18F-Fluorodeoxyglucose Imaging for Assessing Cardiovascular Inflammation
Abstract
1. Introduction
2. Method
3. Results
3.1. Assessment of Cardiac Sarcoidosis
3.2. Assessment of Endocarditis
3.3. Assessment of Vasculitis
3.4. Assessment of Atherosclerosis
3.5. Assessment in Cardio-Oncology
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- Bax, J.J.; Di Carli, M.; Narula, J.; Delgado, V. Multimodality imaging in ischaemic heart failure. Lancet 2019, 393, 1056–1070. [Google Scholar] [CrossRef] [PubMed]
- Calcaayad, Z.A. Clinical imaging of cardiovascular inflammation. Q. J. Nucl. Med. Mol. Imaging 2020, 64, 74–84. [Google Scholar]
- Jaini, S.; Dadachova, E. FDG for therapy of metabolically active tumors. Semin. Nucl. Med. 2024, 42, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, S.J.; Bourque, J.M. Innovations in imaging: 18F-Fluorodeoxyglucose PET/CT for assessment of cardiovascular infection and inflammation. Curr. Cardiol. Rep. 2024, 26, 1413–1425. [Google Scholar] [CrossRef] [PubMed]
- Sammartino, A.M.; Falco, R.; Drera, A.; Dondi, F.; Bellini, P.; Bertagna, F.; Vizzardi, E. Vascular inflammation and cardiovascular disease: Review about the role of PET imaging. Int. J. Cardiovasc. Imaging 2023, 39, 433–440. [Google Scholar] [CrossRef]
- Manabe, O.; Ohira, H.; Hirata, K.; Hayashi, S.; Naya, M.; Tsujino, I.; Aikawa, T.; Koyanagawa, K.; Oyama-Manabe, N.; Tomiyama, Y.; et al. Use of 18F-FDG PET/CT texture analysis to diagnose cardiac sarcoidosis. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1240–1247. [Google Scholar] [CrossRef]
- Manabe, O.; Oyama-Manabe, N.; Tamaki, N. Positron emission tomography/MRI for cardiac diseases assessment. Br. J. Radiol. 2020, 93, 20190836. [Google Scholar] [CrossRef]
- Kazimierczyk, R.; Kaminski, K.A.; Nekolla, S.G. Cardiac PET/MRI: Recent developments and future aspect. Semin. Nucl. Med. 2024, 54, 733–746. [Google Scholar] [CrossRef]
- Tamaki, N.; Manabe, O. Current status and perspectives of nuclear cardiology. Ann. Nucl. Med. 2024, 38, 20–30. [Google Scholar] [CrossRef]
- Schmidt, W.A.; Kraft, H.E.; Vorpahl, K.; Volker, L.; Gromnica-Ihle, E.J. Color duplex ultrasonography in the diagnosis of temporal arteritis. N. Engl. J. Med. 1997, 337, 1336–1342. [Google Scholar] [CrossRef]
- Khandelwal, N.; Kalra, N.; Garg, M.K.; Kang, M.; Lal, A.; Jain, S.; Suri, S. Multidetector CT angiography in Takayasu arteritis. Eur. J. Radiol. 2011, 77, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Scholtens, A.M.; Verberne, H.J.; Budde, R.P.; Lam, M.G. Additional heparin preadministration improves cardiac glucose metabolism suppression over low-carbohydrate diet alone in ¹⁸F-FDG PET Imaging. J. Nucl. Med. 2016, 57, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Manabe, O.; Yoshinaga, K.; Ohira, H.; Masuda, A.; Sato, T.; Tsujino, I.; Yamada, A.; Oyama-Manabe, N.; Hirata, K.; Nishimura, M.; et al. The effects of 18-h fasting with low-carbohydrate diet preparation on suppressed physiological myocardial (18)F-fluorodeoxyglucose (FDG) uptake and possible minimal effects of unfractionated heparin use in patients with suspected cardiac involvement sarcoidosis. J. Nucl. Cardiol. 2016, 23, 244–252. [Google Scholar]
- Mhlanga, J.; Derenoncourt, P.; Haq, A.; Bhandiwad, A.; Laforest, R.; Siegel, B.A.; Dehdashti, F.; Gropler, R.J.; Schindler, T.H. 18F-FDG PET in myocardial viability assessment: A practical and time-efficient protocol. J. Nucl. Med. 2022, 63, 602–608. [Google Scholar] [CrossRef]
- Selvaraj, S.; Seidelmann, S.B.; Soni, M.; Bhattaru, A.; Margulies, K.B.; Shah, S.H.; Dugyala, S.; Qian, C.; Pryma, D.A.; Arany, Z.; et al. Comprehensive nutrient consumption estimation and metabolic profiling during ketogenic diet and relationship with myocardial glucose uptake on FDG-PET. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 1690–1697. [Google Scholar] [CrossRef]
- Hutt, E.; Goldar, G.; Jaber, W.A.; Cremer, P.C. Standardized ketogenic dietary preparation for metabolic PET imaging in suspected and known cardiac sarcoidosis. Eur. Heart J. Imaging Methods Pract. 2024, 2, qyae037. [Google Scholar] [CrossRef]
- Celiker-Guler, E.; Ruddy, T.D.; Wells, R.G. Acquisition, processing, and interpretation of PET 18F-FDG viability and inflammation studies. Curr. Cardiol. Rep. 2021, 23, 124. [Google Scholar] [CrossRef]
- Lee, Y.; Jang, J.; Lim, S.; Na, S.J. Evaluation of clinical variables affecting myocardial glucose uptake in cardiac FDG PET. Diagnostics 2024, 14, 1705. [Google Scholar] [CrossRef]
- Tamaki, N.; Kawamoto, M.; Tadamura, E.; Magata, Y.; Yonekura, Y.; Nohara, R.; Sasayama, S.; Nishimura, K.; Ban, T.; Konishi, J. Prediction of reversible ischemia after revascularization: Perfusion and metabolic studies using positron emission tomography. Circulation 1995, 91, 1697–1705. [Google Scholar] [CrossRef]
- Allman, K.C.; Shaw, L.J.; Hachamovitch, R.; Udelson, J.E. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: A meta-analysis. J. Am. Coll. Cardiol. 2002, 39, 1151–1158. [Google Scholar] [CrossRef]
- Adhaduk, M.; Paudel, B.; Liu, K.; Ashwath, M.; Gebska, M.A.; Delcour, K.; Samuelson, R.J.; Giudici, M. Comparison of cardiac magnetic resonance imaging and fluorodeoxyglucose positron emission tomography in the assessment of myocardial viability: Meta-analysis and systematic review. J. Nucl. Cardiol. 2023, 30, 2514–2524. [Google Scholar] [CrossRef] [PubMed]
- Juneau, D.; Erthal, F.; Alzahrani, A.; Alenazy, A.; Nery, P.B.; Beanlands, R.S.; Chow, B.J. Systemic and inflammatory disorders involving the heart: The role of PET imaging. Q. J. Nucl. Med. Mol. Imaging 2016, 60, 383–396. [Google Scholar] [PubMed]
- Tam, M.C.; Patel, V.N.; Weinberg, R.L.; Hulten, E.A.; Aaronson, K.D.; Pagani, F.D.; Corbett, J.R.; Murthy, V.L. Diagnostic Accuracy of FDG PET/CT in suspected LVAD infections: A case series, systematic review, and meta-analysis. JACC Cardiovasc. Imaging 2019, 13, 1191–1202. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, M.C.; Rybicki, B.A.; Teirstein, A.S. Sarcoidosis. N. Engl. J. Med. 2007, 357, 2153–2165. [Google Scholar] [CrossRef]
- Blankstein, R.; Osborne, M.; Naya, M.; Waller, A.; Kim, C.K.; Murthy, V.L.; Kazemian, P.; Kwong, R.Y.; Tokuda, M.; Skali, H.; et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J. Am. Coll. Cardiol. 2014, 63, 329–336. [Google Scholar] [CrossRef]
- Miyagawa, M.; Yokoyama, R.; Nishiyama, Y.; Ogimoto, A.; Higaki, J.; Mochizuki, T. Positron emission tomography-computed tomography for imaging of inflammatory cardiovascular diseases. Circ. J. 2014, 78, 1302–1310. [Google Scholar] [CrossRef]
- Terasaki, F.; Azuma, A.; Anzai, T.; Ishizaka, N.; Ishida, Y.; Isobe, M.; Inomata, T.; Ishibashi-Ueda, H.; Eishi, Y.; Kitakaze, M.; et al. JCS 2016 guideline on diagnosis and treatment of cardiac sarcoidosis. Circ. J. 2019, 83, 2329–2388. [Google Scholar] [CrossRef]
- Birnie, D.H.; Sauer, W.H.; Bogun, F.; Cooper, J.M.; Culver, D.A.; Duvernoy, C.N.; Judson, M.A.; Kron, J.; Mehta, D.; Nielsen, J.C.; et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm. 2014, 1, 1305–1323. [Google Scholar] [CrossRef]
- Kumita, S.; Yoshinaga, K.; Miyagawa, M.; Momose, M.; Kiso, K.; Kasai, T.; Naya, M.; Committee for Diagnosis of Cardiac Sarcoidosis Using 18F-FDG PET, Japanese Society of Nuclear Cardiology. Recommendations for 18F-fluorodeoxyglucose positron emission tomography imaging for diagnosis of cardiac sarcoidosis-2018 update: Japanese Society of Nuclear Cardiology recommendations. J. Nucl. Cardiol. 2019, 26, 1414–1433. [Google Scholar] [CrossRef]
- Lu, Y.; Sweiss, N.J.; Macapinlac, H.A. What is the optimal method on myocardial suppression in FDG PET/CT evaluation of cardiac sarcoidosis? Clin. Nucl. Med. 2021, 6, 904–905. [Google Scholar] [CrossRef]
- Devesa, A.; Robson, P.M.; Cangut, B.; Vazirani, R.; Vergani, V.; LaRocca, G.; Romero-Daza, A.M.; Liao, S.; Azoulay, L.D.; Pyzik, R.; et al. Specific locations of myocardial inflammation and fibrosis are associated with higher risk of events in cardiac sarcoidosis. Heart Rhythm. 2024, in press. [CrossRef] [PubMed]
- Vidula, M.K.; Selvaraj, S.; Rojulpote, C.; Bhattaru, A.; Kc, W.; Hansbury, M.; Schubert, E.; Clancy, C.B.; Rossman, M.; Goldberg, L.R.; et al. Relationship of ketosis with myocardial glucose uptake among patients undergoing FDG PET/CT for evaluation of cardiac sarcoidosis. Circ. Cardiovasc. Imaging 2024, 17, e016774. [Google Scholar] [CrossRef] [PubMed]
- Saric, P.; Bois, J.P.; Giudicessi, J.R.; Rosenbaum, A.N.; Kusmirek, J.E.; Lin, G.; Chareonthaitawee, P. Imaging of Cardiac Sarcoidosis: An update and future aspects. Semin. Nucl. Med. 2024, 54, 701–716. [Google Scholar] [CrossRef] [PubMed]
- Nakajo, M.; Hirahara, D.; Jinguji, M.; Ojima, S.; Hirahara, M.; Tani, A.; Takumi, K.; Kamimura, K.; Ohishi, M.; Yoshiura, T. Machine learning approach using 18F-FDG-PET-radiomic features and the visibility of right ventricle 18F-FDG uptake for predicting clinical events in patients with cardiac sarcoidosis. Jpn. J. Radiol. 2024, 42, 744–752. [Google Scholar] [CrossRef]
- Kafil, T.S.; Shaikh, O.M.; Fanous, Y.; Benjamen, J.; Hashmi, M.M.; Jawad, A.; Dahrouj, T.; Abazid, R.M.; Swiha, M.; Romsa, J.; et al. Risk stratification in cardiac sarcoidosis with cardiac positron emission tomography: A systematic review and meta-analysis. JACC Cardiovasc. Imaging 2024, 17, 1079–1097. [Google Scholar] [CrossRef]
- Aitken, M.; Chan, M.V.; Urzua Fresno, C.; Farrell, A.; Islam, N.; McInnes, M.D.F.; Iwanochko, M.; Balter, M.; Moayedi, Y.; Thavendiranathan, P.; et al. Diagnostic accuracy of cardiac MRI versus FDG PET for cardiac sarcoidosis: A systematic review and meta-analysis. Radiology 2022, 304, 566–579. [Google Scholar] [CrossRef]
- Ohira, H.; Sato, T.; Manabe, O.; Oyama-Manabe, N.; Hayashishita, A.; Nakaya, T.; Nakamura, J.; Suzuki, N.; Sugimoto, A.; Furuya, S.; et al. Underdiagnosis of cardiac sarcoidosis by ECG and echocardiography in cases of extracardiac sarcoidosis. ERJ Open Res. 2022, 8, 00516-2021. [Google Scholar] [CrossRef]
- Morimoto, R.; Unno, K.; Fujita, N.; Sakuragi, Y.; Nishimoto, T.; Yamashita, M.; Kuwayama, T.; Hiraiwa, H.; Kondo, T.; Kuwatsuka, Y.; et al. Prospective analysis of immunosuppressive therapy in cardiac sarcoidosis with fluorodeoxyglucose myocardial accumulation: The PRESTIGE Study. JACC Cardiovasc. Imaging 2024, 17, 45–58. [Google Scholar] [CrossRef]
- Habib, G.; Erba, P.A.; Iung, B.; Donal, E.; Cosyns, B.; Laroche, C.; Popescu, B.A.; Prendergast, B.; Tornos, P.; Sadeghpour, A.; et al. Clinical presentation, aetiology and outcome of infective endocarditis. Results of the ESC-EORP EURO-ENDO (European infective endocarditis) registry: A prospective cohort study. Eur. Heart J. 2019, 40, 3222–3232. [Google Scholar] [CrossRef]
- Delgado, V.; Ajmone Marsan, N.; de Waha, S.; Bonaros, N.; Brida, M.; Burri, H.; Caselli, S.; Doenst, T.; Ederhy, S.; Erba, P.A.; et al. 2023 ESC Guidelines for the management of endocarditis. Eur. Heart J. 2023, 44, 3948–4042. [Google Scholar] [CrossRef]
- Dilsizian, V.; Budde, R.P.J.; Chen, W.; Mankad, S.V.; Lindner, J.R.; Nieman, K. Best practices for imaging cardiac device-related infections and endocarditis: A JACC: Cardiovascular Imaging Expert Panel Statement. JACC Cardiovasc. Imaging 2022, 15, 891–911. [Google Scholar] [CrossRef] [PubMed]
- Masuda, A.; Manabe, O.; Naya, M.; Oyama-Manabe, N.; Yamada, S.; Matsushima, S.; Gaertner, F.C.; Yamada, S.; Tsutsui, H.; Tamaki, N. Whole body assessment by ¹⁸F-FDG PET in a patient with infective endocarditis. J. Nucl. Cardiol. 2013, 20, 641–643. [Google Scholar] [CrossRef] [PubMed]
- Sammartino, A.M.; Bonfioli, G.B.; Dondi, F.; Riccardi, M.; Bertagna, F.; Metra, M.; Vizzardi, E. Contemporary Role of positron emission tomography (PET) in endocarditis: A narrative review. J. Clin. Med. 2024, 13, 4124. [Google Scholar] [CrossRef] [PubMed]
- Tanis, W.; Scholtens, A.; Habets, J.; van den Brink, R.B.; van Herwerden, L.A.; Chamuleau, S.A.; Budde, R.P. CT angiography and 18F-FDG-PET fusion imaging for prosthetic heart valve endocarditis. JACC Cardiovasc. Imaging 2013, 6, 1008–1013. [Google Scholar] [CrossRef]
- Mahmood, M.; Kendi, A.T.; Ajmal, S.; Farid, S.; O’Horo, J.C.; Chareonthaitawee, P.; Baddour, L.M.; Sohail, M.R. Meta-analysis of 18F-FDG PET/CT in the diagnosis of infective endocarditis. J. Nucl. Cardiol. 2019, 26, 922–935. [Google Scholar] [CrossRef]
- Bourque, J.M.; Birgersdotter-Green, U.; Bravo, P.E.; Budde, R.P.J.; Chen, W.; Chu, V.H.; Dilsizian, V.; Erba, P.A.; Gallegos Kattan, C.; Habib, G.; et al. 18F-FDG PET/CT and Radiolabeled Leukocyte SPECT/CT Imaging for the Evaluation of Cardiovascular Infection in the Multimodality Context: ASNC Imaging Indications (ASNC I2) Series Expert Consensus Recommendations From ASNC, AATS, ACC, AHA, ASE, EANM, HRS, IDSA, SCCT, SNMMI, and STS. JACC Cardiovasc. Imaging 2024, 17, 669–701. [Google Scholar]
- Broncano, J.; Vargas, D.; Bhalla, S.; Cummings, K.W.; Raptis, C.A.; Luna, A. CT and MR Imaging of cardiothoracic vasculitis. Radiographics 2018, 38, 997–1021. [Google Scholar] [CrossRef]
- van der Geest, K.S.M.; Gheysens, O.; Gormsen, L.C.; Glaudemans, A.W.J.M.; Tsoumpas, C.; Brouwer, E.; Nienhuis, P.; van Praagh, G.D.; Slart, R.H.J.A. Advances in PET imaging of large vessel vasculitis: An update and future Trends. Semin. Nucl. Med. 2024, 54, 753–760. [Google Scholar] [CrossRef]
- Maz, M.; Chung, S.A.; Abril, A.; Langford, C.A.; Gorelik, M.; Guyatt, G.; Archer, A.M.; Conn, D.L.; Full, K.A.; Grayson, P.C.; et al. 2021 American College of Rheumatology/Vasculitis Foundation guideline for the management of giant cell arteritis and Takayasu arteritis. Arthritis Rheumatol. 2021, 73, 1349–1365. [Google Scholar] [CrossRef]
- Guggenberger, K.V.; Bley, T.A. Imaging vasculitis. Curr. Rheumatol. Rep. 2020, 22, 34. [Google Scholar] [CrossRef]
- Yabusaki, S.; Oyama-Manabe, N.; Manabe, O.; Hirata, K.; Kato, F.; Miyamoto, N.; Matsuno, Y.; Kudo, K.; Tamaki, N.; Shirato, H. Characteristics of immunoglobulin G4-related aortitis/periaortitis and periarteritis on fluorodeoxyglucose positron emission tomography/computed tomography co-registered with contrast-enhanced computed tomography. EJNMMI Res. 2017, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- van der Valk, F.M.; Verweij, S.L.; Zwinderman, K.A.; Strang, A.C.; Kaiser, Y.; Marquering, H.A.; Nederveen, A.J.; Stroes, E.S.; Verberne, H.J.; Rudd, J.H. Thresholds for arterial wall inflammation quantified by 18F-FDG PET imaging: Implications for vascular Interventional studies. JACC Cardiovasc. Imaging 2016, 9, 1198–1207. [Google Scholar] [CrossRef] [PubMed]
- van der Geest, K.S.M.; Treglia, G.; Glaudemans, A.W.J.M.; Brouwer, E.; Sandovici, M.; Jamar, F.; Gheysens, O.; Slart, R.H.J.A. Diagnostic value of [18F]FDG-PET/CT for treatment monitoring in large vessel vasculitis: A systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3886–3902. [Google Scholar] [CrossRef] [PubMed]
- Dejaco, C.; Ramiro, S.; Bond, M.; Bosch, P.; Ponte, C.; Mackie, S.L.; Bley, T.A.; Blockmans, D.; Brolin, S.; Bolek, E.C.; et al. EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice: 2023 update. Ann. Rheum. Dis. 2024, 83, 741–751. [Google Scholar] [CrossRef]
- Collada-Carrasco, J.; Gomez-Leon, N.; Castillo-Morales, V.; Lumbreras-Fernandez, B.; Castaneda, S.; Rodriguez-Laval, V. Role and potential of 18F-fluorodeoxyglucose-positron emission tomography-computed tomography in large-vessel vasculitis: A comprehensive review. Front. Med. 2024, 11, 1432865. [Google Scholar] [CrossRef]
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgö Zoglu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers 2019, 5, 56. [Google Scholar] [CrossRef]
- Raynor, W.Y.; Park, P.S.U.; Borja, A.; Sun, Y.; Werner, T.; Ng, S.J.; Lau, H.C.; Hoilund-Carsen, P.F.; Alavi, A.; Revheim, M.E. PET-based imaging with 18F-FDG and 18F-NaF to assess inflammation and microcalcification in atherosclerosis and other vascular and thrombotic disorders. Diagnostics 2021, 11, 2234. [Google Scholar] [CrossRef]
- Syed, M.B.; Fletcher, A.; Forsythe, R.O.; Kaczynski, J.; ENewby, D.; Dweck, M.R.; Van Beek, E.J. Emerging techniques in atherosclerosis imaging. Br. J. Radiol. 2019, 92, 20180309. [Google Scholar] [CrossRef]
- Takx, R.A.; Partovi, S.; Ghoshhajra, B.B. Imaging of atherosclerosis. Int. J. Cardiovasc. Imaging 2016, 32, 5–12. [Google Scholar] [CrossRef]
- Kirienko, M.; Erba, P.A.; Chiti, A.; Sollini, M. Hybrid PET/MRI in infection and inflammation: An update about the latest available literature evidence. Semin. Nucl. Med. 2023, 53, 107–124. [Google Scholar] [CrossRef]
- Maes, L.; Versweyveld, L.; Evans, N.R.; McCabe, J.J.; Kelly, P.; Van Laere, K.; Lemmens, R. Novel targets for molecular imaging of inflammatory processes of carotid atherosclerosis: A systematic Review. Semin. Nucl. Med. 2024, 54, 658–673. [Google Scholar] [CrossRef] [PubMed]
- Nienhuis, P.H.; van Praagh, G.D.; Glaudemans, A.W.J.M.; Brouwer, E.; Slart, R.H.J.A. A review on the value of imaging in differentiating between large vessel vasculitis and atherosclerosis. J. Pers. Med. 2021, 11, 236. [Google Scholar] [CrossRef] [PubMed]
- Granados, U.; Fuster, D.; Pericas, J.M.; Llopis, J.L.; Ninot, S.; Quintana, E.; Almela, M.; Paré, C.; Tolosana, J.M.; Falces, C.; et al. Diagnostic accuracy of 18F-FDG PET/CT in infective endocarditis and implantable cardiac electronic device infection: A Cross-Sectional Study. J. Nucl. Med. 2016, 57, 1726–1732. [Google Scholar] [CrossRef] [PubMed]
- Tonutti, A.; Scarfò, I.; La Canna, G.; Selmi, C.; De Santis, M. Diagnostic work-up in patients with nonbacterial thrombotic endocarditis. J. Clin. Med. 2023, 12, 5819. [Google Scholar] [CrossRef]
- Lairez, O.; Hyafil, F. A clinical role of PET in atherosclerosis and vulnerable plaques? Semin. Nucl. Med. 2020, 50, 311–318. [Google Scholar] [CrossRef]
- Asabella, A.N.; Ciccone, M.M.; Cortese, F.; Scicchitano, P.; Gesualdo, M.; Zito, A.; DiPalo, A.; Angiletta, D.; Regina, G.; Marzullo, A.; et al. Higher reliability of 18F-FDG target background ratio compared to standardized uptake value in vulnerable carotid plaque detection: A pilot study. Ann. Nucl. Med. 2014, 28, 571–579. [Google Scholar] [CrossRef]
- Long, H.D.; Lin, Y.E.; Zhang, J.J.; Zhong, W.Z.; Zheng, R.N. Risk of congestive heart failure in early breast cancer patients undergoing adjuvant treatment with trastuzumab: A meta-analysis. Oncologist 2016, 21, 547–554. [Google Scholar] [CrossRef]
- Michel, L.; Helfrich, I.; Hendgen-Cotta, U.B.; Mincu, R.I.; Korste, S.; Mrotzek, S.M.; Spomer, A.; Odersky, A.; Rischpler, C.; Herrmann, K.; et al. Targeting early stages of cardiotoxicity from anti-PD1 immune checkpoint inhibitor therapy. Eur. Heart J. 2022, 43, 316–329. [Google Scholar] [CrossRef]
- Banfill, K.; Giuliani, M.; Aznar, M.; Franks, K.; McWilliam, A.; Schmitt, M.; Sun, F.; Vozenin, M.C.; Finn, C.F.; IASLC Advanced Radiation Technology Committee. Cardiac toxicity of thoracic radiotherapy: Existing evidence and future directions. J. Thorac. Oncol. 2021, 16, 216–227. [Google Scholar] [CrossRef]
- Meattini, I.; Poortmans, P.M.; Aznar, M.C.; Becherini, C.; Bonzano, E.; Cardinale, D.; Lenihan, D.J.; Marrazzo, L.; Curigliano, G.; Livi, L. Association of breast cancer irradiation with cardiac toxic effects: A Narrative Review. JAMA Oncol. 2021, 7, 924–932. [Google Scholar] [CrossRef]
- Tamaki, N.; Manabe, O.; Hirata, K. Cardiovascular imaging in cardio-oncology. Jpn. J. Radiol. 2024, 42, 1372–1380. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, N.; Kotani, T.; Matsushima, S.; Okamoto, T.; Zen, K.; Yamada, K. Molecular imaging in oncocardiology. J. Biomed. Res. Environ. Sci. 2023, 4, 1–4. [Google Scholar] [CrossRef]
- Berliner, D.; Beutel, G.; Bauersachs, J. Echocardiography and biomarkers for the diagnosis of cardiotoxicity. Herz 2020, 45, 637–664. [Google Scholar] [CrossRef]
- Battisha, A.; Mann, C.; Raval, R.; Anandaram, A.; Patel, B. Clinical applications and advancements of positron emission tomography/computed tomography in cardio-oncology: A comprehensive literature review and emerging perspectives. Curr. Oncol. Rep. 2024, 26, 1442–1451. [Google Scholar] [CrossRef]
- Haider, A.; Bengs, S.; Schade, K.; Wijnen, W.J.; Portmann, A.; Etter, D.; Fröhlich, S.; Warnock, G.I.; Treyer, V.; Burger, I.A.; et al. Myocardial 18F-FDG uptake pattern for cardiovascular risk stratification in patients undergoing oncologic PET/CT. J. Clin. Med. 2020, 9, 2279. [Google Scholar] [CrossRef]
- Tong, J.; Vogiatzakis, N.; Andres, M.S.; Senechal, I.; Badr, A.; Ramalingam, S.; Rosen, S.D.; Lyon, A.R.; Nazir, M.S. Complementary use of cardiac magnetic resonance and 18F-FDG positron emission tomography imaging in suspected immune checkpoint inhibitor myocarditis. Cardiooncology 2024, 10, 53. [Google Scholar]
- Kersting, D.; Mavroeidi, I.A.; Settelmeier, S.; Seifert, R.; Schuler, M.; Herrmann, K.; Rassaf, T.; Rischpler, C. Molecular imaging biomarkers in cardiooncology: A view on established technologies and future perspectives. J. Nucl. Med. 2023, 64 (Suppl. S2), 29S–38S. [Google Scholar] [CrossRef]
- Zhang, M.; Quan, W.; Zhu, T.; Feng, S.; Huang, X.; Meng, H.; Du, R.; Zhu, Z.; Qu, X.; Li, P. [68Ga]Ga-DOTA-FAPI-04 PET/MR in patients with acute myocardial infarction: Potential role of predicting left ventricular remodeling. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 839–848. [Google Scholar] [CrossRef]
- Totzeck, M.; Siebermair, J.; Rassaf, T.; Rischpler, C. Cardiac fibroblast activation detected by positron emission tomography/computed tomography as a possible sign of cardiotoxicity. Eur. Heart J. 2020, 41, 1060. [Google Scholar] [CrossRef]
- Al-Zaghal, A.; Raynor, W.; Khosravi, M.; Guermazi, A.; Werner, T.J.; Alavi, A. Applications of PET imaging in the evaluation of musculoskeletal diseases among the geriatric population. Semin. Nucl. Med. 2018, 48, 525–534. [Google Scholar] [CrossRef]
- Krisman, S.; Otaki, Y.; Doris, M.; Slipczuk, L.; Arnson, Y.; Rubeaux, M.; Dey, D.; Slomka, P.; Berman, D.S.; Tamarappoo, B. Molecular imaging of vulnerable coronary plaque: A pathological perspective. J. Nucl. Med. 2017, 58, 359–364. [Google Scholar] [CrossRef] [PubMed]
Ultrasound | CT | MRI | FDG PET/CT | |
---|---|---|---|---|
Focus | Sound waves Structure and flow analysis | X-way attenuation Structure and functional analysis | Proton density and echo time Edema and necrosis | Various molecular functions Glucose metabolism |
Patient advantage | Easy to perform even at bedside No radiation | Very fast scan Evaluation of other organs | No or minimally invasive procedure No radiation | Both anatomical and functional information Safe in renal failure |
Patient disadvantage | Relatively long acquisition time Operator dependent | Radiation associated with imaging Side effect by contrast media | Long acquisition time Claustrophobia due to smaller patient bore Contraindicated in patients with loose foreign metals High cost | Long acquisition time Radiation with radiopharmaceuticals High cost |
Imaging advantage | High spatial resolution Real-time imaging Simultaneous assessment of cardiac function | High spatial resolution Can evaluate calcified plaques | Superior soft tissue imaging with excellent spatial resolution True multiplanar capability to image in any oblique plane | Providing functional and biological information Potential use of other molecular biomarkers |
Imaging disadvantage | Limited use below bone or air Limited use for cardiac devices | Sub-optimal soft tissue imaging Lack of functional and biological information | MR image distortion Limited use for cardiac device | Limited spatial resolution Variable effect of thresholds or other criteria |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamaki, N.; Aikawa, T.; Manabe, O. 18F-Fluorodeoxyglucose Imaging for Assessing Cardiovascular Inflammation. Diagnostics 2025, 15, 573. https://doi.org/10.3390/diagnostics15050573
Tamaki N, Aikawa T, Manabe O. 18F-Fluorodeoxyglucose Imaging for Assessing Cardiovascular Inflammation. Diagnostics. 2025; 15(5):573. https://doi.org/10.3390/diagnostics15050573
Chicago/Turabian StyleTamaki, Nagara, Tadao Aikawa, and Osamu Manabe. 2025. "18F-Fluorodeoxyglucose Imaging for Assessing Cardiovascular Inflammation" Diagnostics 15, no. 5: 573. https://doi.org/10.3390/diagnostics15050573
APA StyleTamaki, N., Aikawa, T., & Manabe, O. (2025). 18F-Fluorodeoxyglucose Imaging for Assessing Cardiovascular Inflammation. Diagnostics, 15(5), 573. https://doi.org/10.3390/diagnostics15050573