Short-Term Thermal Effect of Continuous Ultrasound from 3 MHz to 1 and 0.5 W/cm2 Applied to Gastrocnemius Muscle
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Room—Technological Equipment
2.3. Pilot Test
2.4. Intervention
2.5. Statistical Analysis
3. Results
3.1. Ultrasound at —Group 1
3.2. Ultrasound at —Group 2
3.3. Placebo—Group 3
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cameron, M.H. Agentes Físicos en Rehabilitación: Práctica Basada en la Evidencia; Elsevier España SLU: Barcelona, Spain, 2018; ISBN 9788491133643. [Google Scholar]
- Starkey, C. Therapeutic Modalities, 4th ed.; F.A. Davis Company: Philadelphia, PA, USA, 2013; ISBN 9780803625938. [Google Scholar]
- Qing, W.; Shi, X.; Zhang, Q.; Peng, L.; He, C.; Wei, Q. Effect of Therapeutic Ultrasound for Neck Pain: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2021, 102, 2219–2230. [Google Scholar] [CrossRef]
- de Lucas, B.; Pérez, L.M.; Bernal, A.; Gálvez, B.G. Ultrasound Therapy: Experiences and Perspectives for Regenerative Medicine. Genes 2020, 11, 1086. [Google Scholar] [CrossRef] [PubMed]
- Alfredo, P.P.; Junior, W.S.; Casarotto, R.A. Efficacy of Continuous and Pulsed Therapeutic Ultrasound Combined with Exercises for Knee Osteoarthritis: A Randomized Controlled Trial. Clin. Rehabil. 2020, 34, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xie, Y.; Luo, X.; Ji, Q.; Lu, C.; He, C.; Wang, P. Effects of Therapeutic Ultrasound on Pain, Physical Functions and Safety Outcomes in Patients with Knee Osteoarthritis: A Systematic Review and Meta-Analysis. Clin. Rehabil. 2016, 30, 960–971. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhu, S.; Lv, Z.; Kan, S.; Wu, Q.; Song, W.; Ning, G.; Feng, S. Effects of Therapeutic Ultrasound for Knee Osteoarthritis: A Systematic Review and Meta-Analysis. Clin. Rehabil. 2019, 33, 1863–1875. [Google Scholar] [CrossRef] [PubMed]
- Azaharez Rodríguez, M. Efectividad del ultrasonido terapéutico en el tratamiento de la espasticidad del miembro superior pléjico. CCH. Correo Cient. Holguín 2017, 21, 204–218. [Google Scholar]
- Lopez Fernández, F.J. Efecto del Ultrasonido Terapéutico Sobre las Tendinopatías del Tendón del Supraespinoso. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2017. [Google Scholar]
- Moneim, N.H.A.; Hemed, M.A.; Klooster, P.M.T.; Rasker, J.J.; El Shaarawy, N.K. Chronic Plantar Fasciitis Treatment: A Randomized Trial Comparing Corticosteroid Injections Followed by Therapeutic Ultrasound with Extracorporeal Shock Wave Therapy. Rheumato 2023, 3, 169–188. [Google Scholar] [CrossRef]
- Yildirim, M.A.; Öneş, K.; Gökşenoğlu, G. Effectiveness of Ultrasound Therapy on Myofascial Pain Syndrome of the Upper Trapezius: Randomized, Single-Blind, Placebo-Controlled Study. Arch. Rheumatol. 2018, 33, 418–423. [Google Scholar] [CrossRef]
- Ilter, L.; Dilek, B.; Batmaz, I.; Ulu, M.A.; Sariyildiz, M.A.; Nas, K.; Cevik, R. Efficacy of Pulsed and Continuous Therapeutic Ultrasound in Myofascial Pain Syndrome: A Randomized Controlled Study: A Randomized Controlled Study. Am. J. Phys. Med. Rehabil. 2015, 94, 547–554. [Google Scholar] [CrossRef]
- Bellew, J.W.; Michlovitz, S.L.; Nolan, T.P., Jr. Michlovitz’s Modalities for Therapeutic Intervention; F.A. Davis Company: Philadelphia, PA, USA, 2016; ISBN 9780803657632. [Google Scholar]
- Morishita, K.; Karasuno, H.; Yokoi, Y.; Morozumi, K.; Ogihara, H.; Ito, T.; Hanaoka, M.; Fujiwara, T.; Fujimoto, T.; Abe, K. Effects of Therapeutic Ultrasound on Range of Motion and Stretch Pain. J. Phys. Ther. Sci. 2014, 26, 711–715. [Google Scholar] [CrossRef][Green Version]
- Matthews, M.J.; Stretanski, M.F. Ultrasound Therapy. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Gallo, J.A.; Draper, D.O.; Brody, L.T.; Fellingham, G.W. A Comparison of Human Muscle Temperature Increases during 3-MHz Continuous and Pulsed Ultrasound with Equivalent Temporal Average Intensities. J. Orthop. Sports Phys. Ther. 2004, 34, 395–401. [Google Scholar] [CrossRef]
- Rimington, S.J.; Draper, D.O.; Durrant, E.; Fellingham, G. Temperature Changes during Therapeutic Ultrasound in the Precooled Human Gastrocnemius Muscle. J. Athl. Train. 1994, 29, 325–327. [Google Scholar] [PubMed]
- Rigby, J.H.; Taggart, R.M.; Stratton, K.L.; Lewis, G.K., Jr.; Draper, D.O. Intramuscular Heating Characteristics of Multihour Low-Intensity Therapeutic Ultrasound. J. Athl. Train. 2015, 50, 1158–1164. [Google Scholar] [CrossRef] [PubMed]
- Piva, G.; Crepaldi, A.; Zenunaj, G.; Caruso, L.; Rinaldo, N.; Gasbarro, V.; Lamberti, N.; Lòpez-Soto, P.J.; Manfredini, F. The Value of Infrared Thermography to Assess Foot and Limb Perfusion in Relation to Medical, Surgical, Exercise or Pharmacological Interventions in Peripheral Artery Disease: A Systematic Review. Diagnostics 2022, 12, 3007. [Google Scholar] [CrossRef]
- Derruau, S.; Bogard, F.; Exartier-Menard, G.; Mauprivez, C.; Polidori, G. Medical Infrared Thermography in Odontogenic Facial Cellulitis as a Clinical Decision Support Tool. A Technical Note. Diagnostics 2021, 11, 2045. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Vargas, R.; Ugalde-Ramírez, J.A.; Rojas-Valverde, D.; Salas-Cabrera, J.; Rodríguez-Montero, A.; Gutiérrez-Vargas, J.C. La termografía infrarroja como herramienta efectiva para detectar áreas músculares dañadas después de correr una maratón. Rev. Fac. Med. Univ. Nac. Colomb. 2017, 65, 601–607. [Google Scholar] [CrossRef]
- Aguilar-Juárez, V.; Sánchez-Colín, M.A.; Zúñiga-Avilés, L.A. Scientometric and patentometric analysis to determine the knowledge landscape in innovation technologies: The therapeutic ultrasound equipments. Rev. Mex. Ing. Bioméd. 2020, 41, 167–184. [Google Scholar]
- Lubkowska, A.; Pluta, W. Infrared Thermography as a Non-Invasive Tool in Musculoskeletal Disease Rehabilitation—The Control Variables in Applicability—A Systematic Review. Appl. Sci. 2022, 12, 4302. [Google Scholar] [CrossRef]
- Ratajczak, B.; Boerner, E.; Demidaś, A.; Tomczyk, K.; Dębiec-Bąk, A.; Hawrylak, A. Comparison of Skin Surface Temperatures after Ultrasounds with Use of Paraffin Oil and Ultrasounds with Use of Gel. J. Therm. Anal. Calorim. 2012, 109, 387–393. [Google Scholar] [CrossRef]
- Ratajczak, B.; Boerner, E. Application of Thermovision in Assessment of Superficial Tissue Temperature Changes under the Influence of 1 MHz and 3 MHz Ultrasounds Wave. J. Therm. Anal. Calorim. 2015, 120, 269–275. [Google Scholar] [CrossRef]
- Boerner, E.; Podbielska, H. Application of Thermal Imaging to Assess the Superficial Skin Temperature Distribution after Local Cryotherapy and Ultrasound. J. Therm. Anal. Calorim. 2018, 131, 2049–2055. [Google Scholar] [CrossRef]
- Cabizosu, A.; Carboni, N.; Martinez-Almagro Andreo, A.; Vegara-Meseguer, J.M.; Marziliano, N.; Gea Carrasco, G.; Casu, G. Theoretical Basis for a New Approach of Studying Emery-Dreifuss Muscular Dystrophy by Means of Thermography. Med. Hypotheses 2018, 118, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Tattersall, G.J. Infrared Thermography: A Non-Invasive Window into Thermal Physiology. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2016, 202, 78–98. [Google Scholar] [CrossRef] [PubMed]
- Hegedűs, B. The potential role of thermography in determining the efficacy of stroke rehabilitation. J. Stroke Cerebrovasc. Dis. 2018, 27, 309–314. [Google Scholar] [CrossRef]
- Vargas E Silva, N.C.O.; Rubio, A.L.; Alfieri, F.M. Associations between Skin Surface Temperature and Pressure Pain Tolerance Thresholds of Asymptomatic Individuals Exposed to Cryotherapy and Thermotherapy. J. Chiropr. Med. 2019, 18, 171–179. [Google Scholar] [CrossRef]
- Belmont, J.R.; Carciumaru, D.; Martín, J.M.R. Una nueva fórmula del ultrasonido terapéutico en fisioterapia: Dosificación por unidad de volumen. Rev. Cuba. Med. Física Rehabil. 2022, 14, e713. [Google Scholar]
- Hauck, M.; Noronha Martins, C.; Borges Moraes, M.; Aikawa, P.; da Silva Paulitsch, F.; Méa Plentz, R.D.; Teixeira da Costa, S.; Vargas da Silva, A.M.; Signori, L.U. Comparison of the Effects of 1 MHz and 3 MHz Therapeutic Ultrasound on Endothelium-Dependent Vasodilation of Humans: A Randomised Clinical Trial. Physiotherapy 2019, 105, 120–125. [Google Scholar] [CrossRef]
- Lee, D.K. Alternatives to P Value: Confidence Interval and Effect Size. Korean J. Anesthesiol. 2016, 69, 555–562. [Google Scholar] [CrossRef]
- Duan, D.; Tang, W.; Wang, R.; Guo, Z.; Feng, H. Evaluation of Epitranscriptome-Wide N6-Methyladenosine Differential Analysis Methods. Brief. Bioinform. 2023, 24, bbad139. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Zhu, J.; Ma, Y.; Zhou, X. Accuracy, Robustness and Scalability of Dimensionality Reduction Methods for Single-Cell RNA-Seq Analysis. Genome Biol. 2019, 20, 269. [Google Scholar] [CrossRef]
- Draper, D.; Jutte, L. Therapeutic Modalities: The Art and Science, 3rd ed.; Wolters Kluwer Health: Baltimore, MD, USA, 2020; ISBN 9781975121327. [Google Scholar]
- Draper, D.O.; Edvalson, C.G.; Knight, K.L.; Eggett, D.; Shurtz, J. Temperature Increases in the Human Achilles Tendon during Ultrasound Treatments with Commercial Ultrasound Gel and Full-Thickness and Half-Thickness Gel Pads. J. Athl. Train. 2010, 45, 333–337. [Google Scholar] [CrossRef]
- Noble, J.G.; Lee, V.; Griffith-Noble, F. Therapeutic Ultrasound: The Effects upon Cutaneous Blood Flow in Humans. Ultrasound Med. Biol. 2007, 33, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.F. Therapeutic Heat and Cold, 4th ed.; Licht, S., Ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 1990; ISBN 9780683049084. [Google Scholar]
- Norheim, A.J.; Borud, E.; Wilsgaard, T.; De Weerd, L.; Mercer, J.B. Variability in Peripheral Rewarming after Cold Stress among 255 Healthy Norwegian Army Conscripts Assessed by Dynamic Infrared Thermography. Int. J. Circumpolar Health 2018, 77, 1536250. [Google Scholar] [CrossRef] [PubMed]
- Liceralde, P. The Effects of Ultrasound Transducer Velocity on Intramuscular Tissue Temperature across a Treatment Site. Master’s Thesis, University of Nevada Las Vegas, Las Vegas, NV, USA, 2009. [Google Scholar]
- Garrido, R. Acupuntura y Dolor. Rev. Méd. Clín. Las Condes 2019, 30, 487–493. [Google Scholar] [CrossRef]
- Barrios, C.; Yeste, M. The Effect of Dry Needling in Basketball Players Analyzed Using Thermographic Cameras. Rev. Fisioter. Invasiva 2019, 02, 128–129. [Google Scholar] [CrossRef]
Left Leg 1 | Left Leg 2 | 30.85 | 26.75 | <0.001 | 1.15 | 1.62 | −4.10 | 3.71 |
Left Leg 2 | Left Leg 3 | 26.75 | 29.04 | <0.001 | 1.62 | 1.16 | 2.29 | 3.18 |
Left Leg 3 | Left Leg 4 | 29.04 | 29.61 | <0.001 | 1.16 | 1.09 | 0.57 | 1.66 |
Left Leg 4 | Left Leg 5 | 29.61 | 29.79 | <0.001 | 1.09 | 1.03 | 0.18 | 1.37 |
Left Leg 1 | Left Leg 5 | 30.85 | 29.79 | <0.001 | 1.15 | 1.03 | −1.06 | 3.18 |
Left Leg 1 | Left Leg 2 | 30.79 | 26.52 | <0.001 | 1.00 | 1.93 | −4.27 | 2.75 |
Left Leg 2 | Left Leg 3 | 26.52 | 28.59 | <0.001 | 1.93 | 1.12 | 2.07 | 2.06 |
Left Leg 3 | Left Leg 4 | 28.59 | 29.23 | <0.001 | 1.12 | 0.86 | 0.64 | 1.21 |
Left Leg 4 | Left Leg 5 | 29.23 | 29.44 | <0.001 | 0.86 | 0.82 | 0.21 | 1.03 |
Left Leg 1 | Left Leg 5 | 30.79 | 29.44 | <0.001 | 1.00 | 0.82 | −1.35 | 2.01 |
Left Leg 1 | Left Leg 2 | 30.45 | 25.17 | <0.001 | 1.25 | 1.84 | −5.28 | 3.82 |
Left Leg 2 | Left Leg 3 | 25.17 | 27.89 | <0.001 | 1.83 | 1.25 | 2.72 | 2.93 |
Left Leg 3 | Left Leg 4 | 27.89 | 28.74 | <0.001 | 1.25 | 1.09 | 0.85 | 3.00 |
Left Leg 4 | Left Leg 5 | 28.74 | 29.06 | <0.001 | 1.08 | 1.02 | 0.32 | 1.35 |
Left Leg 1 | Left Leg 5 | 30.45 | 29.06 | <0.001 | 1.25 | 1.02 | −1.39 | 2.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Hernandez, A.G.; Martinez-Aguilar, V.; Chavez-Gonzalez, T.M.; Mendez-Avila, J.C.; Frias-Becerril, J.V.; Morales-Hernandez, L.A.; Cruz-Albarran, I.A. Short-Term Thermal Effect of Continuous Ultrasound from 3 MHz to 1 and 0.5 W/cm2 Applied to Gastrocnemius Muscle. Diagnostics 2023, 13, 2644. https://doi.org/10.3390/diagnostics13162644
Morales-Hernandez AG, Martinez-Aguilar V, Chavez-Gonzalez TM, Mendez-Avila JC, Frias-Becerril JV, Morales-Hernandez LA, Cruz-Albarran IA. Short-Term Thermal Effect of Continuous Ultrasound from 3 MHz to 1 and 0.5 W/cm2 Applied to Gastrocnemius Muscle. Diagnostics. 2023; 13(16):2644. https://doi.org/10.3390/diagnostics13162644
Chicago/Turabian StyleMorales-Hernandez, Arely G., Violeta Martinez-Aguilar, Teresa M. Chavez-Gonzalez, Julio C. Mendez-Avila, Judith V. Frias-Becerril, Luis A. Morales-Hernandez, and Irving A. Cruz-Albarran. 2023. "Short-Term Thermal Effect of Continuous Ultrasound from 3 MHz to 1 and 0.5 W/cm2 Applied to Gastrocnemius Muscle" Diagnostics 13, no. 16: 2644. https://doi.org/10.3390/diagnostics13162644
APA StyleMorales-Hernandez, A. G., Martinez-Aguilar, V., Chavez-Gonzalez, T. M., Mendez-Avila, J. C., Frias-Becerril, J. V., Morales-Hernandez, L. A., & Cruz-Albarran, I. A. (2023). Short-Term Thermal Effect of Continuous Ultrasound from 3 MHz to 1 and 0.5 W/cm2 Applied to Gastrocnemius Muscle. Diagnostics, 13(16), 2644. https://doi.org/10.3390/diagnostics13162644