Cortisol Testing in Septic Shock: An Evaluation of Diagnostic Performance and Predictors of Corticosteroid Use in a Middle Eastern Cohort
Abstract
1. Introduction
2. Methods
2.1. Study Design and Setting
2.2. Study Population and Definitions
2.3. Data Collection and Assays
2.4. Statistical Analysis
2.5. Diagnostic Performance Analysis
2.6. Clinical Utility Analysis
2.7. Predictor Analysis
3. Results
3.1. Patient Characteristics and Clinical Outcomes
3.2. Cortisol Level Analysis and Diagnostic Performance
3.3. Clinical Utility of Cortisol Measurement
3.4. Predictors of Corticosteroid Initiation
4. Discussion
4.1. Pathophysiological Basis for Diagnostic Failure
4.2. The Primacy of Clinical Judgment
4.3. Regional Considerations and Global Implications
4.4. Strengths and Limitations
4.5. Implications for Clinical Practice and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaudhuri, D.; Nei, A.M.; Rochwerg, B.; Alebna, P.; Appiah, J.A.; Bellinghan, J.; Beltran-Arroyave, C.; D’Aragon, F.; Ghadimi, M.; Griesdale, D.; et al. 2024 focused update: Guidelines on use of corticosteroids in sepsis, acute respiratory distress syndrome, and community-acquired pneumonia. Crit. Care Med. 2024, 52, e219–e233. [Google Scholar] [CrossRef]
- Annane, D.; Pastores, S.M.; Arlt, W.; Balk, R.A.; Beishuizen, A.; Briegel, J.; Carcillo, J.; Christ-Crain, M.; Cooper, M.S.; Marik, P.E.; et al. Critical illness-related corticosteroid insufficiency (CIRCI): A narrative review from a Multispecialty Task Force of the Society of Critical Care Medicine (SCCM) and the European Society of Intensive Care Medicine (ESICM). Intensive Care Med. 2017, 43, 1781–1792. [Google Scholar]
- Téblick, A.; Langouche, L.; Van den Berghe, G. Critical illness-induced corticosteroid insufficiency: What it is not and what it could be. J. Clin. Endocrinol. Metab. 2022, 107, 2057–2064. [Google Scholar] [PubMed]
- Boonen, E.; Vervenne, H.; Meersseman, P.; Andrew, R.; Mortier, L.; Wouters, P.J.; Van den Berghe, G. Reduced cortisol metabolism during critical illness. N. Engl. J. Med. 2013, 368, 1477–1488. [Google Scholar] [PubMed]
- Peeters, B.; Meersseman, P.; Vander Perre, S.; Wouters, P.J.; Vanderschueren, S.; Van den Berghe, G. ACTH and cortisol responses to CRH in acute, subacute, and prolonged critical illness: A randomized, double-blind, placebo-controlled, crossover cohort study. Intensive Care Med. 2018, 44, 2048–2058. [Google Scholar] [CrossRef]
- Lee, J.H.; Meyer, E.J.; Nenke, M.A.; Falhammar, H.; Torpy, D.J. Corticosteroid-binding globulin (CBG): Spatiotemporal distribution of cortisol in sepsis. Trends Endocrinol. Metab. 2023, 34, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Fowler, C.; Raoof, N.; Pastores, S.M. Sepsis and adrenal insufficiency. J. Intensive Care Med. 2023, 38, 987–996. [Google Scholar]
- Annane, D.; Pastores, S.M.; Rochwerg, B.; Arlt, W.; Balk, R.A.; Beishuizen, A.; Briegel, J.; Carcillo, J.; Christ-Crain, M.; Cooper, M.S.; et al. Guidelines for the diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in critically ill patients (Part I): Society of Critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017. Intensive Care Med. 2017, 43, 1751–1763. [Google Scholar]
- Guerrero, J.; Gatica, H.A.; Rodriguez, M.; Paredes, F.; Galvez, F.; Quiroga, G.; Inestrosa, N.C.; Castro, M.A. Septic serum induces glucocorticoid resistance and modifies the expression of glucocorticoid isoforms receptors: A prospective cohort study and in vitro experimental assay. Crit. Care 2013, 17, R107. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, e1063–e1143. [Google Scholar]
- Pitre, T.; Drover, K.; Chaudhuri, D.; Zeraaktkar, D.; Menon, K.; Gershengorn, H.B.; Jayaprakash, N.; Spencer-Segal, J.L.; Pastores, S.M.; Nei, A.M.; et al. Corticosteroids in Sepsis and Septic Shock: A Systematic Review, Pairwise, and Dose-Response Meta-Analysis. Crit. Care Explor. 2024, 6, e1000. [Google Scholar] [CrossRef]
- Mormede, P.; Foury, A.; Barat, P.; Corcuff, J.B.; Le Melledo, J. Molecular genetics of hypothalamic-pituitary-adrenal axis activity and function. Ann. N. Y. Acad. Sci. 2011, 1220, 127–136. [Google Scholar] [CrossRef]
- Reichardt, S.D.; Amouret, A.; Muzzi, C.; Vettorazzi, S.; Tuckermann, J.P.; Lühder, F.; Reichardt, H.M. The role of glucocorticoids in inflammatory diseases. Cells 2021, 10, 2921. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. PLoS Med. 2007, 4, e296. [Google Scholar] [CrossRef]
- Scheeren, T.W.L.; Bakker, J.; De Backer, D.; Annane, D.; Asfar, P.; Boerma, E.C.; Cecconi, M.; Dubin, A.; Einav, S.; Gordon, A.C.; et al. The 2024 update on the use of vasopressors and inotropes in the intensive care unit. J. Clin. Monit. Comput. 2024, 38, 1347–1374. [Google Scholar]
- Roche Diagnostics. Elecsys Cortisol II [Package Insert]; Roche Diagnostics: Indianapolis, IN, USA, 2020. [Google Scholar]
- Fluss, R.; Shoman, T.; Pine, M. Confidence Intervals for the Youden Index and Corresponding Cut-Point. Commun. Stat. Simul. Comput. 2015, 44, 1337–1348. [Google Scholar]
- Vickers, A.J.; Elkin, E.B. Decision curve analysis: A novel method for evaluating prediction models. Med. Decis. Mak. 2006, 26, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, M.; Saville, B.R.; Lewis, R.J. Decision curve analysis. JAMA 2015, 313, 409–410. [Google Scholar] [CrossRef] [PubMed]
- Boonen, E.; Langouche, L.; Janssens, T.; Wouters, P.J.; Van den Berghe, G. Impact of duration of critical illness on the adrenal glands of human intensive care patients. J. Clin. Endocrinol. Metab. 2014, 99, 4214–4222. [Google Scholar] [CrossRef]
- Hamrahian, A.H.; Oseni, T.S.; Arafah, B.M. Measurements of serum free cortisol in critically ill patients. N. Engl. J. Med. 2004, 350, 1629–1638. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Meyer, E.J.; Nenke, M.A.; Lightman, S.L.; Torpy, D.J. Cortisol, Stress, and Disease—Bidirectional Associations; Role for Corticosteroid-Binding Globulin? J. Clin. Endocrinol. Metab. 2024, 109, 2161–2172. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.; Pretorius, C.J.; Ungerer, J.P.; McWhinney, B.C. Glucocorticoid sensitivity is highly variable in critically ill patients with septic shock and is associated with disease severity. Crit. Care Med. 2016, 44, 1034–1041. [Google Scholar] [CrossRef]
- Fredrick, F.C.; Meda, A.K.; Singh, B.; Jain, R. Critical illness-related corticosteroid insufficiency: Latest pathophysiology and management guidelines. Acute Crit. Care 2024, 39, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, B.; Finfer, S.; Cohen, J.; Rajbhandari, D.; Arabi, Y.; Bellomo, R.; Billot, L.; Correa, M.; Glass, P.; Harward, M.; et al. Adjunctive glucocorticoid therapy in patients with septic shock. N. Engl. J. Med. 2018, 378, 797–808. [Google Scholar] [CrossRef]
- Sprung, C.L.; Annane, D.; Keh, D.; Moreno, R.; Singer, M.; Freivogel, K.; Weiss, Y.G.; Benbenishty, J.; Kalenka, A.; Forst, H.; et al. Hydrocortisone therapy for patients with septic shock. N. Engl. J. Med. 2008, 358, 111–124. [Google Scholar] [CrossRef]
- Kadmiel, M.; Cidlowski, J.A. Glucocorticoid receptor signaling in health and disease. Trends Pharmacol. Sci. 2013, 34, 518–530. [Google Scholar] [CrossRef]
- Indyk, D.; Bronowicka-Szydełko, A.; Gamian, A.; Kuzan, A. Advanced glycation end products and their receptors in serum of patients with type 2 diabetes. Sci. Rep. 2021, 11, 13264. [Google Scholar] [CrossRef]
- Tan, T.; Khoo, B.; Mills, E.G.; Phylactou, M.; Patel, B.; Eng, P.C.; Thurston, L.; Mulla, A.; Schoeman, M.; Wozniak, E.; et al. Association between high serum total cortisol concentrations and mortality from COVID-19. Lancet Diabetes Endocrinol. 2020, 8, 659–660. [Google Scholar] [CrossRef]
- Heming, N.; Annane, D. The Role of Steroids. In Management of Dysregulated Immune Response in the Critically Ill; Molnar, Z., Ostermann, M., Shankar-Hari, M., Eds.; Lessons from the ICU; Springer: Cham, Switzerland, 2023; pp. 185–194. [Google Scholar]
- Hao, D.; Wang, Q.; Ito, M.; Xue, J.; Guo, L.; Huang, B.; Mineo, C.; Shaul, P.W.; Li, X.A. The ACTH test fails to diagnose adrenal insufficiency and augments cytokine production in sepsis. JCI Insight 2025, 10, e187487. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Total (N = 43) | CIRCI Group (n = 13) | Non-CIRCI Group (n = 30) | p-Value | Effect Size |
---|---|---|---|---|---|
Clinical Variables | |||||
Age (years), mean ± SD | 62.3 ± 15.8 | 64.1 ± 14.2 | 61.5 ± 16.5 | 0.62 | 0.16 (d) |
Male sex, n (%) | 26 (60.5) | 8 (61.5) | 18 (60.0) | 0.92 | 0.01 (V) |
ICU LOS (days), median (IQR) | 14 (8–21) | 16 (10–24) | 13 (7–19) | 0.31 | |
Mortality, n (%) | 30 (69.8) | 9 (69.2) | 21 (70.0) | 0.95 | 0.01 (V) |
Sepsis source | |||||
Pneumonia, n (%) | 16 (37.2) | 8 (61.5) | 8 (26.7) | 0.02 | 0.35 (V) |
Urinary tract, n (%) | 10 (23.3) | 2 (15.4) | 8 (26.7) | 0.42 | 0.17 (V) |
Abdominal, n (%) | 8 (18.6) | 2 (15.4) | 6 (20.0) | 0.71 | 0.08 (V) |
Vasopressor Support | |||||
Multiple vasopressors, n (%) | 18 (41.9) | 8 (61.5) | 10 (33.3) | 0.08 | 0.28 (V) |
* High-dose vasopressors, n (%) | 15 (34.9) | 7 (53.8) | 8 (26.7) | 0.08 | 0.27 (V) |
Cortisol Levels (nmol/L) | |||||
Mean ± SD | 1081.4 ± 880.1 | 1341.6 ± 1112.5 | 976.0 ± 798.7 | 0.24 | 0.41 (d) |
Median (IQR) | 700 (456–1500) | 998 (529–1731) | 635.5 (405–1392) | 0.28 | |
Metabolic Parameters | |||||
Glucose (mmol/L), mean ± SD | 7.2 ± 2.4 | 8.12 ± 2.8 | 6.8 ± 2.1 | 0.09 | 0.57 (d) |
Hyponatremia (<135 mmol/L), n (%) | 12 (27.9) | 5 (38.5) | 7 (23.3) | 0.31 | 0.18 (V) |
Hyperkalemia (>5.0 mmol/L), n (%) | 8 (18.6) | 3 (23.1) | 5 (16.7) | 0.62 | 0.09 (V) |
Cutoff (nmol/L) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | Youden Index | Interpretation |
---|---|---|---|---|---|---|
276 | 0.0 | 96.7 | 0.0 | 69.8 | −0.033 | No diagnostic value |
300 | 7.7 | 96.7 | 50.0 | 70.7 | 0.044 | Negligible value |
350 | 15.4 | 90.0 | 40.0 | 71.1 | 0.054 | Best but still poor |
400 | 23.1 | 80.0 | 30.0 | 72.7 | 0.031 | Poor performance |
414 | 23.1 | 73.3 | 27.3 | 68.8 | −0.036 | No diagnostic value |
500 | 30.8 | 70.0 | 28.6 | 72.4 | 0.008 | Negligible value |
700 | 38.5 | 43.3 | 20.0 | 65.0 | −0.182 | Worse than random |
1000 | 53.8 | 36.7 | 23.1 | 68.8 | −0.095 | Worse than random |
Variable | Odds Ratio | 95% CI | p-Value | Clinical Significance |
---|---|---|---|---|
Clinical Factors | ||||
* High vasopressor requirements | 3.2 | 1.1–9.4 | 0.03 | Significant predictor |
Prolonged shock (>48 h) | 2.8 | 1.0–7.9 | 0.05 | Significant predictor |
Pneumonia source | 2.1 | 0.7–6.3 | 0.18 | Trend only |
+ Multiple organ failure | 1.8 | 0.6–5.2 | 0.29 | Not significant |
Laboratory Factors | ||||
++ Baseline cortisol level | 1.0 | 0.999–1.001 | 0.89 | No predictive value |
Hyponatremia (<135 mmol/L) | 1.6 | 0.5–4.8 | 0.42 | Not significant |
Hyperkalemia (>5.0 mmol/L) | 1.4 | 0.4–4.5 | 0.58 | Not significant |
Acute kidney injury | 1.2 | 0.3–4.6 | 0.78 | Not significant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshamsi, F.; Alkaabi, S.; Alfadli, M.N.M.; Alshkeili, N.A.N.S.; Alhosani, S.M.I.; Agha, A. Cortisol Testing in Septic Shock: An Evaluation of Diagnostic Performance and Predictors of Corticosteroid Use in a Middle Eastern Cohort. Diagnostics 2025, 15, 2588. https://doi.org/10.3390/diagnostics15202588
Alshamsi F, Alkaabi S, Alfadli MNM, Alshkeili NANS, Alhosani SMI, Agha A. Cortisol Testing in Septic Shock: An Evaluation of Diagnostic Performance and Predictors of Corticosteroid Use in a Middle Eastern Cohort. Diagnostics. 2025; 15(20):2588. https://doi.org/10.3390/diagnostics15202588
Chicago/Turabian StyleAlshamsi, Fayez, Saeed Alkaabi, Maryam Nasser Mohamedali Alfadli, Naser Abdulla Naser Salem Alshkeili, Sultan Majed Ibrahim Alhosani, and Adnan Agha. 2025. "Cortisol Testing in Septic Shock: An Evaluation of Diagnostic Performance and Predictors of Corticosteroid Use in a Middle Eastern Cohort" Diagnostics 15, no. 20: 2588. https://doi.org/10.3390/diagnostics15202588
APA StyleAlshamsi, F., Alkaabi, S., Alfadli, M. N. M., Alshkeili, N. A. N. S., Alhosani, S. M. I., & Agha, A. (2025). Cortisol Testing in Septic Shock: An Evaluation of Diagnostic Performance and Predictors of Corticosteroid Use in a Middle Eastern Cohort. Diagnostics, 15(20), 2588. https://doi.org/10.3390/diagnostics15202588