The Contribution of Echocardiography to the Diagnosis and Prognosis Stratification of Diabetic Cardiomyopathy
Abstract
1. Introduction
2. Pathophysiology of Diabetic Cardiomyopathy
3. Classical Echocardiographic Indices for Diagnosis and Prognosis
3.1. Left Ventricular Hypertrophy (LVH)
3.2. Diastolic Dysfunction
3.3. LV Systolic Dysfunction
3.4. Right Ventricular Systolic and Diastolic Dysfunction
4. Novel Echocardiographic Indices for Diagnosis and Prognosis
4.1. Speckle Tracking Echocardiography of the LV
4.2. Myocardial Work Index in DBCM
4.3. Speckle Tracking Echocardiography of the Left Atrium
5. Stress Echocardiography
5.1. Exercise Stress Echocardiography
5.2. Dobutamine Stress Echocardiography
5.3. Coronary Flow Reserve in Stress Echocardiography
6. Future Perspectives and Other Imaging Modalities
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AGEs | Advanced glycation end products |
BSA | Body surface area |
CAD | Coronary artery disease |
CAN | Cardiac autonomic neuropathy |
CFR | Coronary flow reserve |
CMD | Coronary microvascular dysfunction |
CMR | Cardiac magnetic resonance |
DBCM | Diabetic Cardiomyopathy |
DM | Diabetes Mellitus |
DSE | Dobutamine stress echocardiography |
e’ | Early diastolic mitral annular velocity using TDI |
E/A | Ratio of early to late transmitral diastolic flow velocities |
E/e’ | Ratio of early transmitral flow velocity to early diastolic mitral annular velocity using tissue Doppler imaging |
ESE | Exercise stress echocardiography |
FA | Fatty acids |
FS | Fractional shortening |
GCS | Global circumferential strain |
GCW | Global constructive work |
GLS | Global longitudinal strain |
GRS | Global radial strain |
GWE | Global work efficiency |
GWI | Global work index |
GWW | Global wasted work |
HbA1C | Glycated hemoglobin |
HF | Heart failure |
HFpEF | Heart failure with preserved ejection fraction |
HRR | Heart rate reserve |
HTN | Hypertension |
IFG | Impaired fasting glucose |
IGT | Impaired glucose tolerance |
LA | Left atrium |
LAD | Left anterior descending artery |
LAVi | Left atrial volume index |
LGE | Late Gadolinium enhancement |
LV | Left ventricle |
LVCR | Left ventricular contractile reserve |
LVEF | Left ventricular ejection fraction |
LVFP | Left ventricular filling pressures |
LVH | Left ventricular hypertrophy |
LVMi | Left ventricular mass index |
MACE | Major adverse cardiovascular events |
mPAP/CO | Mean pulmonary artery pressure to cardiac output slope |
MW | Myocardial work |
MWI | Myocardial work indices |
PACS | Peak atrial contraction strain |
PALS | Peak atrial longitudinal strain |
PASP | Pulmonary artery systolic pressure |
PET | Positron emission tomography |
PKC | Protein kinase C |
RAAS | Renin–angiotensin–aldosterone system |
ROS | Reactive oxygen species |
RV | Right ventricle |
RVEDD | Right ventricular end-diastolic diameter |
RWT | Relative wall thickness |
S’ | Peak systolic velocity of the tricuspid annulus (TDI) |
SE | Stress echocardiography |
SPECT | Single-photon emission computed tomography |
STE | Speckle tracking echocardiography |
TAPSE | Tricuspid annular plane systolic excursion |
TDI | Tissue Doppler imaging |
TR | Tricuspid regurgitation |
TRVpeak | Tricuspid regurgitation peak velocity |
References
- Rubler, S.; Dlugash, J.; Yuceoglu, Y.Z.; Kumral, T.; Branwood, A.W.; Grishman, A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am. J. Cardiol. 1972, 30, 595–602. [Google Scholar] [CrossRef]
- Khattab, E.; Kyriakou, M.; Leonidou, E.; Sokratous, S.; Mouzarou, A.; Myrianthefs, M.M.; Kadoglou, N.P.E. Critical Appraisal of Pharmaceutical Therapy in Diabetic Cardiomyopathy—Challenges and Prospectives. Pharmaceuticals 2025, 18, 134. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Hill, M.A.; Sowers, J.R. Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circ. Res. 2018, 122, 624–638. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, T.; Pafundi, P.C.; Galiero, R.; Albanese, G.; Di Martino, A.; Caturano, A.; Vetrano, E.; Rinaldi, L.; Sasso, F.C. The Diabetic Cardiomyopathy: The Contributing Pathophysiological Mechanisms. Front. Med. 2021, 8, 695792. [Google Scholar] [CrossRef] [PubMed]
- Dede, E.; Liapis, D.; Davos, C.; Katsimpoulas, M.; Varela, A.; Mpotis, I.; Kostomitsopoulos, N.; Kadoglou, N.P.E. The effects of exercise training on cardiac matrix metalloproteinases activity and cardiac function in mice with diabetic cardiomyopathy. Biochem. Biophys. Res. Commun. 2022, 586, 8–13. [Google Scholar] [CrossRef]
- Hölscher, M.E.; Bode, C.; Bugger, H. Diabetic Cardiomyopathy: Does the Type of Diabetes Matter? Int. J. Mol. Sci. 2016, 17, 2136. [Google Scholar] [CrossRef]
- Potter, E.; Marwick, T.H. Assessment of Left Ventricular Function by Echocardiography: The Case for Routinely Adding Global Longitudinal Strain to Ejection Fraction. JACC Cardiovasc. Imaging 2018, 11, 260–274. [Google Scholar] [CrossRef]
- Kadoglou, N.P.E.; Mouzarou, A.; Hadjigeorgiou, N.; Korakianitis, I.; Myrianthefs, M.M. Challenges in Echocardiography for the Diagnosis and Prognosis of Non-Ischemic Hypertensive Heart Disease. J. Clin. Med. 2024, 13, 2708. [Google Scholar] [CrossRef]
- Huynh, K.; Bernardo, B.C.; McMullen, J.R.; Ritchie, R.H. Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol. Ther. 2014, 142, 375–415. [Google Scholar] [CrossRef]
- Kadoglou, N.P.E.; Bouwmeester, S.; de Lepper, A.G.W.; de Kleijn, M.C.; Herold, I.H.F.; Bouwman, A.R.A.; Korakianitis, I.; Simmers, T.; Bracke, F.A.L.E.; Houthuizen, P. The Prognostic Role of Global Longitudinal Strain and NT-proBNP in Heart Failure Patients Receiving Cardiac Resynchronization Therapy. J. Pers. Med. 2024, 14, 188. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, Z.; Zheng, C.; Wintergerst, K.A.; Keller, B.B.; Cai, L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: Preclinical and clinical evidence. Nat. Rev. Cardiol. 2020, 17, 585–607. [Google Scholar] [CrossRef]
- Kadoglou, N.P.E.; Dimopoulou, A.; Korakianitis, I.; Parperis, K. Advanced Parameters of Myocardial Strain and Cardiac Biomarkers Indicate Subclinical Systolic Myocardial Dysfunction in Patients with Systemic Lupus Erythematous. Biomedicines 2024, 12, 2638. [Google Scholar] [CrossRef] [PubMed]
- Grubić Rotkvić, P.; Planinić, Z.; Liberati Pršo, A.-M.; Šikić, J.; Galić, E.; Rotkvić, L. The Mystery of Diabetic Cardiomyopathy: From Early Concepts and Underlying Mechanisms to Novel Therapeutic Possibilities. Int. J. Mol. Sci. 2021, 22, 5973. [Google Scholar] [CrossRef] [PubMed]
- Kadoglou, N.P.E.; Papadopoulos, C.H.; Papadopoulos, K.G.; Karagiannis, S.; Karabinos, I.; Loizos, S.; Theodosis-Georgilas, A.; Aggeli, K.; Keramida, K.; Klettas, D.; et al. Updated knowledge and practical implementations of stress echocardiography in ischemic and non-ischemic cardiac diseases: An expert consensus of the Working Group of Echocardiography of the Hellenic Society of Cardiology. Hell. J. Cardiol. 2022, 64, 30–57. [Google Scholar] [CrossRef] [PubMed]
- Kaludercic, N.; Di Lisa, F. Mitochondrial ROS Formation in the Pathogenesis of Diabetic Cardiomyopathy. Front. Cardiovasc. Med. 2020, 7, 12. [Google Scholar] [CrossRef]
- Ke, J.; Pan, J.; Lin, H.; Gu, J. Diabetic cardiomyopathy: A brief summary on lipid toxicity. ESC Heart Fail. 2023, 10, 776–790. [Google Scholar] [CrossRef]
- Mellor, K.M.; Varma, U.; Koutsifeli, P.; Daniels, L.J.; Benson, V.L.; Annandale, M.; Li, X.; Nursalim, Y.; Janssens, J.V.; Weeks, K.L.; et al. Myocardial glycophagy flux dysregulation and glycogen accumulation characterize diabetic cardiomyopathy. J. Mol. Cell. Cardiol. 2024, 189, 83–89. [Google Scholar] [CrossRef]
- Zheng, H.; Zhu, H.; Liu, X.; Huang, X.; Huang, A.; Huang, Y. Mitophagy in Diabetic Cardiomyopathy: Roles and Mechanisms. Front. Cell Dev. Biol. 2021, 9, 750382. [Google Scholar] [CrossRef]
- Turner, N.A.; Mughal, R.S.; Warburton, P.; O’Regan, D.J.; Ball, S.G.; Porter, K.E. Mechanism of TNFalpha-induced IL-1alpha, IL-1beta and IL-6 expression in human cardiac fibroblasts: Effects of statins and thiazolidinediones. Cardiovasc. Res. 2007, 76, 81–90. [Google Scholar] [CrossRef]
- Batista, J.P.T.; de Faria, A.O.V.; Ribeiro, T.F.S.; Simões e Silva, A.C. The Role of Renin-Angiotensin System in Diabetic Cardiomyopathy: A Narrative Review. Life 2023, 13, 1598. [Google Scholar] [CrossRef]
- Mengstie, M.A.; Abebe, E.C.; Teklemariam, A.B.; Mulu, A.T.; Teshome, A.A.; Zewde, E.A.; Muche, Z.T.; Azezew, M.T. Molecular and cellular mechanisms in diabetic heart failure: Potential therapeutic targets. Front. Endocrinol. 2022, 13, 947294. [Google Scholar] [CrossRef]
- Horton, W.B.; Barrett, E.J. Microvascular Dysfunction in Diabetes Mellitus and Cardiometabolic Disease. Endocr. Rev. 2021, 42, 29–55. [Google Scholar] [CrossRef]
- Al Kury, L.T. Calcium Homeostasis in Ventricular Myocytes of Diabetic Cardiomyopathy. J. Diabetes Res. 2020, 2020, 1942086. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Fan, J.; Chen, C.; Wang, D.W. Subcellular microRNAs in diabetic cardiomyopathy. Ann. Transl. Med. 2020, 8, 1602. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Lv, D.; Chen, P.; Xu, T.; Fu, S.; Li, J.; Bei, Y. MicroRNAs in diabetic cardiomyopathy and clinical perspectives. Front. Genet. 2014, 5, 185. [Google Scholar] [CrossRef] [PubMed]
- Poornima, I.G.; Parikh, P.; Shannon, R.P. Diabetic cardiomyopathy: The search for a unifying hypothesis. Circ. Res. 2006, 98, 596–605. [Google Scholar] [CrossRef]
- Galderisi, M.; Anderson, K.M.; Wilson, P.W.; Levy, D. Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (the Framingham Heart Study). Am. J. Cardiol. 1991, 68, 85–89. [Google Scholar] [CrossRef]
- Lee, M.; Gardin, J.M.; Lynch, J.C.; Smith, V.E.; Tracy, R.P.; Savage, P.J.; Szklo, M.; Ward, B.J. Diabetes mellitus and echocardiographic left ventricular function in free-living elderly men and women: The Cardiovascular Health Study. Am. Heart J. 1997, 133, 36–43. [Google Scholar] [CrossRef]
- Ilercil, A.; Devereux, R.B.; Roman, M.J.; Paranicas, M.; O’grady, M.J.; Welty, T.K.; Robbins, D.C.; Fabsitz, R.R.; Howard, B.V.; Lee, E.T. Relationship of impaired glucose tolerance to left ventricular structure and function: The Strong Heart Study. Am. Heart J. 2001, 141, 992–998. [Google Scholar] [CrossRef]
- Rutter, M.K.; Parise, H.; Benjamin, E.J.; Levy, D.; Larson, M.G.; Meigs, J.B.; Nesto, R.W.; Wilson, P.W.F.; Vasan, R.S. Impact of glucose intolerance and insulin resistance on cardiac structure and function: Sex-related differences in the Framingham Heart Study. Circulation 2003, 107, 448–454. [Google Scholar] [CrossRef]
- Genda, A.; Mizuno, S.; Nunoda, S.; Nakayama, A.; Igarashi, Y.; Sugihara, N.; Namura, M.; Takeda, R.; Bunko, H.; Hisada, K. Clinical studies on diabetic myocardial disease using exercise testing with myocardial scintigraphy and endomyocardial biopsy. Clin. Cardiol. 1986, 9, 375–382. [Google Scholar] [CrossRef]
- Lv, J.; Liu, Y.; Yan, Y.; Sun, D.; Fan, L.; Guo, Y.; Fernandez, C.; Bazzano, L.; He, J.; Li, S.; et al. Relationship Between Left Ventricular Hypertrophy and Diabetes Is Likely Bidirectional: A Temporality Analysis. J. Am. Heart Assoc. 2023, 12, e028219. [Google Scholar] [CrossRef]
- Felício, J.S.; Koury, C.C.; Carvalho, C.T.; Abrahão Neto, J.F.; Miléo, K.B.; Arbage, T.P.; Silva, D.D.; de Oliveira, A.F.; Peixoto, A.S.; Figueiredo, A.B.; et al. Present Insights on Cardiomyopathy in Diabetic Patients. Curr. Diabetes Rev. 2016, 12, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Mohan, M.; Dihoum, A.; Mordi, I.R.; Choy, A.-M.; Rena, G.; Lang, C.C. Left Ventricular Hypertrophy in Diabetic Cardiomyopathy: A Target for Intervention. Front. Cardiovasc. Med. 2021, 8, 746382. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Mazer, C.D.; Yan, A.T.; Mason, T.; Garg, V.; Teoh, H.; Zuo, F.; Quan, A.; Farkouh, M.E.; Fitchett, D.H.; et al. Effect of Empagliflozin on Left Ventricular Mass in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial. Circulation 2019, 140, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Kishi, S.; Gidding, S.S.; Reis, J.P.; Colangelo, L.A.; Venkatesh, B.A.; Armstrong, A.C.; Isogawa, A.; Lewis, C.E.; Wu, C.; Jacobs, D.R.; et al. Association of Insulin Resistance and Glycemic Metabolic Abnormalities with LV Structure and Function in Middle Age: The CARDIA Study. JACC Cardiovasc. Imaging 2017, 10, 105–114. [Google Scholar] [CrossRef]
- van Heerebeek, L.; Hamdani, N.; Handoko, M.L.; Falcao-Pires, I.; Musters, R.J.; Kupreishvili, K.; Ijsselmuiden, A.J.J.; Schalkwijk, C.G.; Bronzwaer, J.G.F.; Diamant, M.; et al. Diastolic stiffness of the failing diabetic heart: Importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 2008, 117, 43–51. [Google Scholar] [CrossRef]
- Poirier, P.; Bogaty, P.; Garneau, C.; Marois, L.; Dumesnil, J.G. Diastolic dysfunction in normotensive men with well-controlled type 2 diabetes: Importance of maneuvers in echocardiographic screening for preclinical diabetic cardiomyopathy. Diabetes Care 2001, 24, 5–10. [Google Scholar] [CrossRef]
- Patil, V.C.; Patil, H.V.; Shah, K.B.; Vasani, J.D.; Shetty, P. Diastolic dysfunction in asymptomatic type 2 diabetes mellitus with normal systolic function. J. Cardiovasc. Dis. Res. 2011, 2, 213–222. [Google Scholar] [CrossRef]
- Hassan, A.K.; Abdallah, M.A.; Abdel-Mageed, E.A.; Marwa, S.; Soliman, M.M.; Kishk, Y.T. Correlation between left ventricular diastolic dysfunction and dyslipidaemia in asymptomatic patients with new-onset type 2 diabetes mellitus. Egypt. J. Intern. Med. 2021, 33, 8. [Google Scholar] [CrossRef]
- Shimabukuro, M.; Higa, N.; Asahi, T.; Yamakawa, K.; Oshiro, Y.; Higa, M.; Masuzaki, H. Impaired glucose tolerance, but not impaired fasting glucose, underlies left ventricular diastolic dysfunction. Diabetes Care 2011, 34, 686–690. [Google Scholar] [CrossRef]
- Ofstad, A.P.; Urheim, S.; Dalen, H.; Orvik, E.; Birkeland, K.I.; Gullestad, L.; Fagerland, M.W.; Johansen, O.E.; Aakhus, S. Identification of a definite diabetic cardiomyopathy in type 2 diabetes by comprehensive echocardiographic evaluation: A cross-sectional comparison with non-diabetic weight-matched controls. J. Diabetes 2015, 7, 779–790. [Google Scholar] [CrossRef]
- Jain, K.; Palange, A.A.; Kakrani, A.L.; Dhanorkar, A.S. Left ventricular diastolic dysfunction in asymptomatic type 2 diabetes mellitus patients. Int. J. Res. Med. Sci. 2018, 6, 240–246. [Google Scholar] [CrossRef]
- Galderisi, M. Diastolic dysfunction and diabetic cardiomyopathy: Evaluation by Doppler echocardiography. J. Am. Coll. Cardiol. 2006, 48, 1548–1551. [Google Scholar] [CrossRef] [PubMed]
- From, A.M.; Scott, C.G.; Chen, H.H. Changes in diastolic dysfunction in diabetes mellitus over time. Am. J. Cardiol. 2009, 103, 1463–1466. [Google Scholar] [CrossRef] [PubMed]
- From, A.M.; Scott, C.G.; Chen, H.H. The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction a population-based study. J. Am. Coll. Cardiol. 2010, 55, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Kadappu, K.K.; Boyd, A.; Eshoo, S.; Haluska, B.; Yeo, A.E.T.; Marwick, T.H.; Thomas, L. Changes in left atrial volume in diabetes mellitus: More than diastolic dysfunction? Eur. Heart J. Cardiovasc. Imaging 2012, 13, 1016–1023. [Google Scholar] [CrossRef]
- Armstrong, A.C.; Gidding, S.S.; Colangelo, L.A.; Kishi, S.; Liu, K.; Sidney, S.; Konety, S.; Lewis, C.E.; Correia, L.C.L.; Lima, J.A.C. Association of early adult modifiable cardiovascular risk factors with left atrial size over a 20-year follow-up period: The CARDIA study. BMJ Open 2014, 4, e004001. [Google Scholar] [CrossRef]
- Levitt Katz, L.; Gidding, S.S.; Bacha, F.; Hirst, K.; McKay, S.; Pyle, L.; Lima, J.A.C.; TODAY Study Group. Alterations in left ventricular, left atrial, and right ventricular structure and function to cardiovascular risk factors in adolescents with type 2 diabetes participating in the TODAY clinical trial. Pediatr. Diabetes 2015, 16, 39–47. [Google Scholar] [CrossRef]
- Tadic, M.; Cuspidi, C. The influence of type 2 diabetes on left atrial remodeling. Clin. Cardiol. 2015, 38, 48–55. [Google Scholar] [CrossRef]
- Zapolski, T.; Wysokiński, A. Left atrium volume index is influenced by aortic stiffness and central pulse pressure in type 2 diabetes mellitus patients: A hemodynamic and echocardiographic study. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2013, 19, 153–164. [Google Scholar] [CrossRef]
- Atas, H.; Kepez, A.; Atas, D.B.; Kanar, B.G.; Dervisova, R.; Kivrak, T.; Tigen, M.K. Effects of diabetes mellitus on left atrial volume and functions in normotensive patients without symptomatic cardiovascular disease. J. Diabetes Complicat. 2014, 28, 858–862. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Zhang, L.; Xie, M.; Fu, M.; Huang, J.; Lv, Q. Assessment of left atrial function in diabetes mellitus by left atrial volume tracking method. J. Huazhong Univ. Sci. Technol. Med. Sci. 2010, 30, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Muranaka, A.; Yuda, S.; Tsuchihashi, K.; Hashimoto, A.; Nakata, T.; Miura, T.; Tsuzuki, M.; Wakabayashi, C.; Watanabe, N.; Shimamoto, K. Quantitative assessment of left ventricular and left atrial functions by strain rate imaging in diabetic patients with and without hypertension. Echocardiography 2009, 26, 262–271. [Google Scholar] [CrossRef]
- Poulsen, M.K.; Dahl, J.S.; Henriksen, J.E.; Hey, T.M.; Høilund-Carlsen, P.F.; Beck-Nielsen, H.; Møller, J.E. Left atrial volume index: Relation to long-term clinical outcome in type 2 diabetes. J. Am. Coll. Cardiol. 2013, 62, 2416–2421. [Google Scholar] [CrossRef]
- Leung, M.; Wong, V.W.; Hudson, M.; Leung, D.Y. Impact of Improved Glycemic Control on Cardiac Function in Type 2 Diabetes Mellitus. Circ. Cardiovasc. Imaging 2016, 9, e003643. [Google Scholar] [CrossRef]
- Gulsin, G.S.; Athithan, L.; McCann, G.P. Diabetic cardiomyopathy: Prevalence, determinants and potential treatments. Ther. Adv. Endocrinol. Metab. 2019, 10, 2042018819834869. [Google Scholar] [CrossRef]
- Boudina, S.; Abel, E.D. Diabetic cardiomyopathy, causes and effects. Rev. Endocr. Metab. Disord. 2010, 11, 31–39. [Google Scholar] [CrossRef]
- Ernande, L.; Rietzschel, E.R.; Bergerot, C.; De Buyzere, M.L.; Schnell, F.; Groisne, L.; Ovize, M.; Croisille, P.; Moulin, P.; Gillebert, T.C.; et al. Impaired myocardial radial function in asymptomatic patients with type 2 diabetes mellitus: A speckle-tracking imaging study. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 2010, 23, 1266–1272. [Google Scholar] [CrossRef]
- Ernande, L.; Audureau, E.; Jellis, C.L.; Bergerot, C.; Henegar, C.; Sawaki, D.; Czibik, G.; Volpi, C.; Canoui-Poitrine, F.; Thibault, H.; et al. Clinical Implications of Echocardiographic Phenotypes of Patients with Diabetes Mellitus. J. Am. Coll. Cardiol. 2017, 70, 1704–1716. [Google Scholar] [CrossRef]
- Ceyhan, K.; Kadi, H.; Koç, F.; Celik, A.; Oztürk, A.; Onalan, O. Longitudinal left ventricular function in normotensive prediabetics: A tissue Doppler and strain/strain rate echocardiography study. J. Am. Soc. Echocardiogr. 2012, 25, 349–356. [Google Scholar] [CrossRef]
- Aroor, A.R.; Mandavia, C.H.; Sowers, J.R. Insulin resistance and heart failure: Molecular mechanisms. Heart Fail. Clin. 2012, 8, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Wael, R.; Hablas, M.D.; Samy, H.; Nouh, M.D.; Ayman, T.; El-Desouky, M.S. Subclinical Right Ventricular Dysfunction in Type 2 Diabetes Mellitus: An Echocardiographic Strain/Strain Rate Study. Med. J. Cairo Univ. 2018, 86, 153–162. [Google Scholar] [CrossRef]
- Widya, R.L.; van der Meer, R.W.; Smit, J.W.A.; Rijzewijk, L.J.; Diamant, M.; Bax, J.J.; de Roos, A.; Lamb, H.J. Right ventricular involvement in diabetic cardiomyopathy. Diabetes Care 2013, 36, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Ayman, A.; Eid, D. Assessment of right ventricular function by myocardial performance index in diabetic patients. Egypt. Heart J. 2011, 63, 175–181. [Google Scholar] [CrossRef]
- Rijal, P.; Kumar, B.; Barnwal, S.; Khapre, M.; Rijal, D.; Kant, R. Subclinical right ventricular dysfunction in patients with asymptomatic type 2 diabetes mellitus: A cross-sectional study. Indian Heart J. 2023, 75, 451–456. [Google Scholar] [CrossRef]
- Linssen, P.B.C.; Veugen, M.G.J.; Henry, R.M.A.; van der Kallen, C.J.H.; Kroon, A.A.; Schram, M.T.; Brunner-La Rocca, H.-P.; Stehouwer, C.D.A. Associations of (pre)diabetes with right ventricular and atrial structure and function: The Maastricht Study. Cardiovasc. Diabetol. 2020, 19, 88. [Google Scholar] [CrossRef]
- Ghoreyshi-Hefzabad, S.-M.; Jeyaprakash, P.; Vo, H.Q.; Gupta, A.; Ozawa, K.; Pathan, F.; Negishi, K. Subclinical systolic dysfunction detected by 2D speckle tracking echocardiography in adults with diabetes mellitus: Systematic review and meta-analysis of 6668 individuals with diabetes mellitus and 7218 controls. Int. J. Cardiovasc. Imaging 2023, 39, 977–989. [Google Scholar] [CrossRef]
- Brar, P.C.; Chun, A.; Fan, X.; Jani, V.; Craft, M.; Bhatla, P.; Kutty, S. Impaired myocardial deformation and ventricular vascular coupling in obese adolescents with dysglycemia. Cardiovasc. Diabetol. 2019, 18, 172. [Google Scholar] [CrossRef]
- Kosmala, W.; Sanders, P.; Marwick, T.H. Subclinical Myocardial Impairment in Metabolic Diseases. JACC Cardiovasc. Imaging 2017, 10, 692–703. [Google Scholar] [CrossRef]
- Minciună, I.-A.; Hilda Orășan, O.; Minciună, I.; Lazar, A.-L.; Sitar-Tăut, A.V.; Oltean, M.; Tomoaia, R.; Puiu, M.; Sitar-Tăut, D.-A.; Pop, D.; et al. Assessment of subclinical diabetic cardiomyopathy by speckle-tracking imaging. Eur. J. Clin. Investig. 2021, 51, e13475. [Google Scholar] [CrossRef]
- Mochizuki, Y.; Tanaka, H.; Matsumoto, K.; Sano, H.; Shimoura, H.; Ooka, J.; Sawa, T.; Motoji, Y.; Ryo-Koriyama, K.; Hirota, Y.; et al. Impact of left ventricular longitudinal functional mechanics on the progression of diastolic function in diabetes mellitus. Int. J. Cardiovasc. Imaging 2017, 33, 1905–1914. [Google Scholar] [CrossRef] [PubMed]
- Negishi, K. Echocardiographic feature of diabetic cardiomyopathy: Where are we now? Cardiovasc. Diagn. Ther. 2018, 8, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Loncarevic, B.; Trifunovic, D.; Soldatovic, I.; Vujisic-Tesic, B. Silent diabetic cardiomyopathy in everyday practice: A clinical and echocardiographic study. BMC Cardiovasc. Disord. 2016, 16, 242. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.C.T.; Bertini, M.; Ewe, S.H.; van der Velde, E.T.; Leung, D.Y.; Delgado, V.; Bax, J.J. Defining Subclinical Myocardial Dysfunction and Implications for Patients with Diabetes Mellitus and Preserved Ejection Fraction. Am. J. Cardiol. 2019, 124, 892–898. [Google Scholar] [CrossRef]
- Sengeløv, M.; Jørgensen, P.G.; Jensen, J.S.; Bruun, N.E.; Olsen, F.J.; Fritz-Hansen, T.; Nochioka, K.; Biering-Sørensen, T. Global Longitudinal Strain Is a Superior Predictor of All-Cause Mortality in Heart Failure with Reduced Ejection Fraction. JACC Cardiovasc. Imaging 2015, 8, 1351–1359. [Google Scholar] [CrossRef]
- Holland, D.J.; Marwick, T.H.; Haluska, B.A.; Leano, R.; Hordern, M.D.; Hare, J.L.; Fang, Z.Y.; Prins, J.B.; Stanton, T. Subclinical LV dysfunction and 10-year outcomes in type 2 diabetes mellitus. Heart Br. Card. Soc. 2015, 101, 1061–1066. [Google Scholar] [CrossRef]
- Bojer, A.S.; Sørensen, M.H.; Madsen, S.H.; Broadbent, D.A.; Plein, S.; Gæde, P.; Madsen, P.L. Early signs of myocardial systolic dysfunction in patients with type 2 diabetes are strongly associated with myocardial microvascular dysfunction independent of myocardial fibrosis: A prospective cohort study. Diabetol. Metab. Syndr. 2024, 16, 41. [Google Scholar] [CrossRef]
- Kalam, K.; Otahal, P.; Marwick, T.H. Prognostic implications of global LV dysfunction: A systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart Br. Card. Soc. 2014, 100, 1673–1680. [Google Scholar] [CrossRef]
- Ghoreyshi-Hefzabad, S.-M.; Jeyaprakash, P.; Gupta, A.; Vo, H.Q.; Pathan, F.; Negishi, K. Three-Dimensional Global Left Ventricular Myocardial Strain Reduced in All Directions in Subclinical Diabetic Cardiomyopathy: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2021, 10, e020811. [Google Scholar] [CrossRef]
- Shepherd, D.L.; Nichols, C.E.; Croston, T.L.; McLaughlin, S.L.; Petrone, A.B.; Lewis, S.E.; Thapa, D.; Long, D.M.; Dick, G.M.; Hollander, J.M. Early detection of cardiac dysfunction in the type 1 diabetic heart using speckle-tracking based strain imaging. J. Mol. Cell. Cardiol. 2016, 90, 74–83. [Google Scholar] [CrossRef]
- Wang, T.; Li, L.; Huang, J.; Fan, L. Assessment of subclinical left ventricle myocardial dysfunction using global myocardial work in type 2 diabetes mellitus patients with preserved left ventricle ejection fraction. Diabetol. Metab. Syndr. 2022, 14, 17. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Guo, H.; Yang, Q.; Fang, J.; Kang, X. Quantitative evaluation of subclinical left ventricular dysfunction in patients with type 2 diabetes mellitus by three-dimensional echocardiography. Int. J. Cardiovasc. Imaging 2020, 36, 1311–1319. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, G.-A.; Wang, J.; Jiao, Y.-W.; Qian, Z.-F.; Fan, L.; Tang, L.-M. Evaluation of subclinical left ventricular systolic dysfunction in obese patients by global myocardial work. Diabetol. Metab. Syndr. 2023, 15, 254. [Google Scholar] [CrossRef] [PubMed]
- Georgievska-Ismail, L.; Zafirovska, P.; Hristovski, Z. Evaluation of the role of left atrial strain using two-dimensional speckle tracking echocardiography in patients with diabetes mellitus and heart failure with preserved left ventricular ejection fraction. Diab. Vasc. Dis. Res. 2016, 13, 384–394. [Google Scholar] [CrossRef]
- Urlic, H.; Kumric, M.; Vrdoljak, J.; Martinovic, D.; Dujic, G.; Vilovic, M.; Ticinovic Kurir, T.; Bozic, J. Role of Echocardiography in Diabetic Cardiomyopathy: From Mechanisms to Clinical Practice. J. Cardiovasc. Dev. Dis. 2023, 10, 46. [Google Scholar] [CrossRef]
- Fang, Z.Y.; Prins, J.B.; Marwick, T.H. Diabetic Cardiomyopathy: Evidence, Mechanisms, and Therapeutic Implications. Endocr. Rev. 2004, 25, 543–567. [Google Scholar] [CrossRef]
- Goyal, B.; Mehta, A. Diabetic cardiomyopathy: Pathophysiological mechanisms and cardiac dysfuntion. Hum. Exp. Toxicol. 2013, 32, 571–590. [Google Scholar] [CrossRef]
- Kadoglou, N.P.E.; Khattab, E.; Velidakis, N.; Gkougkoudi, E.; Myrianthefs, M.M. The Role of Echocardiography in the Diagnosis and Prognosis of Pulmonary Hypertension. J. Pers. Med. 2024, 14, 474. [Google Scholar] [CrossRef]
- Pieske, B.; Tschöpe, C.; de Boer, R.A.; Fraser, A.G.; Anker, S.D.; Donal, E.; Edelmann, F.; Fu, M.; Guazzi, M.; Lam, C.S.P.; et al. How to diagnose heart failure with preserved ejection fraction: The HFA-PEFF diagnostic algorithm: A consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. J. Heart Fail. 2020, 22, 391–412. [Google Scholar] [CrossRef]
- Laws, J.L.; Maya, T.R.; Gupta, D.K. Stress Echocardiography for Assessment of Diastolic Function. Curr. Cardiol. Rep. 2024, 26, 1461–1469. [Google Scholar] [CrossRef]
- Ha, J.-W.; Andersen, O.S.; Smiseth, O.A. Diastolic Stress Test: Invasive and Noninvasive Testing. JACC Cardiovasc. Imaging 2020, 13, 272–282. [Google Scholar] [CrossRef]
- Khattab, E.; Velidakis, N.; Gkougkoudi, E.; Kadoglou, N.P.E. Exercise-Induced Pulmonary Hypertension: A Valid Entity or Another Factor of Confusion? Life 2023, 13, 128. [Google Scholar] [CrossRef]
- Verwerft, J.; Stassen, J.; Falter, M.; Bekhuis, Y.; Hoedemakers, S.; Gojevic, T.; Ferreira, S.M.; Vanhentenrijk, S.; Stroobants, S.; Jogani, S.; et al. Clinical Significance of Exercise Pulmonary Hypertension with a Negative Diastolic Stress Test for Suspected Heart Failure with Preserved Ejection Fraction. J. Am. Heart Assoc. 2024, 13, e032228. [Google Scholar] [CrossRef] [PubMed]
- Gojevic, T.; Van Ryckeghem, L.; Jogani, S.; Frederix, I.; Bakelants, E.; Petit, T.; Stroobants, S.; Dendale, P.; Bito, V.; Herbots, L.; et al. Pulmonary hypertension during exercise underlies unexplained exertional dyspnoea in patients with Type 2 diabetes. Eur. J. Prev. Cardiol. 2023, 30, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Di Lisi, D.; Ciampi, Q.; Madaudo, C.; Manno, G.; Macaione, F.; Novo, S.; Novo, G. Contractile Reserve in Heart Failure with Preserved Ejection Fraction. J. Cardiovasc. Dev. Dis. 2022, 9, 248. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Ye, L.; Shu, Q.; Huang, Y.; Zhang, H.; Zhang, Q.; Ding, G.; Deng, Y.; Li, C.; Yin, L.; et al. Abnormal left ventricular systolic reserve function detected by treadmill exercise stress echocardiography in asymptomatic type 2 diabetes. Front. Cardiovasc. Med. 2023, 10, 1253440. [Google Scholar] [CrossRef]
- Boe, E.; Skulstad, H.; Smiseth, O.A. Myocardial work by echocardiography: A novel method ready for clinical testing. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 18–20. [Google Scholar] [CrossRef]
- Huang, L.; Ye, L.; Zhang, H.; Zhang, Q.; Ding, G.; Li, C.; Deng, Y.; Yin, L.; Wang, Y. Stress Echocardiographic Myocardial Work in Healthy Adults and Heart Failure with Preserved Ejection Fraction Patients and Doubt about Early Systolic Lengthening. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Zhang, H.; Ding, G.; Yin, L. Evaluation of Segmental Myocardial Work and Exercise Tolerance in Hypertension Patients with Left Ventricular Remodeling Through Stress Echocardiography. Echocardiography 2025, 42, e70093. [Google Scholar] [CrossRef]
- Nishi, T.; Kobayashi, Y.; Christle, J.W.; Cauwenberghs, N.; Boralkar, K.; Moneghetti, K.; Amsallem, M.; Hedman, K.; Contrepois, K.; Myers, J.; et al. Incremental value of diastolic stress test in identifying subclinical heart failure in patients with diabetes mellitus. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 876–884. [Google Scholar] [CrossRef]
- Philouze, C.; Obert, P.; Nottin, S.; Benamor, A.; Barthez, O.; Aboukhoudir, F. Dobutamine Stress Echocardiography Unmasks Early Left Ventricular Dysfunction in Asymptomatic Patients with Uncomplicated Type 2 Diabetes: A Comprehensive Two-Dimensional Speckle-Tracking Imaging Study. J. Am. Soc. Echocardiogr. 2018, 31, 587–597. [Google Scholar] [CrossRef]
- Aboukhoudir, F.; Rekik, S. Left ventricular systolic function deterioration during dobutamine stress echocardiography as an early manifestation of diabetic cardiomyopathy and reversal by optimized therapeutic approach. Int. J. Cardiovasc. Imaging 2012, 28, 1329–1339. [Google Scholar] [CrossRef]
- Cortigiani, L.; Rigo, F.; Gherardi, S.; Sicari, R.; Galderisi, M.; Bovenzi, F.; Picano, E. Additional prognostic value of coronary flow reserve in diabetic and nondiabetic patients with negative dipyridamole stress echocardiography by wall motion criteria. J. Am. Coll. Cardiol. 2007, 50, 1354–1361. [Google Scholar] [CrossRef]
- Rahman, H.; Ryan, M.; Lumley, M.; Modi, B.; McConkey, H.; Ellis, H.; Scannell, C.; Clapp, B.; Marber, M.; Webb, A.; et al. Coronary Microvascular Dysfunction Is Associated with Myocardial Ischemia and Abnormal Coronary Perfusion During Exercise. Circulation 2019, 140, 1805–1816. [Google Scholar] [CrossRef] [PubMed]
- Kawata, T.; Daimon, M.; Hasegawa, R.; Toyoda, T.; Sekine, T.; Himi, T.; Uchida, D.; Miyazaki, S.; Hirose, K.; Ichikawa, R.; et al. Prognostic value of coronary flow reserve assessed by transthoracic Doppler echocardiography on long-term outcome in asymptomatic patients with type 2 diabetes without overt coronary artery disease. Cardiovasc. Diabetol. 2013, 12, 121. [Google Scholar] [CrossRef] [PubMed]
- Cortigiani, L.; Ciampi, Q.; Carpeggiani, C.; Lisi, C.; Bovenzi, F.; Picano, E. Additional prognostic value of heart rate reserve over left ventricular contractile reserve and coronary flow velocity reserve in diabetic patients with negative vasodilator stress echocardiography by regional wall motion criteria. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, S.; Wang, X.; Chen, Y.; Pang, P.; Yang, Q.; Lin, J.; Deng, S.; Wu, S.; Fan, G.; et al. Diabetic cardiomyopathy: Clinical phenotype and practice. Front. Endocrinol. 2022, 13, 1032268. [Google Scholar] [CrossRef]
- Huo, J.-L.; Feng, Q.; Pan, S.; Fu, W.-J.; Liu, Z.; Liu, Z. Diabetic cardiomyopathy: Early diagnostic biomarkers, pathogenetic mechanisms, and therapeutic interventions. Cell Death Discov. 2023, 9, 256. [Google Scholar] [CrossRef]
- Adel, F.W.; Chen, H.H. The role of multimodality imaging in diabetic cardiomyopathy: A brief review. Front. Endocrinol. 2024, 15, 1405031. [Google Scholar] [CrossRef]
- Peterson, L.R.; Gropler, R.J. Metabolic and Molecular Imaging of the Diabetic Cardiomyopathy. Circ. Res. 2020, 126, 1628–1645. [Google Scholar] [CrossRef] [PubMed]
- Rijzewijk, L.J.; van der Meer, R.W.; Lamb, H.J.; de Jong, H.W.A.M.; Lubberink, M.; Romijn, J.A.; Bax, J.J.; de Roos, A.; Twisk, J.W.; Heine, R.J.; et al. Altered myocardial substrate metabolism and decreased diastolic function in nonischemic human diabetic cardiomyopathy: Studies with cardiac positron emission tomography and magnetic resonance imaging. J. Am. Coll. Cardiol. 2009, 54, 1524–1532. [Google Scholar] [CrossRef] [PubMed]
- Zelt, J.G.E.; deKemp, R.A.; Rotstein, B.H.; Nair, G.M.; Narula, J.; Ahmadi, A.; Beanlands, R.S.; Mielniczuk, L.M. Nuclear Imaging of the Cardiac Sympathetic Nervous System: A Disease-Specific Interpretation in Heart Failure. JACC Cardiovasc. Imaging 2020, 13, 1036–1054. [Google Scholar] [CrossRef] [PubMed]
- Valensi, P.; Sachs, R.N.; Harfouche, B.; Lormeau, B.; Paries, J.; Cosson, E.; Paycha, F.; Leutenegger, M.; Attali, J.R. Predictive value of cardiac autonomic neuropathy in diabetic patients with or without silent myocardial ischemia. Diabetes Care 2001, 24, 339–343. [Google Scholar] [CrossRef]
- Nagamachi, S.; Fujita, S.; Nishii, R.; Futami, S.; Tamura, S.; Mizuta, M.; Nakazato, M.; Kurose, T.; Wakamatsu, H. Prognostic value of cardiac I-123 metaiodobenzylguanidine imaging in patients with non-insulin-dependent diabetes mellitus. J. Nucl. Cardiol. Off. Publ. Am. Soc. Nucl. Cardiol. 2006, 13, 34–42. [Google Scholar] [CrossRef]
- Schulz-Menger, J.; Bluemke, D.A.; Bremerich, J.; Flamm, S.D.; Fogel, M.A.; Friedrich, M.G.; Kim, R.J.; von Knobelsdorff-Brenkenhoff, F.; Kramer, C.M.; Pennell, D.J.; et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance—2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing. J. Cardiovasc. Magn. Reson. 2020, 22, 19. [Google Scholar] [CrossRef]
- Ferreira, V.M.; Piechnik, S.K.; Robson, M.D.; Neubauer, S.; Karamitsos, T.D. Myocardial tissue characterization by magnetic resonance imaging: Novel applications of T1 and T2 mapping. J. Thorac. Imaging 2014, 29, 147–154. [Google Scholar] [CrossRef]
- Mewton, N.; Liu, C.Y.; Croisille, P.; Bluemke, D.; Lima, J.A.C. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 2011, 57, 891–903. [Google Scholar] [CrossRef]
- Salvador, D.B.; Gamba, M.R.; Gonzalez-Jaramillo, N.; Gonzalez-Jaramillo, V.; Raguindin, P.F.N.; Minder, B.; Gräni, C.; Wilhelm, M.; Stettler, C.; Doria, A.; et al. Diabetes and Myocardial Fibrosis: A Systematic Review and Meta-Analysis. JACC Cardiovasc. Imaging 2022, 15, 796–808. [Google Scholar] [CrossRef]
- Khan, M.A.; Yang, E.Y.; Nguyen, D.T.; Nabi, F.; Hinojosa, J.; Jabel, M.; Nagueh, S.F.; Graviss, E.A.; Shah, D.J. Examining the Relationship and Prognostic Implication of Diabetic Status and Extracellular Matrix Expansion by Cardiac Magnetic Resonance. Circ. Cardiovasc. Imaging 2020, 13, e011000. [Google Scholar] [CrossRef]
- Bojer, A.S.; Sørensen, M.H.; Vejlstrup, N.; Goetze, J.P.; Gæde, P.; Madsen, P.L. Distinct non-ischemic myocardial late gadolinium enhancement lesions in patients with type 2 diabetes. Cardiovasc. Diabetol. 2020, 19, 184. [Google Scholar] [CrossRef]
- Chen, Q.; Gan, Y.; Li, Z.-Y. Left ventricular diastolic dysfunction in type 2 diabetes patients: A novel 2D strain analysis based on cardiac magnetic resonance imaging. Comput. Methods Biomech. Biomed. Engin. 2016, 19, 1330–1338. [Google Scholar] [CrossRef]
- Shen, L.-T.; Shi, R.; Yang, Z.-G.; Gao, Y.; Jiang, Y.-N.; Fang, H.; Min, C.-Y.; Li, Y. Progress in Cardiac Magnetic Resonance Feature Tracking for Evaluating Myocardial Strain in Type-2 Diabetes Mellitus. Curr. Diabetes Rev. 2024, 20, 98–109. [Google Scholar] [CrossRef]
- Zulet, P.; Islas, F.; Ferrández-Escarabajal, M.; Bustos, A.; Cabeza, B.; Gil-Abizanda, S.; Vidal, M.; Martín-Lores, I.; Hernández-Mateo, P.; de Agustín, J.A.; et al. Diabetes mellitus is associated to high-risk late gadolinium enhancement and worse outcomes in patients with nonischemic dilated cardiomyopathy. Cardiovasc. Diabetol. 2024, 23, 35. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, L.; Sun, W.; Zhu, Y.; Zhang, Z.; Chen, L.; Xie, M.; Zhang, L. Artificial Intelligence in Diagnosis of Heart Failure. J. Am. Heart Assoc. 2025, 14, e039511. [Google Scholar] [CrossRef]
Variable | Indices | Diagnostic Challenges | Prognostic Value |
---|---|---|---|
LVH | RWT (PLAX), LVMI | Early changes may be subtle even in prediabetic stage; May be missed in obese, poorly imaged patients | Early feature of DBCM; Partially reversible with glucose control |
LV systolic function | LVEF (Simpson) | LVEF may be normal at early stage; volumetric method better than 2D dimension assessment | Reversely associated with increased HF hospitalization, CV morbidity and mortality |
FS | |||
LA size | LA diameter, LAVmin, LAVi | LAVmin increases late; no cut-off value | LAVi as a predictor of CV morbidity and mortality in diabetic patients without known CV disease |
Diastolic dysfunction | E/A, E/e’, e’ using TDI, LAVi, TRVpeak using Doppler | Influenced by age and preload; requires integration of multiple parameters | -Septal E/e’ ratio >15 in diabetic patients is associated with future HF and increased mortality. |
-Reduction in HbA1C levels may improve diastolic dysfunction, delaying the progression to HF | |||
RV systolic function | TAPSE using M-mode, S’ using TDI | Affected by loading conditions; less standardized | Associated with increased CV morbidity and mortality |
Speckle Tracking LV | GLS, GCS, GRS, segmental strain parameters | -Requires good image quality -GLS declines before GCS/GRS; segmental variations may confound interpretation; superior sensitivity than LVEF | -GLS is a stronger predictor of CV mortality than LVEF in diabetic patients -Optimization of DM treatment and reduction in HbA1C may improve GLS |
Speckle tracking LA | PALS, PACS (reservoir, conduit, contraction) | Requires good image quality; dependent on HR and rhythm; validation is required | -PALS and PACS are sensitive markers of subclinical diastolic dysfunction in the diabetic population -Predictor of elevated LVFP and HFpEF progression in the diabetic population -Associated with an increased risk of CV events |
Stress Echocardiography | E/E’ and TRVpeak during DSTE; less evidenced: Coronary flow reserve (CFR), LV contractile reserve, HR Reserve (HRR), mPAP/CO slope | DSTE has been incorporated in HFpEF algorithm; Requires equipment and expertise | Reduced CFR & HRR linked with MACE and mortality even in ischemia-negative stress tests |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioannou, M.; Karelas, D.; Kalesi, A.E.; Parpas, G.; Papanastasiou, C.A.; Papadopoulos, C.H.; Mouzarou, A.; Kadoglou, N.P.E. The Contribution of Echocardiography to the Diagnosis and Prognosis Stratification of Diabetic Cardiomyopathy. Diagnostics 2025, 15, 2587. https://doi.org/10.3390/diagnostics15202587
Ioannou M, Karelas D, Kalesi AE, Parpas G, Papanastasiou CA, Papadopoulos CH, Mouzarou A, Kadoglou NPE. The Contribution of Echocardiography to the Diagnosis and Prognosis Stratification of Diabetic Cardiomyopathy. Diagnostics. 2025; 15(20):2587. https://doi.org/10.3390/diagnostics15202587
Chicago/Turabian StyleIoannou, Maria, Dimitrios Karelas, Alkistis Eleni Kalesi, Georgios Parpas, Christos A. Papanastasiou, Constantinos H. Papadopoulos, Angeliki Mouzarou, and Nikolaos P. E. Kadoglou. 2025. "The Contribution of Echocardiography to the Diagnosis and Prognosis Stratification of Diabetic Cardiomyopathy" Diagnostics 15, no. 20: 2587. https://doi.org/10.3390/diagnostics15202587
APA StyleIoannou, M., Karelas, D., Kalesi, A. E., Parpas, G., Papanastasiou, C. A., Papadopoulos, C. H., Mouzarou, A., & Kadoglou, N. P. E. (2025). The Contribution of Echocardiography to the Diagnosis and Prognosis Stratification of Diabetic Cardiomyopathy. Diagnostics, 15(20), 2587. https://doi.org/10.3390/diagnostics15202587