Prediction Models for Elevated Cardiac Biomarkers from Previous Risk Factors and During the COVID-19 Pandemic in Residents of Trujillo City, Peru
Abstract
:1. Introduction
2. Materials and Methods
2.1. Type and Design of Research
2.2. Population, Sample, and Sampling
2.3. Evaluation of Lipid Profile and Atherogenic Indicators
2.4. Evaluation of Glycemia
2.5. Evaluation of Blood Pressure and Abdominal Perimeter
2.6. Identification of Previous Antecedents of Health and Vaccination
2.7. Diagnosis with SARS-CoV-2 Antigen Testing
2.8. Evaluation of Cardiac Biomarkers
2.9. Statistical Analysis
2.10. Ethical Aspects
3. Results
3.1. Biochemical Parameters, Anthropometric Parameters, and Previous History
3.2. Cardiac Troponin I
3.3. NT-proBNP
3.4. Regression Model for cTnI
3.5. Regression Model for NT-proBNP
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sbaraini da Silva, M.; Lazo, M.; Daya, N.R.; Tang, O.; Schaan, B.D.; Ballantyne, C.M.; Ndumele, C.; Selvin, E. Six-year changes in N-terminal pro-brain natriuretic peptide and changes in weight and risk of obesity. Obesity 2021, 29, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Berezin, A.E.; Berezin, A.A. Circulating Cardiac Biomarkers in Diabetes Mellitus: A New Dawn for Risk Stratification-A Narrative Review. Diabetes Ther. 2020, 11, 1271–1291. [Google Scholar] [CrossRef] [PubMed]
- Lyngbakken, M.N.; Kimenai, D.M.; Hveem, K.; Dalen, H.; Røsjø, H.; Omland, T. Patterns of Cardiac Troponin I Concentrations as Risk Predictors of Cardiovascular Disease and Death: The Trøndelag Health Study. Am. J. Med. 2023, 136, 902–909.e4. [Google Scholar] [CrossRef] [PubMed]
- Salas, E.L.; Matamoros, L.V.; Garcia, J.U.; Simbaña, P.E. Prevalencia de enfermedades del sistema cardiovascular asociadas al COVID-19. Recimundo 2022, 6, 558–565. Available online: https://recimundo.com/index.php/es/article/view/1605 (accessed on 12 November 2022).
- Odum, E.P.; Young, E.E. Elevated cardiac troponin I, creatine kinase and myoglobin and their relationship with cardiovascular risk factors in patients with type 2 diabetes. Diabetes Metab. Syndr. Clin. Res. Rev. 2018, 12, 141–145. [Google Scholar] [CrossRef]
- Belalcazar, S.; Acosta, E.J.; Medina-Murillo, J.J.; Salcedo-Cifuentes, M. Conventional biomarkers for cardiovascular risks and their correlation with the castelli risk index-indices and tg/hdl-c. Arch. Med. 2020, 20, 11–22. [Google Scholar] [CrossRef]
- Raman, B.; Bluemke, D.A.; Lüscher, T.F.; Neubauer, S. Long COVID: Post-Acute sequelae of COVID-19 with a cardiovascular focus. Eur. Heart J. 2022, 43, 1157–1172. [Google Scholar] [CrossRef]
- Fazlollahi, A.; Zahmatyar, M.; Noori, M.; Nejadghaderi, S.A.; Sullman, M.J.M.; Shekarriz-Foumani, R.; Kolahi, A.A.; Singh, K.; Safiri, S. Cardiac complications following mRNA COVID-19 vaccines: A systematic review of case reports and case series. Rev. Med. Virol. 2022, 32, e2318. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, M.A. ¿Cómo puedo calcular el tamaño de la muestra? Importancia en la calidad y la validez en la investigación en ciencias de la salud. CyRS 2022, 4, 113–126. [Google Scholar] [CrossRef]
- Arrogante, O. Sampling techniques and sample size calculation: How and how many participants should I select for my research? Enferm. Intensiva 2022, 33, 44–47. [Google Scholar] [CrossRef]
- Rubio, M.A.; Moreno, C.; Cabrerizo, L. Guías para el tratamiento de las dislipemias en el adulto: Adult Treatment Panel III (ATP-III). Endocrinol. Nutr. 2004, 51, 254–265. [Google Scholar] [CrossRef]
- Millán, J.; Hernández-Mijares, A.; Ascaso, J.F.; Blasco, M.; Brea, A.; Díaz, Á.; González-Santos, P.; Mantilla, T.; Pedro-Botet, J.; Pintó, X.; et al. The real measurement of non-HDL-cholesterol: Atherogenic cholesterol. Clin. Investig. Arterioscler. 2016, 28, 265–270. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef] [PubMed]
- Díaz, J.; Quispe, A.; Gallo, M.; Castro, L.; Yupari, I. Indicadores de aterogenicidad en la predicción del síndrome metabólico en adultos, Trujillo-Perú. Rev. Chil. Nutr. 2021, 48, 586–594. [Google Scholar] [CrossRef]
- Soldevila Langaa, L.; Sallentb, L.V.; Roure Díez, S. Interpretación de las pruebas. FMC 2021, 28, 167–173. [Google Scholar] [CrossRef]
- LanSionbio. Manual de Usuario del kit de Prueba NT-proBNP (Inmunoensayo de Fluorescencia Seca). Available online: https://obcteam.com.pe/archivos-soporte/manuales/Cardio%20-%20NT-proBNP%20-%20Manual%20de%20Usuario%20Espa%c3%b1ol.pdf (accessed on 21 March 2023).
- LanSionbio. Manual de Usuario del Kit de Prueba Troponina I (cTnI) Inmunoensayo de Fluorescencia Seca. Available online: https://obcteam.com.pe/archivos-soporte/manuales/7.2%20Cardio%20-%20CTnI%20-%20Manual%20de%20Usuario%20Espa%C3%B1ol.pdf (accessed on 21 March 2023).
- Keefe, J.A.; Avadhanula, V.; Nicholson, E.G.; Devaraj, S.; Piedra, P.A.; Bozkurt, B.; Wehrens, X.H.T. Abnormalities in cardiac and inflammatory biomarkers in ambulatory subjects after COVID-19 infection. Int. J. Cardiol. Heart Vasc. 2022, 43, 101144. [Google Scholar] [CrossRef]
- Martínez, J.A.; Pérez, P.S. Logistic regression. Semergen 2024, 50, 1–7. [Google Scholar] [CrossRef]
- Barboza, E.E. Prevalence of Risk Factors for Chronic Non-Communicable Diseases in Peru. Rev. Cuid. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Ruiz-Ñañez, M.A.; Farro-Puicón, M. Frecuencia y factores asociados a la dislipidemia en pacientes atendidos en un centro médico de Chiclayo, julio a diciembre del 2020. Rev. Exp. Med. 2023, 9, 3–6. Available online: https://rem.hrlamb.gob.pe/index.php/REM/article/view/652/393 (accessed on 30 March 2024). [CrossRef]
- Welsh, P.; Preiss, D.; Shah, A.S.V.; Mcallister, D.; Briggs, A.; Boachie, C.; McConnachie, A.; Hayward, C.; Padmanabhan, S.; Welsh, C.; et al. Comparison between high-sensitivity cardiac troponin T and cardiac troponin I in a large general population cohort. Clin. Chem. 2018, 64, 1607–1616. [Google Scholar] [CrossRef]
- Lyngbakken, M.N.; Røsjø, H.; Holmen, O.L.; Dalen, H.; Hveem, K.; Omland, T. Temporal changes in cardiac troponin i are associated with risk of cardiovascular events in the general population: The nord-trøndelag health study. Clin. Chem. 2019, 65, 871–881. [Google Scholar] [CrossRef] [PubMed]
- Shukla, V.; Munagekar, A. Troponin levels in COVID-19 patients and its correlation with the severity of disease and clinical outcomes. Indian J. Med. Spec. 2022, 13, 41–44. Available online: https://journals.lww.com/imsp/fulltext/2022/13010/troponin_levels_in_covid_19_patients_and_its.9.aspx (accessed on 27 March 2024). [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280. [Google Scholar] [CrossRef]
- Lee, D.W.; Gardner, R.; Porter, D.L.; Louis, C.U.; Ahmed, N.; Jensen, M.; Grupp, S.A.; Mackall, C.L. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014, 124, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Spannella, F.; Giulietti, F.; Cocci, G.; Landi, L.; Borioni, E.; Lombardi, F.E.; Rosettani, G.; Bernardi, B.; Bordoni, V.; Giordano, P.; et al. N-terminal pro B-Type natriuretic peptide is inversely correlated with low density lipoprotein cholesterol in the very elderly. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Yoshida, H.; Kawaguchi, A.; Oyama, J.I.; Kotooka, N.; Toyoda, S.; Inoue, T.; Natsuaki, M.; Node, K. N-terminal pro-brain natriuretic peptide and associated factors in the general working population: A baseline survey of the Uranosaki cohort study. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Barreiro-Pérez, M.; Pastor Pueyo, P.; Raposeiras-Roubín, S.; Montero, D.; Uribarri, A.; Eiros, R.; Rozado, J.; García-Cuenllas, L.; Serratosa, L.; Domínguez, F. Myocarditis related SARS-CoV-2 infection or vaccination: An expert consensus statement on its diagnosis and management. Rev. Esp. Cardiol. 2023, 76, 555–563. [Google Scholar] [CrossRef]
- Zhu, W.H.; Chen, L.Y.; Dai, H.L.; Chen, J.H.; Chen, Y.; Fang, L.Z. Correlation between B type natriuretic peptide and metabolic risk factors. Arch. Med. Sci. 2016, 12, 334–340. [Google Scholar] [CrossRef]
- Choi, H.I.; Lee, M.Y.; Oh, B.K.; Lee, S.J.; Kang, J.G.; Lee, S.H.; Lee, J.Y.; Kim, B.J.; Kim, B.S.; Kang, J.H.; et al. Fatty liver is associated with low n-terminal pro-b-type natriuretic peptide in a healthy population. J. Clin. Med. 2021, 10, 1402. [Google Scholar] [CrossRef]
- Sanchez, O.A.; Duprez, D.A.; Bahrami, H.; Daniels, L.B.; Folsom, A.R.; Lima, J.A.; Maisel, A.; Peralta, C.A.; Jacobs, D.R. The associations between metabolic variables and NT-proBNP are blunted at pathological ranges: The Multi-Ethnic Study of Atherosclerosis. Metabolism 2014, 63, 475–483. [Google Scholar] [CrossRef]
- Pérez-Jiménez, F.; Pascual, V.; Meco, J.F.; Pérez Martínez, P.; Delgado Lista, J.; Domenech, M.; Estruch, R.; León-Acuña, A.; López-Miranda, J.; Sánchez-Ramos, A.; et al. Lifestyle in cardiovascular prevention. Clin. Investig. Arterioscler. 2018, 30, 280–310. [Google Scholar] [CrossRef] [PubMed]
- Juraschek, S.P.; Kovell, L.C.; Appel, L.J.; Miller, E.R.; Sacks, F.M.; Christenson, R.H.; Rebuck, H.; Chang, A.R.; Mukamal, K.J. Associations Between Dietary Patterns and Subclinical Cardiac Injury: An Observational Analysis From the DASH Trial. Ann. Intern. Med. 2021, 172, 786–794. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.J.; Wang, Q.; Cui, Y.J.; Wu, W.; Zhao, Q.H.; Xu, Y.; Wang, J.P. High-sensitivity cardiac troponin T in geriatric inpatients. Arch. Gerontol. Geriatr. 2016, 65, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Jakubiak, G.K. Cardiac Troponin Serum Concentration Measurement Is Useful Not Only in the Diagnosis of Acute Cardiovascular Events. J. Pers. Med. 2024, 14, 230. [Google Scholar] [CrossRef]
Characteristics | Sex | Total | % | Sig. | ||||
---|---|---|---|---|---|---|---|---|
Female | % | Male | % | |||||
Age (years) | ≥50 | 74 | 26.3 | 44 | 15.7 | 118 | 42.0 | 0.52 |
<50 | 96 | 34.2 | 67 | 23.8 | 163 | 58.0 | ||
Abdominal perimeter (cm) | F ≥ 88; M ≥ 94 | 83 | 29.5 | 72 | 25.6 | 155 | 55.2 | 0.008 |
F < 88; M < 94 | 87 | 31.0 | 39 | 13.9 | 126 | 44.8 | ||
Glycemia (mg/dL) | ≥100 | 78 | 27.8 | 71 | 25.3 | 149 | 53.0 | 0.003 |
<100 | 92 | 32.7 | 40 | 14.2 | 132 | 47.0 | ||
Blood pressure (mmHg) | ≥140/90 | 14 | 5.0 | 12 | 4.3 | 26 | 9.3 | 0.018 |
130/85–139/89 | 12 | 4.3 | 19 | 6.8 | 31 | 11.0 | ||
<130/85 | 144 | 51.2 | 80 | 28.5 | 224 | 79.7 | ||
Cholesterol (mg/dL) | ≥200 | 99 | 35.2 | 41 | 14.6 | 140 | 49.8 | 0.000 |
<200 | 71 | 25.3 | 70 | 24.9 | 141 | 50.2 | ||
Triglycerides (mg/dL) | ≥150 | 54 | 19.2 | 45 | 16.0 | 99 | 35.2 | 0.132 |
<150 | 116 | 41.3 | 66 | 23.5 | 182 | 64.8 | ||
HDL (mg/dL) | F < 50; M < 40 | 113 | 40.2 | 89 | 31.7 | 202 | 71.9 | 0.012 |
F ≥ 50; M ≥ 40 | 57 | 20.3 | 22 | 7.8 | 79 | 28.1 | ||
LDL (mg/dL) | ≥100 | 138 | 49.1 | 83 | 29.5 | 221 | 78.6 | 0.2 |
<100 | 32 | 11.4 | 28 | 10.0 | 60 | 21.4 | ||
Number of risk factors | ≥3 | 28 | 10.0 | 34 | 12.1 | 62 | 22.1 | 0.00 |
3 | 30 | 10.7 | 37 | 13.2 | 67 | 23.8 | ||
<3 | 112 | 39.9 | 40 | 14.2 | 152 | 54.1 | ||
TC/HDL | F ≥ 4.5; M ≥ 5 | 85 | 30.2 | 76 | 27.0 | 161 | 57.3 | 0.00 |
F < 4.5; M < 5 | 85 | 30.2 | 35 | 12.5 | 120 | 42.7 | ||
TG/HDL | ≥3 | 71 | 25.3 | 75 | 26.7 | 146 | 52.0 | 0.00 |
<3 | 99 | 35.2 | 36 | 12.8 | 135 | 48.0 | ||
LDL/HDL | ≥3 | 87 | 31.0 | 87 | 31.0 | 174 | 61.9 | 0.00 |
<3 | 83 | 29.5 | 24 | 8.5 | 107 | 38.1 | ||
COL No HDL (mg/dL) | ≥130 | 127 | 45.2 | 82 | 29.2 | 209 | 74.4 | 0.88 |
<130 | 43 | 15.3 | 29 | 10.3 | 72 | 25.6 | ||
Intensive care unit | Yes | 4 | 1.4 | 2 | 0.7 | 6 | 2.1 | 0.76 |
No | 166 | 59.1 | 109 | 38.8 | 275 | 97.9 | ||
Vaccines | No | 5 | 1.8 | 2 | 0.7 | 7 | 2.5 | 0.55 |
Yes | 165 | 58.7 | 109 | 38.8 | 274 | 97.5 | ||
Dosage | ≥3 | 154 | 54.8 | 105 | 37.4 | 259 | 92.2 | 0.22 |
<3 | 16 | 5.7 | 6 | 2.1 | 22 | 7.8 | ||
Total | 170 | 60.5 | 111 | 39.5 | 281 | 100.0 | ||
Number of comorbidities | 0.26 ± 0.61 | 0.24 ± 0.61 | 0.25 ± 0.60 | 0.83 a | ||||
Number of COVID-19 infections | 0.74 ± 0.78 | 0.77 ± 0.77 | 0.75 ± 0.77 | 0.6 a |
Characteristics | cTnI (ng/mL) | Total | % | Sig. | ||||
---|---|---|---|---|---|---|---|---|
<0.05 | % | ≥0.05 | % | |||||
Age (years) | ≥50 | 116 | 41.3 | 2 | 0.7 | 118 | 42.0 | 0.73 |
<50 | 158 | 56.2 | 5 | 1.8 | 163 | 58.0 | ||
Genre | Female | 165 | 58.7 | 5 | 1.8 | 170 | 60.5 | 0.94 |
Male | 109 | 38.8 | 2 | 0.7 | 111 | 39.5 | ||
Abdominal perimeter (cm) | F ≥ 88; M ≥ 94 | 151 | 53.7 | 4 | 1.4 | 155 | 55.2 | 1.00 |
F < 88; M < 94 | 123 | 43.8 | 3 | 1.1 | 126 | 44.8 | ||
Glycemia (mg/dL) | ≥100 | 146 | 52.0 | 3 | 1.1 | 149 | 53.0 | 0.87 |
<100 | 128 | 45.6 | 4 | 1.4 | 132 | 47.0 | ||
Blood pressure (mmHg) | ≥140/90 | 26 | 9.3 | 0 | 0.0 | 26 | 9.3 | 0.01 a |
130/85–139/89 | 31 | 11.0 | 0 | 0.0 | 31 | 11.0 | ||
<130/85 mmHg | 217 | 77.2 | 7 | 2.5 | 224 | 79.7 | ||
Cholesterol (mg/dL) | ≥200 | 137 | 48.8 | 3 | 1.1 | 140 | 49.8 | 1.00 |
<200 | 137 | 48.8 | 4 | 1.4 | 141 | 50.2 | ||
Triglycerides (mg/dL) | ≥150 | 97 | 34.5 | 2 | 0.7 | 99 | 35.2 | 1.00 |
<150 | 177 | 63.0 | 5 | 1.8 | 182 | 64.8 | ||
HDL (mg/dL) | F < 50; M < 40 | 195 | 69.4 | 7 | 2.5 | 202 | 71.9 | 0.21 |
F ≥ 50; M ≥ 40 | 79 | 28.1 | 0 | 0.0 | 79 | 28.1 | ||
LDL (mg/dL) | ≥100 | 216 | 76.9 | 5 | 1.8 | 221 | 78.6 | 0.10 |
<100 | 58 | 20.6 | 2 | 0.7 | 60 | 21.4 | ||
Number of risk factors | >3 | 60 | 21.4 | 2 | 0.7 | 62 | 22.1 | 0.89 a |
3 | 66 | 23.5 | 1 | 0.4 | 67 | 23.8 | ||
<3 | 148 | 52.7 | 4 | 1.4 | 152 | 54.1 | ||
TC/HDL | F ≥ 4.5; M ≥ 5 | 157 | 55.9 | 4 | 1.4 | 161 | 57.3 | 1.00 |
F < 4.5; M < 5 | 117 | 41.6 | 3 | 1.1 | 120 | 42.7 | ||
TG/HDL | ≥3 | 142 | 50.5 | 4 | 1.4 | 146 | 52.0 | 1.00 |
<3 | 132 | 47.0 | 3 | 1.1 | 135 | 48.0 | ||
LDL/HDL | ≥3 | 170 | 60.5 | 4 | 1.4 | 174 | 61.9 | 1.00 |
<3 | 104 | 37.0 | 3 | 1.1 | 107 | 38.1 | ||
COL No HDL (mg/dL) | ≥130 | 205 | 73.0 | 4 | 1.4 | 209 | 74.4 | 0.54 |
<130 | 69 | 24.6 | 3 | 1.1 | 72 | 25.6 | ||
Intensive care unit | Yes | 6 | 2.1 | 0 | 0.0 | 6 | 2.1% | 1.00 |
No | 268 | 95.4 | 7 | 2.5 | 275 | 97.9 | ||
Vaccines | No | 7 | 2.5 | 0 | 0.0 | 7 | 2.5 | 1.00 |
Yes | 267 | 95.0 | 7 | 2.5 | 274 | 97.5 | ||
Dose | ≥3 | 252 | 89.7 | 7 | 2.5 | 259 | 92.2 | 0.95 |
<3 | 22 | 7.8 | 0 | 0.0 | 22 | 7.8 | ||
Number of comorbidities | 0 | 223 | 79.4 | 6 | 2.1 | 229 | 81.5 | 0.74 b |
1 | 38 | 13.5 | 1 | 0.4 | 39 | 13.9 | ||
2 | 7 | 2.5 | 0 | 0.0 | 7 | 2.5 | ||
3 | 6 | 2.1 | 0 | 0.0 | 6 | 2.1 | ||
Number of COVID-19 infections | 0 | 118 | 42.0 | 1 | 0.4 | 119 | 42.3 | 0.01 b |
1 | 120 | 42.7 | 2 | 0.7 | 122 | 43.4 | ||
2 | 29 | 10.3 | 2 | 0.7 | 31 | 11.0 | ||
3 | 7 | 2.5 | 2 | 0.7 | 9 | 3.2 |
Characteristics | NT-proBNP (pg/mL) | Total | % | Sig. | ||||
---|---|---|---|---|---|---|---|---|
<125 | % | ≥125 | % | |||||
Age (years) | ≥50 | 112 | 39.9 | 6 | 2.1 | 118 | 42.0 | 0.23 |
<50 | 160 | 56.9 | 3 | 1.1 | 163 | 58.0 | ||
Genre | Female | 165 | 58.7 | 5 | 1.8 | 170 | 60.5 | 0.76 |
Male | 107 | 38.1 | 4 | 1.4 | 111 | 39.5 | ||
Abdominal perimeter (cm) | F ≥ 88; M ≥ 94 | 151 | 53.7 | 4 | 1.4 | 155 | 55.2 | 0.75 |
F < 88; M < 94 | 121 | 43.1 | 5 | 1.8 | 126 | 44.8 | ||
Glycemia (mg/dL) | ≥100 | 145 | 51.6 | 4 | 1.4 | 149 | 53. | 0.85 |
<100 | 127 | 45.2 | 5 | 1.8 | 132 | 47.0 | ||
Blood pressure (mmHg) | ≥140/90 | 24 | 8.5 | 2 | 0.7 | 26 | 9.3 | 0.08 a |
130/85–139/89 | 28 | 10.0 | 3 | 1.1 | 31 | 11.0 | ||
<130/85 | 220 | 78.3 | 4 | 1.4 | 224 | 79.7 | ||
Cholesterol (mg/dL) | ≥200 | 138 | 49.1 | 2 | 0.7 | 140 | 49.8 | 0.18 |
<200 | 134 | 47.7 | 7 | 2.5 | 141 | 50.2 | ||
Triglycerides (mg/dL) | ≥150 | 98 | 34.9 | 1 | 0.4 | 99 | 35.2 | 0.24 |
<150 | 174 | 61.9 | 8 | 2.8 | 182 | 64.8 | ||
HDL (mg/dL) | F < 50; M < 40 | 194 | 69.0 | 8 | 2.8 | 202 | 71.9 | 0.44 |
F ≥ 50; M ≥ 40 | 78 | 27.8 | 1 | 0.4 | 79 | 28.1 | ||
LDL (mg/dL) | ≥100 | 217 | 77.2 | 4 | 1.4 | 221 | 78.6 | 0.03 |
<100 | 55 | 19.6 | 5 | 1.8 | 60 | 21.4 | ||
Number of risk factors | >3 | 59 | 21.0 | 3 | 1.1 | 62 | 22.1 | 0.49 a |
3 | 65 | 23.1 | 2 | 0.7 | 67 | 23.8 | ||
<3 | 148 | 52.7 | 4 | 1.4 | 152 | 54.1 | ||
TC/HDL | F ≥ 4.5; M ≥ 5 | 158 | 56.2 | 3 | 1.1 | 161 | 57.3 | 0.26 |
F < 4.5; M < 5 | 114 | 40.6 | 6 | 2.1 | 120 | 42.7 | ||
TG/HDL | ≥3 | 142 | 50.5 | 4 | 1.4 | 146 | 52.0 | 0.91 |
<3 | 130 | 46.3 | 5 | 1.8 | 135 | 48.0 | ||
LDL/HDL | ≥3 | 170 | 60.5 | 4 | 1.4 | 174 | 61.9 | 0.45 |
<3 | 102 | 36.3 | 5 | 1.8 | 107 | 38.1 | ||
COL No HDL (mg/dL) | ≥130 | 205 | 73.0 | 4 | 1.4 | 209 | 74.4 | 0.09 |
<130 | 67 | 23.8 | 5 | 1.8 | 72 | 25.6 | ||
Intensive care unit | Yes | 6 | 2.1 | 0 | 0.0 | 6 | 2.1 | 1.00 |
No | 266 | 94.7 | 9 | 3.2 | 275 | 97.9 | ||
Vaccines | No | 7 | 2.5 | 0 | 0.0 | 7 | 2.5 | 1.00 |
Yes | 265 | 94.3 | 9 | 3.2 | 274 | 97.5 | ||
Dose | ≥3 | 250 | 89.0 | 9 | 3.2 | 259 | 92.2 | 0.80 |
<3 | 22 | 7.8 | 0 | 0.0 | 22 | 7.8 | ||
Number of comorbidities | 0 | 224 | 79.7 | 5 | 1.8 | 229 | 81.5 | 0.03 b |
1 | 37 | 13.2 | 2 | 0.7 | 39 | 13.9 | ||
2 | 6 | 2.1 | 1 | 0.4 | 7 | 2.5 | ||
3 | 5 | 1.8 | 1 | 0.4 | 6 | 2.1 | ||
Number of COVID-19 infections | 0 | 114 | 40.6 | 5 | 1.8 | 119 | 42.3 | 0.44 b |
1 | 119 | 42.3 | 3 | 1.1 | 122 | 43.4 | ||
2 | 30 | 10.7 | 1 | 0.4 | 31 | 11.0 | ||
3 | 9 | 3.2 | 0 | 0.0 | 9 | 3.2 |
B | Standard Error | Wald | gL | Sig. | Exp(B) | 95% C.I. for EXP(B) | ||
---|---|---|---|---|---|---|---|---|
Inferior | Superior | |||||||
Number of COVID-19 infections | 1.256 | 0.418 | 9.053 | 1 | 0.003 | 3.513 | 1.550 | 7.963 |
Constant | −5.150 | 0.791 | 42.413 | 1 | 0.000 | 0.006 | ||
Cox and Snell’s R-squared: 0.03; Nagelkerke R-squared: 0.15 | ||||||||
Overall predicted percentage (only for cTnI < 0.05 ng/mL): 97.5%. |
B | Standard Error | Wald | gL | Sig. | Exp(B) | 95% C.I. for EXP(B) | ||
---|---|---|---|---|---|---|---|---|
Inferior | Superior | |||||||
LDL | −1.565 | 0.700 | 4.995 | 1 | 0.025 | 0.209 | 0.053 | 0.825 |
Number of Comorbidities | 0.782 | 0.349 | 5.018 | 1 | 0.025 | 2.185 | 1.103 | 4.331 |
Constante | −2.769 | 0.533 | 26.997 | 1 | 0.000 | 0.063 | ||
Cox and Snell’s R-squared: 0.03; Nagelkerke R-squared: 0.13 | ||||||||
Overall predicted percentage (only for NT-ProBNP < 125 pg/m): 96.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caballero-Vidal, J.; Díaz-Ortega, J.L.; Yupari-Azabache, I.L.; Castro-Caracholi, L.A.; Alva Sevilla, J.M. Prediction Models for Elevated Cardiac Biomarkers from Previous Risk Factors and During the COVID-19 Pandemic in Residents of Trujillo City, Peru. Diagnostics 2024, 14, 2503. https://doi.org/10.3390/diagnostics14222503
Caballero-Vidal J, Díaz-Ortega JL, Yupari-Azabache IL, Castro-Caracholi LA, Alva Sevilla JM. Prediction Models for Elevated Cardiac Biomarkers from Previous Risk Factors and During the COVID-19 Pandemic in Residents of Trujillo City, Peru. Diagnostics. 2024; 14(22):2503. https://doi.org/10.3390/diagnostics14222503
Chicago/Turabian StyleCaballero-Vidal, Joao, Jorge Luis Díaz-Ortega, Irma Luz Yupari-Azabache, Luz Angélica Castro-Caracholi, and Juan M. Alva Sevilla. 2024. "Prediction Models for Elevated Cardiac Biomarkers from Previous Risk Factors and During the COVID-19 Pandemic in Residents of Trujillo City, Peru" Diagnostics 14, no. 22: 2503. https://doi.org/10.3390/diagnostics14222503
APA StyleCaballero-Vidal, J., Díaz-Ortega, J. L., Yupari-Azabache, I. L., Castro-Caracholi, L. A., & Alva Sevilla, J. M. (2024). Prediction Models for Elevated Cardiac Biomarkers from Previous Risk Factors and During the COVID-19 Pandemic in Residents of Trujillo City, Peru. Diagnostics, 14(22), 2503. https://doi.org/10.3390/diagnostics14222503