High-Resolution Genetic Profiling of Hb J-Meerut and Other Hemoglobin Variants in the Tharu Population via HPLC and DNA Sequencing
Abstract
1. Introduction
Status of Hemoglobinopathies in the Tharu Community
2. Methodology
2.1. Blood Sample Collection
2.2. Hemoglobin Analysis Using High-Performance Liquid Chromatography (HPLC)
2.3. Validation Through Sanger Sequencing
2.4. Statistical Analysis
3. Observations and Results
4. Discussion
Limitations
5. Conclusions
6. Future Prospects
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taher, A.T.; Musallam, K.M.; Cappellini, M.D. β-Thalassemias. N. Engl. J. Med. 2021, 384, 727–743. [Google Scholar] [CrossRef]
- He, L.-N.; Chen, W.; Yang, Y.; Xie, Y.-J.; Xiong, Z.-Y.; Chen, D.-Y.; Lu, D.; Liu, N.-Q.; Yang, Y.-H.; Sun, X.-F. Elevated Prevalence of Abnormal Glucose Metabolism and Other Endocrine Disorders in Patients with β-Thalassemia Major: A Meta-Analysis. BioMed Res. Int. 2019, 2019, 6500678. [Google Scholar] [CrossRef]
- Vichinsky, E.; Cohen, A.; Thompson, A.A.; Giardina, P.J.; Lal, A.; Paley, C.; Cheng, W.Y.; McCormick, N.; Sasane, M.; Qiu, Y.; et al. Epidemiologic and clinical characteristics of nontransfusion-dependent thalassemia in the United States. Pediatr. Blood Cancer 2018, 65, e27067. [Google Scholar] [CrossRef]
- Ahmadpanah, M.; Asadi, Y.; Haghighi, M.; Ghasemibasir, H.; Khanlarzadeh, E.; Brand, S. In Patients with Minor Beta-Thalassemia, Cognitive Performance Is Related to Length of Education, But not to Minor Beta-Thalassemia or Hemoglobin Levels. Iran. J. Psychiatry 2019, 14, 47–53. [Google Scholar] [CrossRef]
- Evangelidis, P.; Venou, T.-M.; Fani, B.; Vlachaki, E.; Gavriilaki, E., on behalf of the International Hemoglobinopathy Research Network (INHERENT). Endocrinopathies in Hemoglobinopathies: What Is the Role of Iron? Int. J. Mol. Sci. 2023, 24, 16263. [Google Scholar] [CrossRef]
- Chissan, S.; Evangelidis, P.; Evangelidis, N.; Kotsiou, N.; Gavriilaki, E.; Vakalopoulou, S.; Yfanti, E.; Theodoridou, S. PB2028: Acquired A-Thalassemia in a Patient with High-Risk Myelodysplastic Syndrome and Bone Marrow Fibrosis: Case Report and Literature Review. HemaSphere 2023, 7 (Suppl. 3), e6540436. [Google Scholar] [CrossRef]
- Aneesha, K.; Sabina, K.; Shivali, S.; Sujata, J. Two Interesting Cases of a Rare Haemoglobin Variant—Haemoglobin J Meerut with Varied Clinical Presentations. Hamdan Med. J. 2023, 16, 124–126. [Google Scholar]
- Khalil, M.S.M.; Timbs, A.T.; Henderson, S.J.; Schuh, A.; Old, J.M. Fifteen Cases of Hb J-Meerut: The Rare Association with Hb E and/or HBA1: c.-24C>G (or HBA2) Variants. Hemoglobin 2020, 44, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Dinçol, G.; Güvenç, S.; Elam, D.; Kutlar, A.; Kutlar, F. Hb J- Meerut [α 120 (H3) Ala ->Glu (α1)] in a Turkish Male. Int. J. Med. Sci. 2006, 3, 26–27. [Google Scholar] [CrossRef]
- Kharche, K.; Bhake, A. Hemoglobin Variants in Patients with Microcytic Hypochromic Anemia: A Review of Indian Studies. Cureus 2023, 15, e38357. [Google Scholar] [CrossRef] [PubMed]
- Khera, R.; Singh, T.; Khuana, N.; Gupta, N.; Dubey, A.P. HPLC in Characterization of Hemoglobin Profile in Thalassemia Syndromes and Hemoglobinopathies: A Clinicohematological Correlation. Indian J. Hematol. Blood Transfus. 2014, 31, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Shrestha, N. Sickle Cell Anaemia among Tharu Population Visiting the Outpatient Department of General Medicine in a Secondary Care Centre: A Descriptive Cross-sectional Study. J. Nepal Med. Assoc. 2022, 60, 774–776. [Google Scholar] [CrossRef]
- Nigam, N.; Kushwaha, R.; Yadav, G.; Singh, P.; Gupta, N.; Singh, B.; Agrawal, M.; Chand, P.; Saxena, S.; Bhatt, M.L. A demographic prevalence of β Thalassemia carrier and other hemoglobinopathies in adolescent of Tharu population. J. Fam. Med. Prim. Care 2020, 9, 4305. [Google Scholar] [CrossRef] [PubMed]
- Thaker, P.; Mahajan, N.; Mukherjee, M.B.; Colah, R.B. Wide spectrum of novel and rare hemoglobin variants in the multi-ethnic Indian population: A review. Int. J. Lab. Hematol. 2024, 46, 434–450. [Google Scholar] [CrossRef] [PubMed]
- Sharma Poudyal, B.; Devkota, A.; Kouides, P. Thalassemia care in Nepal: In dire need of improvement. EJHaem 2023, 4, 548–550. [Google Scholar] [CrossRef]
- Therrell, B.L.; Lloyd-Puryear, M.A.; Ohene-Frempong, K.; Ware, R.E.; Padilla, C.D.; Ambrose, E.E.; Barkat, A.; Ghazal, H.; Kiyaga, C.; Mvalo, T.; et al. Empowering newborn screening programs in African countries through establishment of an international collaborative effort. J. Community Genet. 2020, 11, 253–268. [Google Scholar] [CrossRef]
- Stoto, M.A.; Almario, D.A.; McCormick, M.C. Public Health Screening Programs. In Reducing the Odds: Preventing Perinatal Transmission of HIV in The United States; National Academies Press: Washington, DC, USA, 1999. Available online: https://www.ncbi.nlm.nih.gov/books/NBK230552/ (accessed on 1 September 2025).
- Khan, A.; Rehman, A.U. Laboratory Evaluation of Beta-Thalassemia; StatPearls [Internet]: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK585044/ (accessed on 1 September 2025).
- Shrivastava, A.; Mohapatra, S.K.; Roy, A.; Das, S.N.; Tyagi, G. The Quantitative detection of different types of Hb variants through HPLC Technique: Report of 428 cases in Indian population. Res. J. Pharmacol. Pharmacodyn. 2010, 2, 397–400. [Google Scholar]
- Canatan, D.; Çim, A.; Delibaş, S.; Altunsoy, E.; Ceylaner, S. The İmportance of DNA Sequencing for Abnormal Hemoglobins Detected by HPLC Screening. Turk. J. Hematol. 2020, 37, 134–135. [Google Scholar] [CrossRef]
- Guetterman, T.C. Basics of statistics for primary care research. Fam. Med. Community Health 2019, 7, e000067. [Google Scholar] [CrossRef]
- Popescu, G.; Rusu, C.; Maștaleru, A.; Oancea, A.; Cumpăt, C.M.; Luca, M.C.; Grosu, C.; Leon, M.M. Social and Demographic Determinants of Consanguineous Marriage: Insights from a Literature Review. Genealogy 2025, 9, 69. [Google Scholar] [CrossRef]
- Katara, A.; Chand, S.; Chaudhary, H.; Chaudhry, V.; Chandra, H.; Dubey, R.C. Evolution and Applications of Next Generation Sequencing and Its Intricate Relations with Chromatographic and Spectrometric Techniques in Modern Day Sciences. J. Chromatogr. Open 2024, 5, 100121. [Google Scholar] [CrossRef]
- Deopa, B.; Choradiya, K.; Parakh, M.; Dara, P. Rare association of Hemoglobin variant Hb J (α mutation) with haemophilia A: Case report. Int. J. Contemp. Pediatr. 2017, 4, 2226. [Google Scholar] [CrossRef]
- Wahengbam, A.K.G.S.; Kumari, K.; Saraswathy, K.N.; Murry, B. A case of hemoglobin J-Meerut detected from Gujarat, India. Egypt. J. Haematol. 2019, 44, 193–194. [Google Scholar] [CrossRef]
- Kaur, G.; Tyagi, S.; Seth, T.; Mahapatra, M.; Viswananthan, G.K.; Dass, J.; Hariharan, R.; Sen, A. Comparison of HbA2 Using High Performance Liquid Chromatography Versus Haemoglobin Capillary Zone Electrophoresis. Indian J. Hematol. Blood Transfus. 2023, 39, 572–578. [Google Scholar] [CrossRef]
- Periyavan, S.; Kumar, S.; Mamatha, G.N.; Hegde, S.; Jain, S.; Dhanya, R.; Agarwal, R.K.; Faulkner, L. HPLC first approach in detecting thalassemia and other common hemoglobinopathies is more cost and time effective. Front. Hematol. 2025, 4, 1461498. [Google Scholar] [CrossRef]
- Williams, T.N.; Mwangi, T.W.; Wambua, S.; Alexander, N.D.; Kortok, M.; Snow, R.W.; Marsh, K. Sickle cell trait and the risk of Plasmodium falciparum malaria and other childhood diseases. J. Infect. Dis. 2005, 192, 178–186. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Colah, R.B.; Mukherjee, M.B.; Martin, S.; Ghosh, K. Sickle cell disease in tribal populations in India. Indian J. Med. Res. 2015, 141, 509–515. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Piel, F.B.; Patil, A.P.; Howes, R.E.; Nyangiri, O.A.; Gething, P.W.; Dewi, M.; Temperley, W.H.; Williams, T.N.; Weatherall, D.J.; Hay, S.I. Global epidemiology of sickle haemoglobin in neonates: A contemporary geostatistical model-based map and population estimates. Lancet 2013, 381, 142–151. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Serjeant, G.R.; Ghosh, K.; Patel, J. Sickle cell disease in India: A perspective. Indian J. Med. Res. 2016, 143, 21–24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nair, V. Potential pitfalls in using HPLC and its interpretation in diagnosing HbS. J. Rare Dis. Res. Treat. 2018, 3, 24–28. [Google Scholar] [CrossRef]
- Lassout, O.; Hartmer, R.; Jabs, W.; Clerici, L.; Tsybin, Y.O.; Samii, K.; Vuilleumier, N.; Hochstrasser, D.; Scherl, A.; Lescuyer, P.; et al. Clinical method evaluation of hemoglobin S and C identification by top-down selected reaction monitoring and electron transfer dissociation. Clin. Proteom. 2019, 16, 41. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Biswas, A.K.; Baranwal, A.K.; Asthana, B.; Dahiya, T. Prevalence of hemoglobinopathies using high-performance liquid chromatography as diagnostic tool in anemic patients of tertiary care center of Western India. Asian J. Transfus. Sci. 2022, 18, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.S.M.; Timbs, A.T.; Henderson, S.J.; Schuh, A.; Old, J.M. Eleven Cases of Hb J-Paris-I [HBA2: c.38C>A (or HBA1)]: A Stable α Chain Variant Elutes in the P3 Window on High-Performance Liquid Chromatography. Hemoglobin 2021, 45, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.; Raj, E.A.; Natesan, S.; Gudi, N. Prevalence of Sickle Cell Disease, Sickle Cell Trait and HbS-β-Thalassemia in India: A Systematic Review and Meta-Analysis. Clin. Epidemiol. Glob. Health 2024, 28, 101678. [Google Scholar] [CrossRef]
- Saikia Pathak, M.; Saikia Borah, M. Genetic Hemoglobin Disorders Among the People of Assam: A Tertiary Care Hospital-Based Study. Int. J. Med. Res. Health Sci. 2023, 12, 65–70. [Google Scholar]
Variable | Normal Study/HB J-Meerut Heterozygous | Heterozygous β-Thalassemia | Heterozygous HbS (Sickle Cell) | Hb D Punjab Heterozygous | Double Heterozygous for HbE and HbS | Significance | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No | % | No | % | No. | % | No. | % | No. | % | |||
Age | 0–5 years | 1 | 25.0% | 0 | 0.0% | 3 | 75.0% | 0 | 0.0% | 0 | 0.0% | Chi sq = 24.82, p = 0.073 |
6–10 years | 7 | 46.7% | 4 | 26.7% | 4 | 26.6% | 0 | 0.0% | 0 | 0.0% | ||
11–15 years | 5 | 11.6% | 14 | 32.6% | 23 | 53.5% | 0 | 0.0% | 1 | 2.3% | ||
16–20 years | 3 | 18.8% | 6 | 37.5% | 5 | 31.3% | 2 | 12.4% | 0 | 0.0% | ||
21–25 years | 0 | 0.0% | 2 | 100.0% | 0 | 0.0% | 0 | 0.0% | 0 | 0.0% | ||
Gender | Male | 10 | 16.1% | 22 | 35.5% | 27 | 43.6% | 2 | 3.2% | 1 | 1.6% | Chi sq = 3.69, p = 0.449 |
Female | 6 | 33.3% | 4 | 22.2% | 8 | 44.5% | 0 | 0.0% | 0 | 0.0% |
Diagnosis | Normal Study/HB J-Meerut Heterozygous | Heterozygous β-Thalassemia | Heterozygous HbS | Hb D Punjab Heterozygous | Double Heterozygous for HbE and HbS | MANOVA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | F-Value | p-Value | Effect Size | |
P2 | 3.42 | 0.38 | 2.52 | 1.37 | 1.67 | 1.11 | 0.37 | 0.09 | 9.51 | <0.001 | 0.295 | ||
P3 | 18.24 | 1.41 | 9.43 | 2.95 | 6.51 | 2.68 | 3.80 | 1.13 | 2.20 | 68.88 | <0.001 | 0.752 | |
F | 0.96 | 0.34 | 1.22 | 0.78 | 2.95 | 4.78 | 31.80 | 42.43 | 2.00 | 1.20 | 0.315 | 0.050 | |
A0 | 71.92 | 6.87 | 78.38 | 5.87 | 54.09 | 14.77 | 28.70 | 36.63 | 7.10 | 51.14 | <0.001 | 0.693 | |
A2 | 2.37 | 0.24 | 5.29 | 0.99 | 2.38 | 0.93 | 1.60 | 31.30 | 61.62 | <0.001 | 0.731 |
Variant | HPLC Diagnosis | Sequencing | ||
---|---|---|---|---|
No. | % | No. | % | |
Normal Study/Hb J-Meerut Heterozygous | 16 | 20.0% | 15 | 60.0% |
Heterozygous Β-Thalassemia | 26 | 32.5% | 0 | 0.0% |
Heterozygous HbS (Sickle Cell) | 35 | 43.7% | 9 | 36.0% |
Hb D Punjab Heterozygous | 2 | 2.5% | 1 | 4.0% |
Double Heterozygous for HbE and HbS | 1 | 1.3% | 0 | 0.0% |
Agreement | Kappa k = 0.536, p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nigam, N.; Kushwaha, R.; Gupta, A.; Bhatt, M.L.B.; Singh, B.; Nigam, S.; Upadhyay, K.; Amara, A.; Rungta, S. High-Resolution Genetic Profiling of Hb J-Meerut and Other Hemoglobin Variants in the Tharu Population via HPLC and DNA Sequencing. Diagnostics 2025, 15, 2268. https://doi.org/10.3390/diagnostics15172268
Nigam N, Kushwaha R, Gupta A, Bhatt MLB, Singh B, Nigam S, Upadhyay K, Amara A, Rungta S. High-Resolution Genetic Profiling of Hb J-Meerut and Other Hemoglobin Variants in the Tharu Population via HPLC and DNA Sequencing. Diagnostics. 2025; 15(17):2268. https://doi.org/10.3390/diagnostics15172268
Chicago/Turabian StyleNigam, Nitu, Rashmi Kushwaha, Arti Gupta, M. L. B. Bhatt, Bhupendra Singh, Sanjay Nigam, Kirti Upadhyay, Amro Amara, and Sumit Rungta. 2025. "High-Resolution Genetic Profiling of Hb J-Meerut and Other Hemoglobin Variants in the Tharu Population via HPLC and DNA Sequencing" Diagnostics 15, no. 17: 2268. https://doi.org/10.3390/diagnostics15172268
APA StyleNigam, N., Kushwaha, R., Gupta, A., Bhatt, M. L. B., Singh, B., Nigam, S., Upadhyay, K., Amara, A., & Rungta, S. (2025). High-Resolution Genetic Profiling of Hb J-Meerut and Other Hemoglobin Variants in the Tharu Population via HPLC and DNA Sequencing. Diagnostics, 15(17), 2268. https://doi.org/10.3390/diagnostics15172268