Assessment of Vascular Endothelial Dysfunction in Septic Patients Using Brachial Flow-Mediated Dilation: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Material and Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Data Collection
2.4. Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Search Results
3.2. Study and Patient Characteristics
3.3. Quality Assessment of Studies
3.4. FMD in Septic Patients Compared to Non-Septic Controls
3.5. FMD in Sepsis Non-Survivors Compared to Survivors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef]
- Reinhart, K.; Daniels, R.; Kissoon, N.; Machado, F.R.; Schachter, R.D.; Finfer, S. Recognizing sepsis as a global health priority—A WHO resolution. N. Engl. J. Med. 2017, 377, 414–417. [Google Scholar] [CrossRef]
- Van den Berg, M.; Van Beuningen, F.; Ter Maaten, J.; Bouma, H. Hospital-related costs of sepsis around the world: A systematic review exploring the economic burden of sepsis. J. Crit. Care 2022, 71, 154096. [Google Scholar] [CrossRef]
- Arefian, H.; Heublein, S.; Scherag, A.; Brunkhorst, F.M.; Younis, M.Z.; Moerer, O.; Fischer, D.; Hartmann, M. Hospital-related cost of sepsis: A systematic review. J. Infect. 2017, 74, 107–117. [Google Scholar] [CrossRef]
- Kumar, A.; Roberts, D.; Wood, K.E.; Light, B.; Parrillo, J.E.; Sharma, S.; Suppes, R.; Feinstein, D.; Zanotti, S.; Taiberg, L.; et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 2006, 34, 1589–1596. [Google Scholar] [CrossRef] [PubMed]
- Seymour, C.W.; Gesten, F.; Prescott, H.C.; Friedrich, M.E.; Iwashyna, T.J.; Phillips, G.S.; Lemeshow, S.; Osborn, T.; Terry, K.M.; Levy, M.M. Time to Treatment and Mortality during Mandated Emergency Care for Sepsis. N. Engl. J. Med. 2017, 376, 2235–2244. [Google Scholar] [CrossRef] [PubMed]
- Liu, V.X.; Fielding-Singh, V.; Greene, J.D.; Baker, J.M.; Iwashyna, T.J.; Bhattacharya, J.; Escobar, G.J. The timing of early antibiotics and hospital mortality in sepsis. Am. J. Respir. Crit. Care Med. 2017, 196, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Ince, C.; Mayeux, P.R.; Nguyen, T.; Gomez, H.; Kellum, J.A.; Ospina-Tascon, G.A.; Hernandez, G.; Murray, P.; De Backer, D. The endothelium in sepsis. Shock 2016, 45, 259–270. [Google Scholar] [CrossRef]
- Tang, F.; Zhao, X.-L.; Xu, L.-Y.; Zhang, J.-N.; Ao, H.; Peng, C. Endothelial dysfunction: Pathophysiology and therapeutic targets for sepsis-induced multiple organ dysfunction syndrome. Biomed. Pharmacother. 2024, 178, 117180. [Google Scholar] [CrossRef]
- Dhulkifle, H.; Sayed, T.S.; Abunada, H.H.; Abulola, S.M.; Alhoshani, A.; Korashy, H.M.; Maayah, Z.H. 6-Formylindolo(3,2-b)carbazole Dampens Inflammation and Reduces Endotoxin-Induced Kidney Injury via Nrf2 Activation. Chem. Res. Toxicol. 2023, 36, 552–560. [Google Scholar] [CrossRef]
- Clark, D.V.; Banura, P.; Bandeen-Roche, K.; Liles, W.C.; Kain, K.C.; Scheld, W.M.; Moss, W.J.; Jacob, S.T. Biomarkers of endothelial activation/dysfunction distinguish subgroups of Ugandan patients with sepsis and differing mortality risks. JCI Insight 2019, 4, e127623. [Google Scholar] [CrossRef]
- Celermajer, D.S.; Sorensen, K.E.; Gooch, V.M.; Spiegelhalter, D.; Miller, O.; Sullivan, I.; Lloyd, J.; Deanfield, J. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1992, 340, 1111–1115. [Google Scholar] [CrossRef] [PubMed]
- Sena, C.M.; Gonçalves, L.; Seiça, R. Methods to evaluate vascular function: A crucial approach towards predictive, preventive, and personalised medicine. EPMA J. 2022, 13, 209–235. [Google Scholar] [CrossRef]
- Thijssen, D.H.; Bruno, R.M.; van Mil, A.C.; Holder, S.M.; Faita, F.; Greyling, A.; Zock, P.L.; Taddei, S.; Deanfield, J.E.; Luscher, T. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. Eur. Heart J. 2019, 40, 2534–2547. [Google Scholar] [CrossRef]
- Matsuzawa, Y.; Kwon, T.G.; Lennon, R.J.; Lerman, L.O.; Lerman, A. Prognostic Value of Flow—Mediated Vasodilation in Brachial Artery and Fingertip Artery for Cardiovascular Events: A Systematic Review and Meta—Analysis. J. Am. Heart Assoc. 2015, 4, e002270. [Google Scholar] [CrossRef]
- Yeboah, J.; Crouse, J.R.; Hsu, F.C.; Burke, G.L.; Herrington, D.M. Brachial flow-mediated dilation predicts incident cardiovascular events in older adults: The Cardiovascular Health Study. Circulation 2007, 115, 2390–2397. [Google Scholar] [CrossRef]
- Yeboah, J.; Folsom, A.R.; Burke, G.L.; Johnson, C.; Polak, J.F.; Post, W.; Lima, J.A.; Crouse, J.R.; Herrington, D.M. Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: The multi-ethnic study of atherosclerosis. Circulation 2009, 120, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Opal, S.M.; van der Poll, T. Endothelial barrier dysfunction in septic shock. J. Intern. Med. 2015, 277, 277–293. [Google Scholar] [CrossRef] [PubMed]
- Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Chichester, UK, 2019. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. 2000. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 29 May 2025).
- Ravikumar, R.H.; Maitra, S.; Prasanna, M.; Anand, R.K.; Bansal, V.K.; Baidya, D.K. Ultrasonographic assessment of brachial artery reactivity as a predictor of adverse outcome in patients undergoing emergency laparotomy for perforated peritonitis–Prospective observational study. Indian J. Anaesth. 2023, 67, 905–912. [Google Scholar] [CrossRef]
- Wexler, O.; M. Morgan, M.A.; Gough, M.S.; Steinmetz, S.D.; Mack, C.M.; Darling, D.C.; Doolin, K.P.; Apostolakos, M.J.; Graves, B.T.; Frampton, M.W. Brachial artery reactivity in patients with severe sepsis: An observational study. Crit. Care 2012, 16, R38. [Google Scholar] [CrossRef]
- Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol. 2005, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Fayed, A.; Abdulazim, D.O.; Amin, M.; Elhadidy, S.; Samir, H.H.; Salem, M.M.; Abd ElAzim, I.M.; El Hawary, K.E.S.; El Din, U.A.S. Serum sclerostin in acute kidney injury patients. Nefrología 2022, 42, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Bonjorno Junior, J.C.; Caruso, F.R.; Mendes, R.G.; da Silva, T.R.; Biazon, T.M.P.d.C.; Rangel, F.; Phillips, S.A.; Arena, R.; Borghi-Silva, A. Noninvasive measurements of hemodynamic, autonomic and endothelial function as predictors of mortality in sepsis: A prospective cohort study. PLoS ONE 2019, 14, e0213239. [Google Scholar] [CrossRef]
- Becker, L.; Prado, K.; Foppa, M.; Martinelli, N.; Aguiar, C.; Furian, T.; Clausell, N.; Rohde, L.E. Endothelial dysfunction assessed by brachial artery ultrasound in severe sepsis and septic shock. J. Crit. Care 2012, 27, 316.e9–316.e14. [Google Scholar] [CrossRef] [PubMed]
- Vaudo, G.; Marchesi, S.; Siepi, D.; Brozzetti, M.; Lombardini, R.; Pirro, M.; Alaeddin, A.; Roscini, A.R.; Lupattelli, G.; Mannarino, E. Human endothelial impairment in sepsis. Atherosclerosis 2008, 197, 747–752. [Google Scholar] [CrossRef]
- Omar, W.; Mokhtar, A.; Abdelaziz, K.; Alazizi, H. Predictive value of brachial artery reactivity in sepsis. Egypt. J. Crit. Care Med. 2020, 7, 4–9. [Google Scholar] [CrossRef]
- Nelson, A.D.; Rossman, M.J.; Witman, M.A.; Barrett-O’Keefe, Z.; Groot, H.J.; Garten, R.S.; Richardson, R.S. Nitric oxide-mediated vascular function in sepsis using passive leg movement as a novel assessment: A cross-sectional study. J. Appl. Physiol. 2016, 120, 991–999. [Google Scholar] [CrossRef]
- La Via, L.; Sangiorgio, G.; Stefani, S.; Marino, A.; Nunnari, G.; Cocuzza, S.; La Mantia, I.; Cacopardo, B.; Stracquadanio, S.; Spampinato, S.; et al. The Global Burden of Sepsis and Septic Shock. Epidemiologia 2024, 5, 456–478. [Google Scholar] [CrossRef] [PubMed]
- Uffen, J.W.; Oosterheert, J.J.; Schweitzer, V.A.; Thursky, K.; Kaasjager, H.A.H.; Ekkelenkamp, M.B. Interventions for rapid recognition and treatment of sepsis in the emergency department: A narrative review. Clin. Microbiol. Infect. 2021, 27, 192–203. [Google Scholar] [CrossRef]
- Sweeney, T.E.; Wong, H.R. Risk Stratification and Prognosis in Sepsis: What Have We Learned from Microarrays? Clin. Chest. Med. 2016, 37, 209–218. [Google Scholar] [CrossRef]
- Martin-Fernandez, M.; Vaquero-Roncero, L.M.; Almansa, R.; Gómez-Sánchez, E.; Martín, S.; Tamayo, E.; Esteban-Velasco, M.C.; Ruiz-Granado, P.; Aragón, M.; Calvo, D.; et al. Endothelial dysfunction is an early indicator of sepsis and neutrophil degranulation of septic shock in surgical patients. BJS Open 2020, 4, 524–534. [Google Scholar] [CrossRef]
- Cyr, A.R.; Huckaby, L.V.; Shiva, S.S.; Zuckerbraun, B.S. Nitric Oxide and Endothelial Dysfunction. Crit. Care Clin. 2020, 36, 307–321. [Google Scholar] [CrossRef]
- Pyke, K.E.; Tschakovsky, M.E. The relationship between shear stress and flow-mediated dilatation: Implications for the assessment of endothelial function. J. Physiol. 2005, 568, 357–369. [Google Scholar] [CrossRef]
- Kattan, L.A.; Abulola, S.M.; Mohamed Ibrahim, M.I.; Maayah, Z.H. Anthracyclines-Induced Vascular Endothelial Dysfunction in Cancer Patients and Survivors Using Brachial Flow-Mediated Dilation (FMD) Tool: A Systematic Review and Meta-Analysis. Cardiovasc. Toxicol. 2025, 25, 692–718. [Google Scholar] [CrossRef]
- Xiao, X.; Li, X.; Xiao, X.; Wang, J.; Liu, D.; Deng, Z. Flow-Mediated Dilatation in the Assessment of Coronary Heart Disease: A Meta-Analysis. Cardiol. Res. Pract. 2022, 2022, 7967324. [Google Scholar] [CrossRef]
- Ras, R.T.; Streppel, M.T.; Draijer, R.; Zock, P.L. Flow-mediated dilation and cardiovascular risk prediction: A systematic review with meta-analysis. Int. J. Cardiol. 2013, 168, 344–351. [Google Scholar] [CrossRef] [PubMed]
- McMullan, R.R.; McAuley, D.F.; O’Kane, C.M.; Silversides, J.A. Vascular leak in sepsis: Physiological basis and potential therapeutic advances. Crit. Care 2024, 28, 97. [Google Scholar] [CrossRef] [PubMed]
- Theofilis, P.; Lampsas, S.; Oikonomou, E.; Siasos, G.; Vavuranakis, M.A.; Marinos, G.; Tsioufis, K.; Vavuranakis, M.; Tousoulis, D. Endothelial dysfunction in convalescent COVID-19 patients: Systematic review and meta-analysis. Arch. Cardiovasc. Dis. 2022, 115, 675–677. [Google Scholar] [CrossRef]
- Dolmatova, E.V.; Wang, K.; Mandavilli, R.; Griendling, K.K. The effects of sepsis on endothelium and clinical implications. Cardiovasc. Res. 2021, 117, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Ryoo, S.M.; Lee, J.; Lee, Y.-S.; Lee, J.H.; Lim, K.S.; Huh, J.W.; Hong, S.-B.; Lim, C.-M.; Koh, Y.; Kim, W.Y. Lactate Level Versus Lactate Clearance for Predicting Mortality in Patients With Septic Shock Defined by Sepsis-3. Crit. Care Med. 2018, 46, e489–e495. [Google Scholar] [CrossRef]
- Shi, R.; Hamzaoui, O.; De Vita, N.; Monnet, X.; Teboul, J.L. Vasopressors in septic shock: Which, when, and how much? Ann. Transl. Med. 2020, 8, 794. [Google Scholar] [CrossRef]
- Joffre, J.; Lloyd, E.; Wong, E.; Chung-Yeh, C.; Nguyen, N.; Xu, F.; Legrand, M.; Hellman, J. Catecholaminergic Vasopressors Reduce Toll-Like Receptor Agonist-Induced Microvascular Endothelial Cell Permeability But Not Cytokine Production. Crit. Care Med. 2021, 49, e315–e326. [Google Scholar] [CrossRef] [PubMed]
- Iba, T.; Maier, C.L.; Helms, J.; Ferrer, R.; Thachil, J.; Levy, J.H. Managing sepsis and septic shock in an endothelial glycocalyx-friendly way: From the viewpoint of surviving sepsis campaign guidelines. Ann. Intensive Care 2024, 14, 64. [Google Scholar] [CrossRef] [PubMed]
- Corretti, M.C.; Anderson, T.J.; Benjamin, E.J.; Celermajer, D.; Charbonneau, F.; Creager, M.A.; Deanfield, J.; Drexler, H.; Gerhard-Herman, M.; Herrington, D.; et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery. J. Am. Coll. Cardiol. 2002, 39, 257–265. [Google Scholar] [CrossRef]
- Gokce, N.; Holbrook, M.; Hunter, L.M.; Palmisano, J.; Vigalok, E.; Keaney, J.F., Jr.; Vita, J.A. Acute effects of vasoactive drug treatment on brachial artery reactivity. J. Am. Coll. Cardiol. 2002, 40, 761–765. [Google Scholar] [CrossRef]
- Gül, F.; Arslantaş, M.K.; Cinel, İ.; Kumar, A. Changing Definitions of Sepsis. Turk. J. Anaesthesiol. Reanim. 2017, 45, 129–138. [Google Scholar] [CrossRef]
- Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.; Sibbald, W.J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992, 101, 1644–1655. [Google Scholar] [CrossRef]
- Levy, M.M.; Fink, M.P.; Marshall, J.C.; Abraham, E.; Angus, D.; Cook, D.; Cohen, J.; Opal, S.M.; Vincent, J.L.; Ramsay, G. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med. 2003, 29, 530–538. [Google Scholar] [CrossRef] [PubMed]






| Study | Country | Study Design | Study Population | Age, Years a | Sex | Sepsis Severity b | Blood Pressure, mmHg c | LOS, Days d | Outcomes |
|---|---|---|---|---|---|---|---|---|---|
| Ravikumar et al., 2023 [24] | India | Prospective cohort study | Adult patients with perforation peritonitis undergoing emergency laparotomy (n = 76), including survivors (n = 50) and non-survivors (n = 26), and their controls of adult patients undergoing elective laparotomy without any features of sepsis (n = 75). | 30 (23–45) for patients with perforation peritonitis undergoing emergency laparotomy. 42 (30–52) for control patients undergoing elective laparotomy. | 65% males for patients with perforation peritonitis undergoing emergency laparotomy | SOFA score: 2 (0–4) overall; 0.5 (0–2) for survivors; 4 (2–6) for non-survivors. APACHE II score: 11 (4–15.5) for all patients. 6.5 (414) for survivors. 14.5 (11–20) for non-survivors. | NR | Length of hospital stay: 9.5 (5–28) for all patients; 15.5 (6–29) for survivors and 6 (2–19) for non-survivors | Significantly lower FMD in sepsis patients compared to controls before laparotomy, immediately after, and 48 h after laparotomy. No significant difference in FMD between survivors and non-survivors. Postoperative FMD was not a good predictor of in-hospital mortality. Significant positive correlation between FMD and lactate clearance at 24 h post-surgery |
| Fayed et al., 2022 [27] | Egypt | Cross- sectional case–control study | Patients in the ICU with AKI as a consequence of severe sepsis (n = 219), including survivors (n = 122) and non-survivors (n = 97), and their age-matched healthy controls (n = 219) | 57 (27) for patients with sepsis-induced AKI. 56 (13) for healthy controls | NR | Severe sepsis: all patients had organ dysfunction, evident as acute kidney injury | NR | NR | Significantly reduced FMD in patients with AKI as a consequence of severe sepsis compared to healthy controls. No significant difference in FMD between survivors and non-survivors. |
| Omar et al., 2020 [31] | Egypt | Cross- sectional study | Adult patients within 48 h of sepsis diagnosis, including those with pulmonary (n = 28), abdominal (n = 8), UTI (n = 25), skin/catheter site (n = 14) as sources of sepsis, admitted to the ICU (n = 50), including survivors (n = 40) and non-survivors (n = 10) and their controls without acute illness (n = 30). | 61.24 ± 13.81 for patients with sepsis. 58.78 ± 13.53 for survivors and 71.10 ± 10.55 for non-survivors. 43.73 ± 16.12 for controls. | 50% males in the survivors group. 30% males in the non-survivors. | SOFA score:1.91 ± 2.15 for survivors.10.36 ± 3.34 for non-survivors. | MAP: 94.29 ± 11.94 for survivors. 82.50 ± 8.89 for non-survivors. | NR | Significantly impaired FMD in sepsis patients compared to healthy controls. No significant difference in FMD between sepsis survivors and non-survivors FMD was not a predictor of hospital mortality in the sepsis group |
| Junior et al., 2019 [28] | Brazil | Prospective cohort study | Adult patients on mechanical ventilation admitted to the ICU with a diagnosis of sepsis (n = 60) from respiratory tract (n = 30), intra-abdominal (n = 27), and other sources (n = 3), including survivors (n = 21) and non-survivors (n = 39) | 41.2 ± 14.9 for survivors. 55.2 ± 11.1 for non-survivors. | 58.3% males for sepsis patients. 71% males for survivors. 51% males for non-survivors. | SOFA score: 6.5 ± 4 for survivors. 10.3 ± 3.1 for non-survivors. APACHE II score: 21.9 ± 10.3 for survivors. 28.7 ± 6.1 for non-survivors. 63% of patients were using noradrenaline (n = 38); 21.6% of patients were using dobutamine (n = 13). | NR | Time in ICU: 9.6 ± 6.8 for survivors. 12.3 ± 9.6 for non-survivors. | Significantly lower FMD in sepsis non-survivors compared to non-survivors. FMD values greater than the cutoff of −1% were associated with longer survival and a lower 28-day mortality risk. |
| Nelson et al., 2016 [32] | United States | Cross-sectional study | Patients with severe sepsis (n = 14) or septic shock (n = 3) within 48 h of admission to the medical ICU (n = 17), and their healthy age- and sex-matched controls (n = 16), where FMD was measured in only 11 controls | 59 ± 14 for sepsis group. 59 ± 15 for controls | 59% male for sepsis group. 56% males for controls | SOFA score: 6 ± 3 APACHE II score: 17 ± 7 | MAP: 71 ± 18 for sepsis patients. | Average length of stay in the ICU was ~3 | Significantly reduced FMD in septic patients compared to healthy controls. Significant inverse correlation between FMD and APACHE II score. |
| Becker et al., 2012 [29] | Brazil | Prospective cohort study | Adults within 24 h of diagnosis of severe sepsis or septic shock (n = 42), from abdominal (n = 19), respiratory (n = 12), urinary (n = 6), or other source of infection(n = 5), including survivors (n = 28) and non-survivors (n = 14), and their healthy age- and sex-matched controls (n = 38) where FMD was measured in only 37 controls | 51 ± 19 for sepsis patients. 48 ± 20 for survivors. 57 ± 15 for non-survivors. 47 ± 14 for controls. | 38% males for sepsis group. 39% males for survivors. 36% males for non-survivors. 43% males for controls. | APACHE II score: 23 ± 7 overall; 22 ± 6 for survivors and 25 ± 8 for non-survivors. 79% of patients (n = 33) required vasopressors. | NR | ICU stay: 8 ± 7 | Significantly lower FMD in septic patients compared to healthy controls. Significantly lower FMD in non-survivors compared to survivors at 72 h after sepsis onset Significant negative correlations between FMD and lactate levels, IL-6 and sVCAM-1. |
| Wexler et al., 2012 [25] | United States | Combined case–control and prospective cohort study | Patients with severe sepsis or septic shock from pulmonary (60%), intra-abdominal (12%), urinary (12%), skin/catheter (4%), or other sources (13%), admitted to the medical and surgical ICU (n = 95), including survivors (n = 78) and non-survivors (n = 17), and their controls without acute illness (n = 52) | 62 (49–74) for severe sepsis patients. 60 (53–66) for controls | 52% males for severe sepsis patients. 55% males for survivors. 35% males for non-survivors. 50% males for controls | APACHE II score: 23 ± 8 85% of patients had severe sepsis (n = 73). 83% of survivors had septic shock. 94% of non-survivors had septic shock. 28% of sepsis patients required vasopressors. All patients had at least one dysfunctional organ | MAP: 80 (72–90) | NR | Significantly lower FMD in severe sepsis patients compared to controls, but no significant difference in FMD between severe sepsis survivors and non-survivors. No significant correlation between FMD and SOFA score, number of organ failure-free days, ICU-free days, or ventilator-free days. |
| Vaudo et al., 2008 [30] | Italy | Prospective cohort study | Patients with Gram-negative sepsis without organ dysfunction (n = 45) and their healthy age and sex matched controls (n = 25) | 41 ± 8 for sepsis patients. 43 ± 5 for controls. | 40% males for sepsis patients. 44% males for controls. | SOFA score: 4 ± 1. Patients with organ dysfunction were excluded. | SBP:118 ± 13; DBP: 69 ± 6 | NR | Significantly impaired FMD in patients with Gram-negative sepsis compared to controls. Significant positive correlation between brachial FMD, white blood cell count, and changes in SOFA score. |
| Study | Non-Septic Controls FMD (%) Mean ± SD | Sepsis Patients FMD (%) Mean ± SD | Timeframe of Measuring FMD |
|---|---|---|---|
| Ravikumar et al., 2023 [24] * | 1.13 ± 0.028 n = 75 | 0.98 ± 0.0233 n = 76 | Immediately before undergoing laparotomy surgery |
| Omar et al., 2020 [31] | 5.29 ± 1.74 n = 30 | 3.72 ± 2.22 n = 50 | Within 24 h of ICU admission |
| Nelson et al., 2016 [32] | 6.8 ± 1.3 n = 11 | 1.1 ± 1.7 n = 17 | 25 ± 13 h after ICU admission |
| Becker et al., 2012 [29] | 6 ± 4 n = 37 | 1.5 ± 7 n = 42 | After 24 h of ICU admission of sepsis patients |
| Wexler et al., 2012 [25] * | 4.11 ± 0.93 n = 52 | 2.65 ± 0.66 n = 95 | 41 (30 to 57) hours after meeting severe sepsis criteria |
| Vaudo et al., 2008 [30] | 9.9 ± 1.1 n = 25 | 8.7 ± 3.6 n = 45 | At admission to the ICU (within 24 h of diagnosis of sepsis) |
| Study | Sepsis Non-Survivors FMD (%) Mean ± SD | Sepsis Survivors FMD (%) Mean ± SD | Timeframe of Measuring FMD |
|---|---|---|---|
| Ravikumar et al., 2023 [24] * | 1.04 ± 0.03 n = 26 | 1.05 ± 0.0225 n = 50 | 24 h after laparotomy surgery |
| Omar et al., 2020 [31] | 3.17 ± 1.62 n = 10 | 3.86 ± 2.34 n= 40 | Within 24 h of ICU admission |
| Junior et al., 2019 [28] | −2.5 ± 15.5 n = 39 | 10.1 ± 23.3 n = 21 | With the first 24 h after sepsis diagnosis |
| Becker et al., 2012 [29] | 0.8 ± 6 n = 14 | 3.8 ± 4 n = 28 | 24 h after ICU admission |
| Wexler et al., 2012 [25] * | 1.97 ± 0.68 n= 17 | 2.96 ± 0.66 n = 78 | 41 (30 to 57) hours after meeting severe sepsis criteria |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kattan, L.; Abulola, S.; Elsayed, M.H.; Soltani, A.; Mohamed Ibrahim, M.I.; Maayah, Z.H. Assessment of Vascular Endothelial Dysfunction in Septic Patients Using Brachial Flow-Mediated Dilation: A Systematic Review and Meta-Analysis. Diagnostics 2025, 15, 3021. https://doi.org/10.3390/diagnostics15233021
Kattan L, Abulola S, Elsayed MH, Soltani A, Mohamed Ibrahim MI, Maayah ZH. Assessment of Vascular Endothelial Dysfunction in Septic Patients Using Brachial Flow-Mediated Dilation: A Systematic Review and Meta-Analysis. Diagnostics. 2025; 15(23):3021. https://doi.org/10.3390/diagnostics15233021
Chicago/Turabian StyleKattan, Lana, Sara Abulola, Mohamed H. Elsayed, Abderrezzaq Soltani, Mohamed Izham Mohamed Ibrahim, and Zaid H. Maayah. 2025. "Assessment of Vascular Endothelial Dysfunction in Septic Patients Using Brachial Flow-Mediated Dilation: A Systematic Review and Meta-Analysis" Diagnostics 15, no. 23: 3021. https://doi.org/10.3390/diagnostics15233021
APA StyleKattan, L., Abulola, S., Elsayed, M. H., Soltani, A., Mohamed Ibrahim, M. I., & Maayah, Z. H. (2025). Assessment of Vascular Endothelial Dysfunction in Septic Patients Using Brachial Flow-Mediated Dilation: A Systematic Review and Meta-Analysis. Diagnostics, 15(23), 3021. https://doi.org/10.3390/diagnostics15233021

