 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0.40 | |
60 keV, Br40, QIR4, 1024 × 1024 | 2 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 3 | 0.80 | |
60 keV, Br40, QIR2, 512 × 512 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | |
60 keV, Br40, QIR3, 512 × 512 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | |
60 keV, Br40, QIR4, 512 × 512 | 5 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0.90 | |
40 keV, Br36, QIR2, 1024 × 1024 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0.30 | |
40 keV, Br36, QIR3, 1024 × 1024 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0.30 | |
40 keV, Br36, QIR4, 1024 × 1024 | 0 | 5 | 2 | 0 | 5 | 0 | 0 | 4 | 4 | 0 | 2.00 | Set 2 |
40 keV, Br36, QIR2, 512 × 512 | 0 | 0 | 0 | 0 | 4 | 0 | 2 | 0 | 0 | 0 | 0.60 | |
40 keV, Br36, QIR3, 512 × 512 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0.20 | |
40 keV, Br36, QIR4, 512 × 512 | 0 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 5 | 0 | 1.30 | Set 3 |
40 keV, Br40, QIR2, 1024 × 1024 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0.50 | |
40 keV, Br40, QIR3, 1024 × 1024 | 0 | 0 | 0 | 0 | 1 | 4 | 0 | 1 | 0 | 0 | 0.60 | |
40 keV, Br40, QIR4, 1024 × 1024 | 0 | 3 | 5 | 0 | 0 | 0 | 3 | 5 | 2 | 0 | 1.80 | Set 4 |
40 keV, Br40, QIR2, 512 × 512 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0.30 | |
40 keV, Br40, QIR3, 512 × 512 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 2 | 0 | 0 | 0.50 | |
40 keV, Br40, QIR4, 512 × 512 | 0 | 2 | 0 | 0 | 0 | 0 | 5 | 3 | 3 | 0 | 1.30 | Set 5 |
2.3. Radiomics Analysis
3. Results
3.1. Stability of Radiomics Features
3.2. Multiple Regression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Photon counting detector CT-scan | PCD-CT |
Ultra high resolution | UHR |
Standard mode | STD |
References
- Hsieh, S.S.; Leng, S.; Rajendran, K.; Tao, S.; McCollough, C.H. Photon Counting CT: Clinical Applications and Future Developments. IEEE Trans. Radiat. Plasma Med. Sci. 2021, 5, 441–452. [Google Scholar] [CrossRef]
- Esquivel, A.; Ferrero, A.; Mileto, A.; Baffour, F.; Horst, K.; Rajiah, P.S.; Inoue, A.; Leng, S.; McCollough, C.; Fletcher, J.G. Photon-Counting Detector CT: Key Points Radiologists Should Know. Korean J. Radiol. 2022, 23, 854–865. [Google Scholar] [CrossRef] [PubMed]
- Lacombe, H.; Labour, J.; de Oliveira, F.; Robert, A.; Houmeau, A.; Villien, M.; Boccalini, S.; Beregi, J.P.; Douek, P.C.; Greffier, J.; et al. Ultra-high resolution spectral photon-counting CT outperforms dual layer CT for lung imaging: Results of a phantom study. Diagn. Interv. Imaging 2025, 106, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Zsarnóczay, E.; Varga-Szemes, A.; Emrich, T.; Szilveszter, B.; van der Werf, N.R.; Mastrodicasa, D.; Maurovich-Horvat, P.; Willemink, M.J. Characterizing the Heart and the Myocardium with Photon-Counting CT. Investig. Radiol. 2023, 58, 505. [Google Scholar] [CrossRef]
- Hagar, M.T.; Soschynski, M.; Saffar, R.; Rau, A.; Taron, J.; Weiss, J.; Stein, T.; Faby, S.; Muehlen, C.v.Z.; Ruile, P.; et al. Accuracy of Ultrahigh-Resolution Photon-counting CT for Detecting Coronary Artery Disease in a High-Risk Population. Radiology 2023, 307, e223305. [Google Scholar] [CrossRef]
- Vaidya, P.; Bera, K.; Gupta, A.; Wang, X.; Corredor, G.; Fu, P.; Beig, N.; Prasanna, P.; Patil, P.D.; Velu, P.D.; et al. CT Derived Radiomic Score for Predicting the Added Benefit of Adjuvant Chemotherapy Following Surgery in Stage I, II Resectable Non-Small Cell Lung Cancer: A Retrospective Multi-Cohort Study for Outcome Prediction. Lancet Digit. Health 2020, 2, e116–e128. [Google Scholar] [CrossRef]
- Dercle, L.; Fronheiser, M.; Lu, L.; Du, S.; Hayes, W.; Leung, D.K.; Roy, A.; Wilkerson, J.; Guo, P.; Fojo, A.T.; et al. Identification of Non–Small Cell Lung Cancer Sensitive to Systemic Cancer Therapies Using Radiomics. Clin. Cancer Res. 2020, 26, 2151–2162. [Google Scholar] [CrossRef] [PubMed]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypiński, P.; Gibbs, P.; Cook, G. Introduction to Radiomics. J. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef]
- Bortolotto, C.; Lancia, A.; Stelitano, C.; Montesano, M.; Merizzoli, E.; Agustoni, F.; Stella, G.; Preda, L.; Filippi, A.R. Radiomics features as predictive and prognostic biomarkers in NSCLC. Expert Rev. Anticancer Ther. 2021, 21, 257–266. [Google Scholar] [CrossRef]
- Montagnon, E.; Cerny, M.; Hamilton, V.; Derennes, T.; Ilinca, A.; Elforaici, M.E.A.; Jabbour, G.; Rafie, E.; Wu, A.; Romero, F.P.; et al. Radiomics analysis of baseline computed tomography to predict oncological outcomes in patients treated for resectable colorectal cancer liver metastasis. PLoS ONE 2024, 19, e0307815. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lafon, M.; Cousin, S.; Alamé, M.; Nougaret, S.; Italiano, A.; Crombé, A. Metastatic Lung Adenocarcinomas: Development and Evaluation of Radiomic-Based Methods to Measure Baseline Intra-Patient Inter-Tumor Lesion Heterogeneity. J. Imaging Inform. Med. 2025, 38, 148–164. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sajan, A.; Lamane, A.; Baig, A.; Floch, K.L.; Dercle, L. The emerging role of AI in enhancing intratumoral immunotherapy care. Oncotarget 2024, 15, 635–637. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dercle, L.; Zhao, B.; Gönen, M.; Moskowitz, C.S.; Firas, A.; Beylergil, V.; Connors, D.E.; Yang, H.; Lu, L.; Fojo, T.; et al. Early Readout on Overall Survival of Patients with Melanoma Treated With Immunotherapy Using a Novel Imaging Analysis. JAMA Oncol. 2022, 8, 385–392. [Google Scholar] [CrossRef]
- Espinasse, M.; Pitre-Champagnat, S.; Charmettant, B.; Bidault, F.; Volk, A.; Balleyguier, C.; Lassau, N.; Caramella, C. CT Texture Analysis Challenges: Influence of Acquisition and Reconstruction Parameters: A Comprehensive Review. Diagnostics 2020, 10, 258. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fournier, L.; Costaridou, L.; Bidaut, L.; Michoux, N.; Lecouvet, F.E.; de Geus-Oei, L.-F.; Boellaard, R.; Oprea-Lager, D.E.; A Obuchowski, N.; Caroli, A.; et al. Incorporating radiomics into clinical trials: Expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers. Eur. Radiol. 2021, 31, 6001–6012, Erratum in Eur. Radiol. 2021, 31, 6408–6409. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, E.P.; O’connor, J.P.B.; McShane, L.M.; Giger, M.L.; Lambin, P.; Kinahan, P.E.; Siegel, E.L.; Shankar, L.K. Criteria for the translation of radiomics into clinically useful tests. Nat. Rev. Clin. Oncol. 2023, 20, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lu, L.; Sun, S.H.; E, L.-N.; Lian, W.; Yang, H.; Schwartz, L.H.; Yang, Z.-H.; Zhao, B. Effect of CT image acquisition parameters on diagnostic performance of radiomics in predicting malignancy of pulmonary nodules of different sizes. Eur. Radiol. 2022, 32, 1517–1527. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, T.; Wang, L.; Xing, Y.; Hu, Y.; Xu, Z.; Lu, J.; Yang, J.; Chu, J.; Zhang, B.; et al. Robustness of radiomics within photon-counting detector CT: Impact of acquisition and reconstruction factors. Eur. Radiol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Dong, H.; Sun, J.; Wang, L.; Xing, Y.; Hu, Y.; Lu, J.; Yang, J.; Chu, J.; Yan, C.; et al. Robustness of radiomics among photon-counting detector CT and dual-energy CT systems: A texture phantom study. Eur. Radiol. 2025, 35, 871–884. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jensen, L.J.; Kim, D.; Elgeti, T.; Steffen, I.G.; Hamm, B.; Nagel, S.N. Stability of Radiomic Features across Different Region of Interest Sizes-A CT and MR Phantom Study. Tomography 2021, 7, 238–252. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nardone, V.; Reginelli, A.; Guida, C.; Belfiore, M.P.; Biondi, M.; Mormile, M.; Buonamici, F.B.; Di Giorgio, E.; Spadafora, M.; Tini, P.; et al. Delta-radiomics increases multicentre reproducibility: A phantom study. Med. Oncol. 2020, 37, 38. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Chen, Z.; Gao, Y.; Wang, W.; You, M. Reproducibility and location-stability of radiomic features derived from cone-beam computed tomography: A phantom study. Dentomaxillofac. Radiol. 2023, 52, 20230180. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Elhalawani, H.; Radwan Mohamed, A.S.; Elgohari, B.; Court, L.; Zhu, H.; Fuller, C.D. Stability analysis of CT radiomic features with respect to segmentation variation in oropharyngeal cancer. Clin. Transl. Radiat. Oncol. 2019, 21, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Vañó, E.; Miller, D.L.; Martin, C.J.; Rehani, M.M.; Kang, K.; Rosenstein, M.; Ortiz-López, P.; Mattsson, S.; Padovani, R.; Rogers, A.; et al. Diagnostic Reference Levels in Medical Imaging. Ann. ICRP 2017, 46, 1–144. [Google Scholar] [CrossRef]
- Li, X.; Chen, E.; Guo, B.; Yang, W.; Han, R.; Hu, C.; Zhang, L.; Pan, C.; Ma, S.; Kuang, Y. The impact of respiratory motion and CT pitch on the robustness of radiomics feature extraction in 4DCT lung imaging. Comput. Methods Programs Biomed. 2020, 197, 105719. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Reyhan, M.; Zhang, Y.; Wang, X.; Zhou, J.; Zhang, Y.; Yue, N.J.; Nie, K. The impact of phantom design and material-dependence on repeatability and reproducibility of CT-based radiomics features. Med. Phys. 2022, 49, 1648–1659. [Google Scholar] [CrossRef]
- Parmar, C.; Velazquez, E.R.; Leijenaar, R.; Jermoumi, M.; Carvalho, S.; Mak, R.H.; Mitra, S.; Shankar, B.U.; Kikinis, R.; Haibe-Kains, B.; et al. Robust Radiomics feature quantification using semiautomatic volumetric segmentation. PLoS ONE 2014, 9, e102107. [Google Scholar] [CrossRef]
- Yalon, M.; Hoodeshenas, S.; Chan, A.; Horst, K.K.; Crum, I.; Thorne, J.E.; Lee, Y.S.; Yu, L.; McCollough, C.H.; Fletcher, J.G.; et al. Improved Pulmonary Artery Evaluation Using High-Pitch Photon-Counting CT Compared to High-Pitch Conventional or Routine-Pitch Conventional Dual-Energy CT. J. Comput. Assist. Tomogr. 2024, 48, 897–905. [Google Scholar] [CrossRef]
- Euler, A.; Laqua, F.C.; Cester, D.; Lohaus, N.; Sartoretti, T.; dos Santos, D.P.; Alkadhi, H.; Baessler, B. Virtual Monoenergetic Images of Dual-Energy CT-Impact on Repeatability, Reproducibility, and Classification in Radiomics. Cancers 2021, 13, 4710. [Google Scholar] [CrossRef]
- Jimenez-Del-Toro, O.; Aberle, C.; Schaer, R.; Bach, M.; Flouris, K.; Konukoglu, E.; Stieltjes, B.; Obmann, M.M.; Anjos, A.; Müller, H.; et al. Comparing Stability and Discriminatory Power of Hand-Crafted Versus Deep Radiomics: A 3D-Printed Anthropomorphic Phantom Study. In Proceedings of the 2024 12th European Workshop on Visual Information Processing (EUVIP), Geneva, Switzerland, 8–11 September 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Jimenez-Del-Toro, O.; Aberle, C.; Bach, M.; Schaer, R.; Obmann, M.M.; Flouris, K.; Konukoglu, E.; Stieltjes, B.; Müller, H.; Depeursinge, A. The Discriminative Power and Stability of Radiomics Features with Computed Tomography Variations: Task-Based Analysis in an Anthropomorphic 3D-Printed CT Phantom. Investig. Radiol. 2021, 56, 820–825. [Google Scholar] [CrossRef]
Inputs | Y Stable Features | X1 Kernel | X2 Matrix | X3 KeV |
---|---|---|---|---|
Num value % | 1: Br36 | 1: 1024 × 1024 | 1: 60 keV | |
2: Br40 | 2: 512 × 512 | 2: 40 keV | ||
SET 1 | 69.90% | 1 | 1 | 1 |
SET 2 | 66.70% | 1 | 1 | 2 |
SET 3 | 67.70% | 1 | 2 | 2 |
SET 4 | 66.70% | 2 | 1 | 2 |
SET 5 | 68.80% | 2 | 2 | 2 |
Inputs | Y Stable Features | X1 Kernel | X2 Matrix | X3 KeV |
---|---|---|---|---|
Num value % | 1: Br36 | 1: 1024 × 1024 | 1: 60 keV | |
2: Br40 | 2: 512 × 512 | 2: 40 keV | ||
SET 1 | 96.80% | 1 | 1 | 1 |
SET 2 | 79.60% | 1 | 1 | 2 |
SET 3 | 79.60% | 1 | 2 | 2 |
SET 4 | 88.20% | 2 | 1 | 2 |
SET 5 | 88.20% | 2 | 2 | 2 |
OBSE RVE D VALU ES | Comparison of Proportions | |||
---|---|---|---|---|
SET 1 | Sponge | Sausage | Difference | 26.9% |
stable | 65 | 90 | 95% CI | 16.6952% to 37.0802% |
% stable | 69.9% | 96.8% | Chi—squared | 24.116 |
total | 93 | 93 | DF | 1 |
Significance level | p < 0.0001 | |||
SET 2 | Sponge | Sausage | Difference | 12.9 % |
stable | 62 | 74 | 95% CI | 0.1432% to 25.1300% |
% stable | 66.7% | 79.6% | Chi—squared | 3.919 |
Total | 93 | 93 | DF | 1 |
Significance level | p = 0.0478 | |||
SET 3 | Sponge | Sausage | Difference | 11.9 % |
stable | 63 | 74 | 95% CI | −0.7819% to 24.1052% |
% stable | 67.7% | 79.6% | Chi—squared | 3.375 |
Total | 93 | 93 | DF | 1 |
Significance level | p = 0.0662 | |||
SET 4 | Sponge | Sausage | Difference | 21.5% |
stable | 62 | 82 | 95% CI | 9.5669% to 32.7836% |
% stable | 66.7% | 88.2% | Chi—squared | 12.241 |
Total | 93 | 93 | DF | 1 |
Significance level | p = 0.0005 | |||
SET 5 | Sponge | Sausage | Difference | 19.4 % |
stable | 64 | 82 | 95% CI | 7.6384% to 30.6222% |
% stable | 68.8% | 88.2% | Chi—squared | 10.314 |
Total | 93 | 93 | DF | 1 |
Significance level | p = 0.0013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dawi, L.; Amouzouga, K.; Muller, S.; Nallet, C.; Dupont, A.; Vielliard, B.; Croisille, C.; Moussier, A.; Garcia, G.; Bidault, F.; et al. Photon-Counting CT Scan Phantom Study: Stability of Radiomics Features. Diagnostics 2025, 15, 649. https://doi.org/10.3390/diagnostics15060649
Dawi L, Amouzouga K, Muller S, Nallet C, Dupont A, Vielliard B, Croisille C, Moussier A, Garcia G, Bidault F, et al. Photon-Counting CT Scan Phantom Study: Stability of Radiomics Features. Diagnostics. 2025; 15(6):649. https://doi.org/10.3390/diagnostics15060649
Chicago/Turabian StyleDawi, Lama, Kodjodenis Amouzouga, Serge Muller, Cyril Nallet, Arnaud Dupont, Benoit Vielliard, Cedric Croisille, Aurelie Moussier, Gabriel Garcia, François Bidault, and et al. 2025. "Photon-Counting CT Scan Phantom Study: Stability of Radiomics Features" Diagnostics 15, no. 6: 649. https://doi.org/10.3390/diagnostics15060649
APA StyleDawi, L., Amouzouga, K., Muller, S., Nallet, C., Dupont, A., Vielliard, B., Croisille, C., Moussier, A., Garcia, G., Bidault, F., Barbe, R., Moalla, S., Pierre, T., Balleyguier, C., Dupont, J., & Lassau, N. (2025). Photon-Counting CT Scan Phantom Study: Stability of Radiomics Features. Diagnostics, 15(6), 649. https://doi.org/10.3390/diagnostics15060649