Variability of Metabolic Rate and Distribution Volume Quantification in Whole-Body Parametric PATLAK [18F]-FDG PET/CT—A Prospective Trial in Patients with Lung Cancer
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. PET/CT Examination Protocol
2.3. Reconstruction and Postprocessing
2.4. Image Evaluation and Segmentation
2.5. Reference Standard
2.6. Statistical Analysis
3. Results
3.1. Patient Cohort
3.2. Lesion Characteristics
3.3. Comparison of Quantification Methods: Metabolic Rate
3.4. Comparison of Quantification Methods: Distribution Volume
3.5. Comparison of Quantification Methods: Liver Parenchyma
3.6. Diagnostic Accuracy and Cutoff Value: Lymph Nodes
3.7. Diagnostic Accuracy and Cutoff Value: Lung Lesions
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUC | Area under the curve |
CONSORT | Consolidated Standards for Reporting Trials |
CT | Computed tomography |
DV | Distribution volume |
FDG | Fludeoxyglucose |
PET | Positron emission tomography |
MR | Metabolic rate |
MRI | Magnetic resonance imaging |
PSF | point-spread-function |
ROC | Receiver operating characteristic |
SUV | Standardized uptake value |
TAC | Time-activity curve |
TOF | Time-of-flight |
VOI | Volume of interest |
WB | Whole body |
Appendix A. Metabolic Activity of Hepatic Reference Tissue
Appendix B. Patient Details
Patient No. | Gender | Age | Size in cm | Body Weight in kg | Lung Lesion Biology |
---|---|---|---|---|---|
1 | w | 54 | 171 | 59.6 | Pneumonia |
2 | m | 81 | 189 | 71.4 | Chronic lymphocytic leukemia |
3 | w | 56 | 170 | 70.0 | Not further classified |
4 | m | 75 | 168 | 90.7 | Adenocarcinoma |
5 | m | 61 | 187 | 133.3 | Hematoma |
6 | m | 58 | 175 | 75.9 | Adenocarcinoma |
7 | m | 64 | 172 | 77.7 | Cryptogenic organizing pneumonia |
8 | m | 78 | 177 | 70.8 | Adenocarcinoma |
9 | w | 50 | 173 | 79.1 | Adenocarcinoma |
10 | m | 82 | 180 | 68.2 | Benign pulmonary nodule not further classified |
11 | m | 66 | 188 | 115.7 | Adenocarcinoma |
12 | m | 79 | 175 | 71.4 | Inflammatory myofibroblastic tumor |
13 | m | 69 | 168 | 67.2 | Small cell lung cancer |
14 | w | 71 | 164 | 67.8 | Adenocarcinoma |
15 | w | 73 | 168 | 90.0 | Adenocarcinoma |
16 | m | 77 | 158 | 49.3 | Not further classified |
17 | w | 76 | 153 | 80.4 | Carcinoid of the Lung (Ki67: 1.2%) |
18 | w | 60 | 170 | 80.5 | Pleural dysplasia |
19 | m | 41 | 190 | 107.0 | Hamartoma |
20 | m | 69 | 180 | 81.0 | Acinar adenocarcinoma |
21 | w | 57 | 157 | 66.1 | Acinar adenocarcinoma |
22 | w | 56 | 155 | 72.7 | Hamartoma |
23 | w | 56 | 160 | 71.3 | Sarcoidosis |
24 | w | 73 | 165 | 57.7 | No target lesion |
25 | w | 57 | 158 | 68.7 | NSCLC |
26 | m | 52 | 180 | 57.0 | Pneumonia |
28 | m | 61 | 184 | 49.2 | NSCLC |
29 | m | 66 | 187 | 105.2 | NSCLC |
30 | w | 69 | 139 | 56.2 | Sarcomatoid carcinoma |
31 | m | 59 | 168 | 106.9 | Acinar adenocarcinoma |
32 | w | 54 | 157 | 62.1 | Acinar adenocarcinoma |
33 | m | 73 | 187 | 95.5 | Adenocarcinoma |
35 | m | 54 | 179 | 86.5 | Necrotizing granuloma |
36 | m | 65 | 185 | 80.1 | NSCLC |
References
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef] [PubMed]
- Visser, E.P.; Philippens, M.E.; Kienhorst, L.; Kaanders, J.H.; Corstens, F.H.; Geus-Oei, L.F.D.; Oyen, W.J. Comparison of tumor volumes derived from glucose metabolic rate maps and SUV maps in dynamic 18F-FDG PET. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2008, 49, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Lucignani, G.; Paganelli, G.; Bombardieri, E. The use of standardized uptake values for assessing FDG uptake with PET in oncology: A clinical perspective. Nucl. Med. Commun. 2004, 25, 651–656. [Google Scholar] [CrossRef]
- Hellwig, D.; Graeter, T.P.; Ukena, D.; Groeschel, A.; Sybrecht, G.W.; Schaefers, H.J.; Kirsch, C.M. 18F-FDG PET for mediastinal staging of lung cancer: Which SUV threshold makes sense? J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2007, 48, 1761–1766. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, M.; Abdel-Nabi, H.; Baker, J.; Shao, Y.; Lamonica, D.; Gona, J. Relation between nodule size and 18F-FDG-PET SUV for malignant and benign pulmonary nodules. J. Hematol. Oncol. 2008, 1, 13. [Google Scholar] [CrossRef]
- Metser, U.; Miller, E.; Lerman, H.; Lievshitz, G.; Avital, S.; Even-Sapir, E. 18F-FDG PET/CT in the Evaluation of Adrenal Masses. J. Nucl. Med. 2006, 47, 32–37. [Google Scholar]
- Delbeke, D.; Rose, D.M.; Chapman, W.C.; Pinson, C.W.; Wright, J.K.; Beauchamp, R.D.; Shyr, Y.; Leach, S.D. Optimal interpretation of FDG PET in the diagnosis, staging and management of pancreatic carcinoma. J. Nucl. Med. 1999, 40, 1784–1791. [Google Scholar]
- Patlak, C.S.; Blasberg, R.G.; Fenstermacher, J.D. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 1983, 3, 1–7. [Google Scholar] [CrossRef]
- Patlak, C.S.; Blasberg, R.G. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 1985, 5, 584–590. [Google Scholar] [CrossRef]
- Koopman, D.; Jager, P.L.; Slump, C.H.; Knollema, S.; van Dalen, J.A. SUV variability in EARL-accredited conventional and digital PET. EJNMMI Res. 2019, 9, 106. [Google Scholar] [CrossRef]
- Ince, S.; Laforest, R.; Ashrafinia, S.; Smith, A.M.; Wahl, R.L.; Fraum, T.J. Test-Retest Repeatability of Patlak Slopes versus Standardized Uptake Values for Hypermetabolic Lesions and Normal Organs in an Oncologic PET/CT Population. Mol. Imaging Biol. 2024, 26, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Lodge, M.A. Repeatability of SUV in Oncologic 18F-FDG PET. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2017, 58, 523–532. [Google Scholar] [CrossRef]
- Weissinger, M.; Kirsch, C.M.; Hellwig, D. Lymphknoten-Staging des Lungenkarzinoms mit FDG-PET/CT und HD-Rekonstruktion: SUV-Schwellen für die Charakterisierung Normal Großer und vergrößerter Lymphknoten; DGN Jahrestagung: Hannover, Germany, 2014. [Google Scholar]
- Hyun, O.J.; Lodge, M.A.; Wahl, R.L. Practical PERCIST: A Simplified Guide to PET Response Criteria in Solid Tumors 1.0. Radiology 2016, 280, 576–584. [Google Scholar] [CrossRef]
- Weissinger, M.; Kommoss, S.; Jacoby, J.; Ursprung, S.; Seith, F.; Hoffmann, S.; Nikolaou, K.; Brucker, S.Y.; Fougère, C.L.; Dittmann, H. Multiparametric Dual-Time-Point [18F]FDG PET/MRI for Lymph Node Staging in Patients with Untreated FIGO I/II Cervical Carcinoma. J. Clin. Med. 2022, 11, 4943. [Google Scholar] [CrossRef]
- Weissinger, M.; Atmanspacher, M.; Spengler, W.; Seith, F.; Beschwitz, S.V.; Dittmann, H.; Zender, L.; Smith, A.M.; Casey, M.E.; Nikolaou, K.; et al. Diagnostic Performance of Dynamic Whole-Body Patlak [18F]FDG-PET/CT in Patients with Indeterminate Lung Lesions and Lymph Nodes. J. Clin. Med. 2023, 12, 3942. [Google Scholar] [CrossRef]
- Marquis, H.; Willowson, K.P.; Bailey, D.L. Partial volume effect in SPECT & PET imaging and impact on radionuclide dosimetry estimates. Asia Ocean. J. Nucl. Med. Biol. 2023, 11, 44–54. [Google Scholar] [CrossRef] [PubMed]
- ZAG Zyklotron, A.G. Fachinformation FDG. 2010. Available online: https://www.zyklotron-ag.de/fileadmin/04_Zyklotron/Downloads/Nuklearmedizin/FDG_Fachinfo_201006.pdf (accessed on 24 June 2025).
- Karakatsanis, N.A.; Lodge, M.A.; Tahari, A.K.; Zhou, Y.; Wahl, R.L.; Rahmim, A. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application. Phys. Med. Biol. 2013, 58, 7391–7418. [Google Scholar] [CrossRef] [PubMed]
- Karakatsanis, N.A.; Lodge, M.A.; Zhou, Y.; Wahl, R.L.; Rahmim, A. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation. Phys. Med. Biol. 2013, 58, 7419–7445. [Google Scholar] [CrossRef]
- Rahmim, A.; Lodge, M.A.; Karakatsanis, N.A.; Panin, V.Y.; Zhou, Y.; McMillan, A.; Cho, S.; Zaidi, H.; Casey, M.E.; Wahl, R.L. Dynamic whole-body PET imaging: Principles, potentials and applications. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 501–518. [Google Scholar] [CrossRef]
- Smith, A.M.; Spottjswoode, V.B.; Hu, J.; von Gall, C. FlowMotion Multiparametric PET Suite-The Patlak Model; Siemens Medical Solutions USA, Inc.: Princeton, NJ, USA, 2018. [Google Scholar]
- Bland, J.M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Inoue, A.; Nagao, M.; Kaneko, K.; Yamamoto, A.; Shirai, Y.; Toshihiro, O.; Sakai, A.; Imakado, R.; Sakai, S. Glucose metabolic rate from four-dimensional [18F]FDG PET/CT to differentiate sarcoid lesions from malignant lesions. Eur. Radiol. 2025, 35, 1012–1021. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.P.; Woo, S.K.; Yoon, S.Y.; Jeong, S.Y. The potential usefulness of (18)F-FDG PET/CT for detecting colorectal carcinoma and adenoma in asymptomatic adults. Ann. Nucl. Med. 2015, 29, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Park, M.S.; Lee, S.M. Preoperative 18F-FDG PET-CT maximum standardized uptake value predicts recurrence of biliary tract cancer. Anticancer. Res. 2014, 34, 2551–2554. [Google Scholar] [PubMed]
- Veenstra, E.B.; Ruiter, S.J.; de Haas, R.J.; de Jong, K.P.; Erba, P.A.; Dierckx, R.A.; Noordzij, W. A dual-tracer approach using [11C]CH and [18F]FDG in HCC clinical decision making. EJNMMI Res. 2023, 13, 77. [Google Scholar] [CrossRef]
- Koo, H.R.; Park, J.S.; Kang, K.W.; Cho, N.; Chang, J.M.; Bae, M.S.; Kim, W.H.; Lee, S.H.; Kim, M.Y.; Kim, J.Y.; et al. 18F-FDG uptake in breast cancer correlates with immunohistochemically defined subtypes. Eur. Radiol. 2014, 24, 610–618. [Google Scholar] [CrossRef]
- Wang, D.Q.; Qiu, B.; Liu, Q.W.; Xia, L.P.; Liu, S.R.; Zheng, C.J.; Liu, H.; Mo, Y.W.; Zhang, X.; Hu, Y.Y.; et al. Patlak-Ki derived from ultra-high sensitivity dynamic total body [18F]FDG PET/CT correlates with the response to induction immuno-chemotherapy in locally advanced non-small cell lung cancer patients. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 3400–3413. [Google Scholar] [CrossRef]
Lymph Node () | Mean | Sd | Min | Max | |
---|---|---|---|---|---|
SUV | mean | 3.42 | 4.60 | 0.63 | 21.26 |
MR-FDG | mean | 3.85 | 6.58 | 0.40 | 29.32 |
(µmol/(min × 100 mL)) | max | 5.40 | 9.60 | 0.57 | 43.11 |
peak | 3.92 | 6.37 | 0.63 | 32.79 | |
DV-FDG | mean | 57.02 | 35.97 | 12.95 | 172.63 |
(%) | max | 78.18 | 63.76 | 19.35 | 309.93 |
peak | 64.08 | 37.90 | 16.70 | 193.10 | |
CT Volume (mL) | 2.05 | 6.40 | 0.03 | 50.72 |
Lung Lesion () | Mean | Sd | Min | Max | |
---|---|---|---|---|---|
SUV | mean | 6.32 | 5.52 | 0.93 | 23.69 |
MR-FDG | mean | 10.54 | 12.53 | 0.73 | 57.81 |
(µmol/(min × 100 mL)) | max | 15.30 | 16.78 | 1.20 | 65.09 |
peak | 12.39 | 14.27 | 1.00 | 56.01 | |
DV-FDG | mean | 98.34 | 78.47 | 19.90 | 289.14 |
(%) | max | 149.44 | 117.85 | 30.30 | 437.01 |
peak | 104.80 | 79.25 | 25.35 | 332.73 | |
CT Volume (mL) | 32.50 | 57.95 | 0.23 | 253.00 |
Absolute | Percent | ||||||||
---|---|---|---|---|---|---|---|---|---|
Mean
Diff | SD | −1.96 SD | +1.96 SD |
Mean
Diff | SD | −1.96 SD | +1.96 SD | ||
MR-FDG | Mean-Peak | −0.07 | 1.37 | −2.77 | 2.62 | −10.78 | 16.75 | −43.61 | 22.05 |
(µmol/(min | Mean-Max | −1.55 | 3.13 | −4.68 | 1.58 | −26.40 | 13.79 | −53.43 | 0.63 |
× 100 mL)) | Max-Peak | 1.47 | 3.48 | −5.21 | 8.15 | 15.66 | 17.70 | −19.03 | 50.35 |
DV-FDG | Mean-Peak | −7.06 | 9.13 | −24.95 | 10.82 | −14.11 | 16.30 | −46.06 | 17.84 |
(%) | Mean-Max | −21.16 | 30.38 | −80.71 | 38.39 | −25.42 | 17.45 | −59.62 | 8.78 |
Max-Peak | 14.09 | 27.14 | −39.10 | 67.28 | 11.40 | 16.41 | −20.76 | 43.56 |
Absolute | Percent | ||||||||
---|---|---|---|---|---|---|---|---|---|
Mean
Diff | SD | −1.96 SD | +1.96 SD |
Mean
Diff | SD | −1.96 SD | +1.96 SD | ||
MR-FDG | Mean-Peak | −1.85 | 3.49 | −8.70 | 4.99 | −12.01 | 12.23 | −35.98 | 11.96 |
(µmol/(min | Mean-Max | −4.76 | 5.04 | −14.65 | 5.13 | −40.87 | 5.69 | −52.02 | −29.72 |
× 100 mL)) | Max-Peak | 2.91 | 3.31 | −3.58 | 9.39 | 29.10 | 12.20 | 5.19 | 53.01 |
DV-FDG | Mean-Peak | −10.64 | 17.24 | −44.44 | 23.15 | −14.15 | 15.93 | −45.37 | 17.07 |
(%) | Mean-Max | −56.74 | 51.83 | −158.34 | 44.85 | −39.26 | 7.68 | −54.31 | −24.21 |
Max-Peak | 46.10 | 47.21 | −46.43 | 138.62 | 25.29 | 14.58 | −3.29 | 53.87 |
AUC | Std. Error | 95% CI | p-Value | ||
---|---|---|---|---|---|
MR-FDG | mean | 0.987 | 0.011 | 0.966–1.000 | <0.01 |
(µmol/(min × 100 mL)) | max | 0.994 | 0.007 | 0.980–1.000 | <0.01 |
peak | 0.991 | 0.009 | 0.974–1.000 | <0.01 | |
DV-FDG | mean | 0.948 | 0.028 | 0.893–1.000 | <0.01 |
(%) | max | 0.975 | 0.016 | 0.943–1.000 | <0.01 |
peak | 0.972 | 0.018 | 0.938–1.000 | <0.01 |
AUC | Std. Error | 95% CI | p-Value | ||
---|---|---|---|---|---|
MR-FDG | mean | 0.893 | 0.055 | 0.785–1.000 | <0.01 |
(µmol/(min × 100 mL)) | max | 0.893 | 0.056 | 0.784–1.000 | <0.01 |
peak | 0.905 | 0.051 | 0.805–1.000 | <0.01 | |
DV-FDG | mean | 0.813 | 0.074 | 0.668–0.959 | <0.01 |
(%) | max | 0.812 | 0.074 | 0.666–0.957 | <0.01 |
peak | 0.825 | 0.072 | 0.684–0.966 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ursprung, S.; Zender, L.; Ghibes, P.; Hagen, F.; Nikolaou, K.; la Fougère, C.; Weissinger, M. Variability of Metabolic Rate and Distribution Volume Quantification in Whole-Body Parametric PATLAK [18F]-FDG PET/CT—A Prospective Trial in Patients with Lung Cancer. Diagnostics 2025, 15, 1719. https://doi.org/10.3390/diagnostics15131719
Ursprung S, Zender L, Ghibes P, Hagen F, Nikolaou K, la Fougère C, Weissinger M. Variability of Metabolic Rate and Distribution Volume Quantification in Whole-Body Parametric PATLAK [18F]-FDG PET/CT—A Prospective Trial in Patients with Lung Cancer. Diagnostics. 2025; 15(13):1719. https://doi.org/10.3390/diagnostics15131719
Chicago/Turabian StyleUrsprung, Stephan, Lars Zender, Patrick Ghibes, Florian Hagen, Konstantin Nikolaou, Christian la Fougère, and Matthias Weissinger. 2025. "Variability of Metabolic Rate and Distribution Volume Quantification in Whole-Body Parametric PATLAK [18F]-FDG PET/CT—A Prospective Trial in Patients with Lung Cancer" Diagnostics 15, no. 13: 1719. https://doi.org/10.3390/diagnostics15131719
APA StyleUrsprung, S., Zender, L., Ghibes, P., Hagen, F., Nikolaou, K., la Fougère, C., & Weissinger, M. (2025). Variability of Metabolic Rate and Distribution Volume Quantification in Whole-Body Parametric PATLAK [18F]-FDG PET/CT—A Prospective Trial in Patients with Lung Cancer. Diagnostics, 15(13), 1719. https://doi.org/10.3390/diagnostics15131719