Genomic Insights into the Phosphatidylinositol-Specific Phospholipase C Gene Family in Leishmania major and Leishmania infantum: Expression Patterns and Potential Association with Drug Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of PI-PLC Gene Family Members in the L. infantum and L. major Genomes
2.2. Chromosome Locations and Synteny Analysis
2.3. Conserved Motif and Gene Structure Analysis
2.4. Gene Expression Profiling and Functional Analysis
3. Results
3.1. The Bioinformatic Identification of PI-PLCs in L. infantum and L. major
3.2. Phylogenetic and Conserved Motif Analysis of the LiPI-PLC and LmPI-PLC Proteins
3.3. Chromosome Distribution, Gene Structure, and Synteny Analysis of the LiPI-PLC and LmPI-PLC Genes
3.4. Expression Pattern of the Genes
3.5. Gene Ontology
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PI-PLC | phosphatidylinositol-specific phospholipase |
NCBI | National Center for Biotechnology Information |
HMM | Hidden Markov Model |
pI | isoelectric point |
MW | molecular weight |
SRA | sequence read archive |
GO | Gene Ontology |
BP | biological process |
MF | molecular function |
MAPK1 | mitogen-activated protein kinase 1 |
AQP | aquaglyceroporin |
References
- Torres-Guerrero, E.; Quintanilla-Cedillo, M.R.; Ruiz-Esmenjaud, J.; Arenas, R. Leishmaniasis: A review. F1000Research 2017, 6, 750. [Google Scholar] [CrossRef] [PubMed]
- Reithinger, R.; Dujardin, J.C.; Louzir, H.; Pirmez, C.; Alexander, B.; Brooker, S. Cutaneous leishmaniasis. Lancet Infect. Dis. 2007, 7, 581–596. [Google Scholar] [CrossRef]
- Bravo, F.; Sanchez, M.R. New and re-emerging cutaneous infectious diseases in Latin America and other geographic areas. Dermatol. Clin. 2003, 21, 655–668. [Google Scholar] [CrossRef] [PubMed]
- Tomiotto-Pellissier, F.; Bortoleti, B.T.D.S.; Assolini, J.P.; Gonçalves, M.D.; Carloto, A.C.M.; Miranda-Sapla, M.M.; Conchon-Costa, I.; Bordignon, J.; Pavanelli, W.R. Macrophage Polarization in Leishmaniasis: Broadening Horizons. Front. Immunol. 2018, 9, 2529. [Google Scholar] [CrossRef]
- Ulusan Bağcı, Ö.; Sadıqova, A.; Caner, A. Comparative Gene Expression Profiles of Leishmania major and Leishmania infantum Promastigotesa. Turk. Parazitol. Derg. 2021, 45, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Murray, H.W.; Berman, J.D.; Davies, C.R.; Saravia, N.G. Advances in leishmaniasis. Lancet 2005, 366, 1561–1577. [Google Scholar] [CrossRef]
- Walker, D.M.; Oghumu, S.; Gupta, G.; McGwire, B.S.; Drew, M.E.; Satoskar, A.R. Mechanisms of cellular invasion by intracellular parasites. Cell. Mol. Life Sci. 2014, 71, 1245–1263. [Google Scholar] [CrossRef]
- Flammersfeld, A.; Lang, C.; Flieger, A.; Pradel, G. Phospholipases during membrane dynamics in malaria parasites. Int. J. Med. Microbiol. 2018, 308, 129–141. [Google Scholar] [CrossRef]
- Burda, P.C.; Ramaprasad, A.; Bielfeld, S.; Pietsch, E.; Woitalla, A.; Söhnchen, C.; Singh, M.N.; Strauss, J.; Sait, A.; Collinson, L.M.; et al. Global analysis of putative phospholipases in Plasmodium falciparum reveals an essential role of the phosphoinositide-specific phospholipase C in parasite maturation. mBio 2023, 14, e0141323. [Google Scholar] [CrossRef]
- Martins, V.P.; Galizzi, M.; Salto, M.L.; Docampo, R.; Moreno, S.N. Developmental expression of a Trypanosoma cruzi phosphoinositide-specific phospholipase C in amastigotes and stimulation of host phosphoinositide hydrolysis. Infect. Immun. 2010, 78, 4206–4212. [Google Scholar] [CrossRef]
- Ivens, A.C.; Peacock, C.S.; Worthey, E.A.; Murphy, L.; Aggarwal, G.; Berriman, M.; Sisk, E.; Rajandream, M.-A.; Adlem, E.; Aert, R.; et al. The genome of the kinetoplastid parasite, Leishmania major. Science 2005, 309, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Peacock, C.S.; Seeger, K.; Harris, D.; Murphy, L.; Ruiz, J.C.; Quail, M.A.; Peters, N.; Adlem, E.; Tivey, A.; Aslett, M.; et al. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat. Genet. 2007, 39, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Camacho, E.; González-de la Fuente, S.; Solana, J.C.; Tabera, L.; Carrasco-Ramiro, F.; Aguado, B.; Requena, J.M. Leishmania infantum (JPCM5) Transcriptome, Gene Models and Resources for an Active Curation of Gene Annotations. Genes 2023, 14, 866. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.H.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef]
- Andrade, J.M.; Gonçalves, L.O.; Liarte, D.B.; Lima, D.A.; Guimarães, F.G.; Resende, D.d.M.; Santi, A.M.M.; de Oliveira, L.M.; Velloso, J.P.L.; Delfino, R.G.; et al. Comparative transcriptomic analysis of antimony resistant and susceptible Leishmania infantum lines. Parasit. Vectors 2020, 13, 600. [Google Scholar] [CrossRef]
- Carbon, S.; Ireland, A.; Mungall, C.J.; Shu, S.; Marshall, B.; Lewis, S.; the AmiGO Hub; Web Presence Working Group. AmiGO: Online access to ontology and annotation data. Bioinformatics 2009, 25, 288–289. [Google Scholar] [CrossRef] [PubMed]
- Ashford, R.W. The leishmaniases as emerging and reemerging zoonoses. Int. J. Parasitol. 2000, 30, 1269–1281. [Google Scholar] [CrossRef]
- Wilson, S.K.; Heckendorn, J.; Martorelli Di Genova, B.; Koch, L.L.; Rooney, P.J.; Morrissette, N.; Lebrun, M.; Knoll, L.J. A Toxoplasma gondii patatin-like phospholipase contributes to host cell invasion. PLoS Pathog. 2020, 16, e1008650. [Google Scholar] [CrossRef]
- Zidovetzki, R.; Sherman, I.W.; O’Brien, L. Inhibition of Plasmodium falciparum phospholipase A2 by chloroquine, quinine, and arteether. J. Parasitol. 1993, 79, 565–570. [Google Scholar] [CrossRef]
- McConville, M.J.; Mullin, K.A.; Ilgoutz, S.C.; Teasdale, R.D. Secretory pathway of trypanosomatid parasites. Microbiol. Mol. Biol. Rev. 2002, 66, 122–154. [Google Scholar] [CrossRef] [PubMed]
- Coppens, I.; Joiner, K.A. Host but not parasite cholesterol controls Toxoplasma cell entry by modulating organelle discharge. Mol. Biol. Cell 2003, 14, 3804–3820. [Google Scholar] [CrossRef]
- Reis-Cunha, J.L.; Valdivia, H.O.; Bartholomeu, D.C. Gene and Chromosomal Copy Number Variations as an Adaptive Mechanism Towards a Parasitic Lifestyle in Trypanosomatids. Curr. Genom. 2018, 19, 87–97. [Google Scholar] [CrossRef]
- Patino, L.H.; Muskus, C.; Ramírez, J.D. Transcriptional responses of Leishmania (Leishmania) amazonensis in the presence of trivalent sodium stibogluconate. Parasit. Vectors 2019, 12, 348. [Google Scholar] [CrossRef]
- Ashutosh; Garg, M.; Sundar, S.; Duncan, R.; Nakhasi, H.L.; Goyal, N. Downregulation of mitogen-activated protein kinase 1 of Leishmania donovani field isolates is associated with antimony resistance. Antimicrob. Agents Chemother. 2012, 56, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Maharjan, M.; Singh, S.; Chatterjee, M.; Madhubala, R. Role of aquaglyceroporin (AQP1) gene and drug uptake in antimony-resistant clinical isolates of Leishmania donovani. Am. J. Trop. Med. Hyg. 2008, 79, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Garg, M.; Goyal, N. MAPK1 of Leishmania donovani modulates antimony susceptibility by downregulating P-glycoprotein efflux pumps. Antimicrob. Agents Chemother. 2015, 59, 3853–3863. [Google Scholar] [CrossRef]
- Rebecchi, M.J.; Pentyala, S.N. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol. Rev. 2000, 80, 1291–1335. [Google Scholar] [CrossRef]
- Kadamur, G.; Ross, E.M. Mammalian phospholipase C. Annu. Rev. Physiol. 2013, 75, 127–154. [Google Scholar] [CrossRef]
NCBI ID | Pfam Domain | Length (aa) | Nucleotide (bp) | MW (kDa) | pI | Gravy | Chr | Predicted Subcellular Location (with Confidence Scores) |
---|---|---|---|---|---|---|---|---|
XP_001462688.1 | PLC-X, PLC-Y, PLC-C2 | 2342 | 7029 | 251.464 | 8.49 | −0.281 | 1 | Nuclear (2.973) |
XP_001463153.1 | PLC-C2 | 739 | 2220 | 75.202 | 6.97 | −0.017 | 6 | Nuclear (2.943) |
XP_001464066.1 | PLC-C2 | 497 | 1494 | 55.638 | 7.87 | −0.342 | 13 | Nuclear (2.307) |
XP_001464095.2 | PLC-C2 | 2062 | 6189 | 217.924 | 9.46 | −0.228 | 13 | Nuclear (3.386) |
XP_001464332.1 | PLC-C2 | 1006 | 3021 | 111.607 | 4.40 | −0.872 | 14 | Nuclear (2.119) Cytoplasmic (1.848) |
XP_001465668.1 | PLC-C2 | 784 | 2355 | 87.832 | 6.67 | −0.327 | 22 | Extracellular (1.559) |
XP_001470160.1 | PLC-C2 | 508 | 1527 | 55.893 | 6.03 | −0.071 | 28 | Plasma Membrane (2.351) |
XP_001470249.1 | PLC-C2 | 627 | 1884 | 69.034 | 5.79 | −0.034 | 28 | Plasma Membrane (1.478) |
XP_001470251.1 | PLC-X | 349 | 1050 | 39.361 | 9.16 | −0.048 | 28 | Plasma Membrane (1.789) Mitochondrial (1.308) |
XP_001466772.1 | PLC-C2 | 589 | 1770 | 66.12 | 8.44 | −0.321 | 29 | Nuclear (1.658) Mitochondrial (1.398) Cytoplasmic (1.058) |
XP_001466913.1 | PLC-X, PLC-Y | 730 | 2193 | 80.02 | 7.85 | −0.254 | 30 | Mitochondrial (1.335) |
XP_001467143.2 | PLC-X, PLC-Y, PLC-C2 | 737 | 2214 | 82.37 | 8.06 | −0.356 | 30 | Nuclear (2.021) |
XP_001467331.1 | PLC-C2 | 282 | 849 | 32.054 | 8.45 | −0.627 | 31 | Nuclear (2.978) |
XP_001467341.1 | PLC-C2 | 245 | 738 | 26.66 | 5.79 | −0.282 | 31 | Nuclear (1.948) |
XP_001467342.1 | PLC-C2 | 288 | 867 | 31.097 | 8.35 | −0.456 | 31 | Nuclear (2.438) |
XP_001468525.1 | PLC-C2 | 995 | 2988 | 106.76 | 6.65 | −0.375 | 34 | Nuclear (2.716) |
XP_001468599.2 | PLC-C2 | 870 | 2613 | 100.047 | 6.88 | −0.884 | 34 | Nuclear (2.265) Cytoplasmic (1.708) |
XP_001468824.1 | PLC-X, PLC-Y, PLC-C2 | 729 | 2190 | 82.023 | 7.31 | −0.259 | 35 | Extracellular (1.963) |
XP_001469520.1 | PLC-C2 | 1827 | 5484 | 198.29 | 6.53 | −0.144 | 36 | Nuclear (1.716) Plasma Membrane (1.170) |
XP_001469978.1 | PLC-X | 316 | 951 | 35.993 | 5.60 | −0.302 | 36 | Cytoplasmic (2.049) |
XP_001470010.1 | PLC-C2 | 1625 | 4878 | 177.451 | 9.12 | −0.511 | 36 | Nuclear (2.777) |
XP_001470011.1 | PLC-C2 | 2193 | 6582 | 241.394 | 7.15 | −0.190 | 36 | Nuclear (2.010) Plasma Membrane (1.522) |
NCBI ID | Pfam Domain | Length (aa) | Nucleotide (bp) | MW (kDa) | pI | Gravy | Chr | Predicted Subcellular Location (with Confidence Scores) |
---|---|---|---|---|---|---|---|---|
XP_003721595.1 | PLC-C2 | 2241 | 6726 | 241.67 | 8.47 | −0.304 | Chr1 | Nuclear |
XP_001680841.1 | PLC-C2 | 737 | 2214 | 75.123 | 6.19 | −0.007 | Chr6 | Nuclear (2.697) |
XP_001681790.1 | PLC-C2 | 497 | 1494 | 55.616 | 8.28 | −0.338 | Chr13 | Nuclear (1.979) |
XP_001681820.1 | PLC-C2 | 2063 | 6192 | 218.31 | 9.41 | −0.243 | Chr13 | Nuclear (3.563) |
XP_001687745.1 | PLC-C2 | 930 | 2793 | 103.97 | 4.40 | −0.776 | Chr14 | Nuclear (1.983) Cytoplasmic (1.770) |
XP_001683319.1 | PLC-X, PLC-Y, PLC-C2 | 555 | 1670 | 61.904 | 5.95 | −0.312 | Chr22 | Nuclear (1.196) |
XP_001684491.1 | PLC-C2 | 627 | 1884 | 68.996 | 5.88 | −0.036 | Chr28 | Plasma Membrane (1.670) |
XP_001684493.1 | PLC-X | 349 | 1050 | 39.225 | 8.98 | −0.073 | Chr28 | Plasma Membrane (1.843) Mitochondrial (1.447) |
XP_003722322.1 | PLC-X | 589 | 1770 | 66.097 | 8.67 | −0.306 | Chr29 | Nuclear (2.324) |
XP_001684656.1 | PLC-X, PLC-Y, PLC-C2 | 730 | 2193 | 79.914 | 7.52 | −0.240 | Chr30 | Mitochondrial (1.264) Cytoplasmic (1.069) |
XP_001684901.2 | PLC-X, PLC-Y, PLC-C2 | 737 | 2214 | 82.276 | 8.43 | −0.326 | Chr30 | Nuclear (1.498) Mitochondrial (1.274) |
XP_001685053.1 | PLC-C2 | 267 | 804 | 30.426 | 8.11 | −0.597 | Chr31 | Nuclear (2.869) |
XP_001685063.1 | PLC-C2 | 274 | 825 | 29.92 | 5.90 | −0.154 | Chr31 | Nuclear (1.839) Extracellular (1.153) |
XP_001685064.1 | PLC-C2 | 288 | 867 | 31.37 | 8.76 | −0.475 | Chr31 | Nuclear (2.304) |
XP_001686240.1 | PLC-C2 | 995 | 2988 | 106.554 | 6.34 | −0.404 | Chr34 | Nuclear (2.597) |
XP_001686357.1 | PLC-C2 | 870 | 2613 | 100.203 | 7.09 | −0.893 | Chr34 | Nuclear (2.218) Cytoplasmic (1.738) |
XP_003722401.1 | PLC-X, PLC-Y, PLC-C2 | 729 | 2190 | 82.085 | 7.93 | −0.246 | Chr35 | Extracellular (2.188) |
XP_001686655.1 | PLC-C2 | 1827 | 5484 | 197.973 | 6.36 | −0.097 | Chr36 | Nuclear (1.624) Plasma Membrane (1.423) |
XP_001686657.1 | PLC-C2 | 888 | 2667 | 94.912 | 6.35 | −0.387 | Chr36 | Nuclear (3.005) |
XP_001687016.1 | PLC-C2 | 2193 | 6582 | 241.368 | 6.69 | −0.162 | Chr36 | Nuclear (1.918) Plasma Membrane (1.760) |
XP_001687017.1 | PLC-C2 | 1625 | 4878 | 177.055 | 8.99 | −0.494 | Chr36 | Nuclear (2.979) |
XP_001687184.1 | PLC-C2 | 316 | 951 | 177.055 | 5.50 | −0.253 | Chr36 | Cytoplasmic (1.949) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirekbasan, S.; Osman, S.S.; Gürkök-Tan, T. Genomic Insights into the Phosphatidylinositol-Specific Phospholipase C Gene Family in Leishmania major and Leishmania infantum: Expression Patterns and Potential Association with Drug Resistance. Diagnostics 2025, 15, 1433. https://doi.org/10.3390/diagnostics15111433
Sirekbasan S, Osman SS, Gürkök-Tan T. Genomic Insights into the Phosphatidylinositol-Specific Phospholipase C Gene Family in Leishmania major and Leishmania infantum: Expression Patterns and Potential Association with Drug Resistance. Diagnostics. 2025; 15(11):1433. https://doi.org/10.3390/diagnostics15111433
Chicago/Turabian StyleSirekbasan, Serhat, Samatar Samaleh Osman, and Tuğba Gürkök-Tan. 2025. "Genomic Insights into the Phosphatidylinositol-Specific Phospholipase C Gene Family in Leishmania major and Leishmania infantum: Expression Patterns and Potential Association with Drug Resistance" Diagnostics 15, no. 11: 1433. https://doi.org/10.3390/diagnostics15111433
APA StyleSirekbasan, S., Osman, S. S., & Gürkök-Tan, T. (2025). Genomic Insights into the Phosphatidylinositol-Specific Phospholipase C Gene Family in Leishmania major and Leishmania infantum: Expression Patterns and Potential Association with Drug Resistance. Diagnostics, 15(11), 1433. https://doi.org/10.3390/diagnostics15111433