Computed Tomography Radiomics and Machine Learning for Prediction of Histology-Based Hepatic Steatosis Scores
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Overview
2.2. Histopathology
2.3. CT Imaging
2.3.1. Data Acquisition
2.3.2. Image Preprocessing and Region-of-Interest Segmentation
2.3.3. Radiomic Feature Extraction
2.4. Statistical Analysis
2.5. Machine Learning Analysis
2.5.1. Computing Resources and Libraries
2.5.2. Model Development
- Univariate f-test feature selection (0.05 p-value threshold) [26];
- Univariate f-test feature selection (0.005 p-value threshold);
- Minimum redundancy, maximum relevance (mRMR) feature selection (top 25% of features) [29];
- mRMR feature selection (top 50% of features);
- mRMR feature selection (top 75% of features);
- mRMR-permute [30];
- No feature selection.
2.5.3. Model Performance and Feature Analysis
3. Results
3.1. Data Characterization
3.2. Machine Learning Model Selection
3.3. Machine Learning Model Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFLD | alcoholic fatty liver disease |
AUC | area under the curve |
BSL-4 | biosafety level 4 |
CT | computed tomography |
CV | cross-validation |
GLCM | gray-level co-occurrence matrix |
H&E | hematoxylin and eosin |
HPC | High Performance Computing |
HU | Hounsfield unit |
kNN | k-nearest neighbors |
LASSO | least absolute shrinkage and selection operator |
MCC | Matthew’s correlation coefficient |
mRMR | minimum redundancy, maximum relevance |
NAFLD | nonalcoholic fatty liver disease |
NAS | NAFLD activity score |
NASH | nonalcoholic steatohepatitis |
NIAID | National Institute of Allergy and Infectious Diseases |
OCICB | Office of Cyber Infrastructure and Computational Biology |
RMSE | root-mean-square error |
ROC | receiver operating characteristic |
ROI | region of interest |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus 2 |
References
- Wong, V.W.-S.; Adams, L.A.; de Lédinghen, V.; Wong, G.L.-H.; Sookoian, S. Noninvasive biomarkers in NAFLD and NASH—Current progress and future promise. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 461–478. [Google Scholar] [CrossRef]
- Lagana, S.M.; Kudose, S.; Iuga, A.C.; Lee, M.J.; Fazlollahi, L.; Remotti, H.E.; Del Portillo, A.; De Michele, S.; de Gonzalez, A.K.; Saqi, A.; et al. Hepatic pathology in patients dying of COVID-19: A series of 40 cases including clinical, histologic, and virologic data. Mod. Pathol. 2020, 33, 2147–2155. [Google Scholar] [CrossRef]
- Parlak, S.; Çıvgın, E.; Beşler, M.S.; Kayıpmaz, A.E. The effect of hepatic steatosis on COVID-19 severity: Chest computed tomography findings. Saudi J. Gastroenterol. 2021, 27, 105–110. [Google Scholar] [CrossRef]
- Roca-Fernández, A.; Dennis, A.; Nicholls, R.; McGonigle, J.; Kelly, M.; Banerjee, R.; Banerjee, A.; Sanyal, A.J. Hepatic steatosis, rather than underlying obesity, increases the risk of infection and hospitalization for COVID-19. Front. Med. 2021, 8, 636637. [Google Scholar] [CrossRef] [PubMed]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.-C.; Torbenson, M.S.; Unalp-Arida, A.; et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41, 1313–1321. [Google Scholar] [CrossRef]
- Bonekamp, S.; Tang, A.; Mashhood, A.; Wolfson, T.; Changchien, C.; Middleton, M.S.; Clark, L.; Gamst, A.; Loomba, R.; Sirlin, C.B. Spatial distribution of MRI-determined hepatic proton density fat fraction in adults with nonalcoholic fatty liver disease. J. Magn. Reson. Imaging 2014, 39, 1525–1532. [Google Scholar] [CrossRef]
- Davison, B.A.; Harrison, S.A.; Cotter, G.; Alkhouri, N.; Sanyal, A.; Edwards, C.; Colca, J.R.; Iwashita, J.; Koch, G.G.; Dittrich, H.C. Suboptimal reliability of liver biopsy evaluation has implications for randomized clinical trials. J. Hepatol. 2020, 73, 1322–1332. [Google Scholar] [CrossRef] [PubMed]
- Pai, R.K.; Jairath, V.; Hogan, M.; Zou, G.; Adeyi, O.A.; Anstee, Q.M.; Aqel, B.A.; Behling, C.; Carey, E.J.; Clouston, A.D.; et al. Reliability of histologic assessment for NAFLD and development of an expanded NAFLD activity score. Hepatology 2022, 76, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
- Havel, P.J.; Kievit, P.; Comuzzie, A.G.; Bremer, A.A. Use and Importance of Nonhuman Primates in Metabolic Disease Research: Current State of the Field. ILAR J. 2017, 58, 251–268. [Google Scholar] [CrossRef]
- Cydylo, M.A.; Davis, A.T.; Kavanagh, K. Fatty liver promotes fibrosis in monkeys consuming high fructose. Obesity 2017, 25, 290–293. [Google Scholar] [CrossRef]
- Camacho, R.C.; Polidori, D.; Chen, T.; Chen, B.; Hsu, H.H.; Gao, B.; Marella, M.; Lubomirski, M.; Beavers, T.; Cabrera, J.; et al. Validation of a diet-induced Macaca fascicularis model of non-alcoholic steatohepatitis with dietary and pioglitazone interventions. Diabetes Obes. Metab. 2023, 25, 1068–1079. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, S.; Yeung, S.F.; Ke, J.-Y.; Antunes, M.M.; Pellizzon, M.A. Considerations when choosing high-fat, high-fructose, and high-cholesterol diets to induce experimental nonalcoholic fatty liver disease in laboratory animal models. Curr. Dev. Nutr. 2021, 5, nzab138. [Google Scholar] [CrossRef]
- Bai, L.; Qu, W.; Cheng, X.; Yang, H.; Huang, Y.-P.; Wang, Z.; Han, C.; Tian, R.-F.; Hu, F.; Yang, L.; et al. Multispecies transcriptomics identifies SIKE as a MAPK repressor that prevents NASH progression. Sci. Transl. Med. 2024, 16, eade7347. [Google Scholar] [CrossRef] [PubMed]
- Saiman, Y.; Duarte-Rojo, A.; Rinella, M.E. Fatty liver disease: Diagnosis and stratification. Annu. Rev. Med. 2022, 73, 529–544. [Google Scholar] [CrossRef]
- Haghshomar, M.; Antonacci, D.; Smith, A.D.; Thaker, S.; Miller, F.H.; Borhani, A.A. Diagnostic Accuracy of CT for the Detection of Hepatic Steatosis: A Systematic Review and Meta-Analysis. Radiology 2024, 313, e241171. [Google Scholar] [CrossRef] [PubMed]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef]
- Wang, H.; Solomon, J.; Reza, S.M.S.; Yang, H.-J.; Chu, W.T.; Crozier, I.; Sayre, P.J.; Lee, B.-Y.; Mani, V.; Friedrich, T.C.; et al. Repeatability of computed tomography liver radiomic features in a nonhuman primate model of diet-induced steatosis. J. Med. Imaging 2023, 10, 066004. [Google Scholar] [CrossRef]
- Beason, D.P.; Hsu, J.E.; Marshall, S.M.; McDaniel, A.L.; Temel, R.E.; Abboud, J.A.; Soslowsky, L.J. Hypercholesterolemia increases supraspinatus tendon stiffness and elastic modulus across multiple species. J. Shoulder Elb. Surg. 2013, 22, 681–686. [Google Scholar] [CrossRef]
- Chung, S.; Cuffe, H.; Marshall, S.M.; McDaniel, A.L.; Ha, J.-H.; Kavanagh, K.; Hong, C.; Tontonoz, P.; Temel, R.E.; Parks, J.S. Dietary cholesterol promotes adipocyte hypertrophy and adipose tissue inflammation in visceral, but not in subcutaneous, fat in monkeys. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1880–1887. [Google Scholar] [CrossRef]
- Boyce, C.J.; Pickhardt, P.J.; Kim, D.H.; Taylor, A.J.; Winter, T.C.; Bruce, R.J.; Lindstrom, M.J.; Hinshaw, J.L. Hepatic steatosis (fatty liver disease) in asymptomatic adults identified by unenhanced low-dose CT. Am. J. Roentgenol. 2010, 194, 623–628. [Google Scholar] [CrossRef]
- Reza, S.M.S.; Bradley, D.; Aiosa, N.; Castro, M.; Lee, J.H.; Lee, B.-Y.; Bennett, R.S.; Hensley, L.E.; Cong, Y.; Johnson, R.; et al. Deep learning for automated liver segmentation to aid in the study of infectious diseases in nonhuman primates. Acad. Radiol. 2021, 28 (Suppl. 1), S37–S44. [Google Scholar] [CrossRef]
- Reza, S.M.S.; Chu, W.T.; Homayounieh, F.; Blain, M.; Firouzabadi, F.D.; Anari, P.Y.; Lee, J.H.; Worwa, G.; Finch, C.L.; Kuhn, J.H.; et al. Deep-learning-based whole-lung and lung-lesion quantification despite inconsistent ground truth: Application to computerized tomography in SARS-CoV-2 nonhuman primate models. Acad. Radiol. 2023, 30, 2037–2045. [Google Scholar] [CrossRef] [PubMed]
- Jensen, L.J.; Kim, D.; Elgeti, T.; Steffen, I.G.; Hamm, B.; Nagel, S.N. Stability of Radiomic Features across Different Region of Interest Sizes-A CT and MR Phantom Study. Tomography 2021, 7, 238–252. [Google Scholar] [CrossRef]
- Leijenaar, R.T.H.; Nalbantov, G.; Carvalho, S.; van Elmpt, W.J.C.; Troost, E.G.C.; Boellaard, R.; Aerts, H.J.W.L.; Gillies, R.J.; Lambin, P. The effect of SUV discretization in quantitative FDG-PET Radiomics: The need for standardized methodology in tumor texture analysis. Sci. Rep. 2015, 5, 11075. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and Variable Selection Via the Elastic Net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [Google Scholar] [CrossRef]
- Chu, W.T.; Castro, M.A.; Reza, S.; Cooper, T.K.; Bartlinski, S.; Bradley, D.; Anthony, S.M.; Worwa, G.; Finch, C.L.; Kuhn, J.H.; et al. Novel machine-learning analysis of SARS-CoV-2 infection in a subclinical nonhuman primate model using radiomics and blood biomarkers. Sci. Rep. 2023, 13, 19607. [Google Scholar] [CrossRef]
- Castro, M.A.; Reza, S.; Chu, W.T.; Bradley, D.; Lee, J.H.; Crozier, I.; Sayre, P.J.; Lee, B.-Y.; Mani, V.; Friedrich, T.C.; et al. Toward the determination of sensitive and reliable whole-lung computed tomography features for robust standard radiomics and delta-radiomics analysis in a nonhuman primate model of coronavirus disease 2019. J. Med. Imaging 2022, 9, 066003. [Google Scholar] [CrossRef]
- Chicco, D.; Tötsch, N.; Jurman, G. The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. BioData Min. 2021, 14, 13. [Google Scholar] [CrossRef] [PubMed]
- Naganawa, S.; Enooku, K.; Tateishi, R.; Akai, H.; Yasaka, K.; Shibahara, J.; Ushiku, T.; Abe, O.; Ohtomo, K.; Kiryu, S. Imaging prediction of nonalcoholic steatohepatitis using computed tomography texture analysis. Eur. Radiol. 2018, 28, 3050–3058. [Google Scholar] [CrossRef] [PubMed]
- Homayounieh, F.; Saini, S.; Mostafavi, L.; Doda Khera, R.; Sühling, M.; Schmidt, B.; Singh, R.; Flohr, T.; Kalra, M.K. Accuracy of radiomics for differentiating diffuse liver diseases on non-contrast CT. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1727–1736. [Google Scholar] [CrossRef]
- Ding, S.; Yang, W.; Sun, X.; Guo, Y.; Zhao, G.; Yang, J.; Zhang, L.; Lv, G. Computed tomography-based radiomic analysis for preoperatively predicting the macrovesicular steatosis grade in cadaveric donor liver transplantation. BioMed Res. Int. 2022, 2022, 2491023. [Google Scholar] [CrossRef]
- Tang, S.; Wu, J.; Xu, S.; Li, Q.; He, J. Clinical-radiomic analysis for non-invasive prediction of liver steatosis on non-contrast CT: A pilot study. Front. Genet. 2023, 14, 1071085. [Google Scholar] [CrossRef]
- Carlsson, H.-E.; Schapiro, S.J.; Farah, I.; Hau, J. Use of primates in research: A global overview. Am. J. Primatol. 2004, 63, 225–237. [Google Scholar] [CrossRef] [PubMed]
Metric | All Macaques | Low Steatosis (NASsteatosis ≤ 1.5) | High Steatosis (NASsteatosis > 1.5) | Statistic (df); p-Value; Cohen’s d [95% CI] |
---|---|---|---|---|
n | 42 | 27 | 15 | N/A |
Diet [counts; non-atherogenic/atherogenic] | 27/15 | 26/1 | 1/14 | X2 (1) = 29.9; pBonferroni = 3.5 × 10−7 |
Age [yr; mean ± SD] | 6.1 ± 1.7 | 5.8 ± 1.9 | 6.7 ± 1.1 | Welch’s t (40) = 1.8; pBonferroni = 6.2 × 10−1; d = −0.2 [−0.8, 0.5] |
Sex [counts; M/F] | 26/16 | 11/16 | 15/0 | X2 (1) = 12.0; pBonferroni = 4.3 × 10−3 |
Country of origin [counts; Mauritius/Cambodia/Indonesia] | 15/6/21 | 1/6/20 | 14/0/1 | X2 (2) = 33.8; pBonferroni = 3.7 × 10−7 |
History of SARS-CoV-2 exposure [counts; +/−] | 30/12 | 18/9 | 12/3 | X2 (1) = 0.3; pBonferroni = 1.0 |
NAS | 1.5 ± 1.2 | 0.7 ± 0.5 | 3.0 ± 0.4 | Welch’s t (32) = 16.6; pBonferroni = 2.8 × 10−16; d = 4.9 [3.7, 6.1] |
NAS steatosis sub-score | 1.3 ± 1.1 | 0.5 ± 0.4 | 2.6 ± 0.4 | Welch’s t (31) = 15.9; pBonferroni = 1.2 × 10−15; d = 5.3 [4.0, 6.5] |
NAS inflammation sub-score | 0.2 ± 0.2 | 0.2 ± 0.2 | 0.4 ± 0.3 | Welch’s t (24) = 2.6; pBonferroni = 1.4 × 10−1; d = 0.8 [0.2, 1.5] |
NAS ballooning sub-score | 0 ± 0 | 0 ± 0 | 0 ± 0 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, W.T.; Wang, H.; Castro, M.A.; Mani, V.; Morris, C.P.; Friedrich, T.C.; O’Connor, D.H.; Finch, C.L.; Lee, J.H.; Sayre, P.J.; et al. Computed Tomography Radiomics and Machine Learning for Prediction of Histology-Based Hepatic Steatosis Scores. Diagnostics 2025, 15, 2310. https://doi.org/10.3390/diagnostics15182310
Chu WT, Wang H, Castro MA, Mani V, Morris CP, Friedrich TC, O’Connor DH, Finch CL, Lee JH, Sayre PJ, et al. Computed Tomography Radiomics and Machine Learning for Prediction of Histology-Based Hepatic Steatosis Scores. Diagnostics. 2025; 15(18):2310. https://doi.org/10.3390/diagnostics15182310
Chicago/Turabian StyleChu, Winston T., Hui Wang, Marcelo A. Castro, Venkatesh Mani, C. Paul Morris, Thomas C. Friedrich, David H. O’Connor, Courtney L. Finch, Ji Hyun Lee, Philip J. Sayre, and et al. 2025. "Computed Tomography Radiomics and Machine Learning for Prediction of Histology-Based Hepatic Steatosis Scores" Diagnostics 15, no. 18: 2310. https://doi.org/10.3390/diagnostics15182310
APA StyleChu, W. T., Wang, H., Castro, M. A., Mani, V., Morris, C. P., Friedrich, T. C., O’Connor, D. H., Finch, C. L., Lee, J. H., Sayre, P. J., Worwa, G., Crane, A., Kuhn, J. H., Crozier, I., Solomon, J., & Calcagno, C. (2025). Computed Tomography Radiomics and Machine Learning for Prediction of Histology-Based Hepatic Steatosis Scores. Diagnostics, 15(18), 2310. https://doi.org/10.3390/diagnostics15182310