Variations in Biochemical Values under Stress in Children with SARS-CoV-2 Infection
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
4.1. Limitations of the Study
4.2. Strengths of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mazza, A.; Di Giorgio, A.; Martelli, L.; Pelliccia, C.; Pinotti, M.A.; Quadri, V.; Verdoni, L.; Decio, A.; Ruggeri, M.; D’Antiga, L. Patterns of Presentation of SARS-CoV-2 Infection in Children. Experience at the Italian Epicentre of the Pandemic. Front. Pediatrics 2021, 9, 629040. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Liao, C.; Fan, Q.-H.; Chen, H.-B.; Zhao, X.-G.; Xie, Z.-G.; Li, X.-L.; Chen, C.-X.; Lu, X.-X.; Liu, Z.-S.; et al. Clinical Characteristics of Children with Coronavirus Disease 2019 in Hubei, China. Curr. Med. Sci. 2020, 40, 275–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garazzino, S.; Lo Vecchio, A.; Pierantoni, L.; Calò Carducci, F.I.; Marchetti, F.; Meini, A.; Castagnola, E.; Vergine, G.; Donà, D.; Bosis, S.; et al. Epidemiology, Clinical Features and Prognostic Factors of Pediatric SARS-CoV-2 Infection: Results from an Italian Multicenter Study. Front. Pediatr. 2021, 9, 649358. [Google Scholar] [CrossRef] [PubMed]
- Jacobis, D.; Tarissi, I.; Vona, R.; Cittadini, C.; Marchesi, A.; Cursi, L.; Gambardella, L.; Villani, A.; Straface, E. Clinical characteristics of children infected with SARS-CoV-2 in Italy. Ital. J. Pediatr. 2021, 47, 90. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Önal, P.; Kılınç, A.A.; Aygün, F.D.; Aygün, F.; Durak, C.; Akkoç, G.; Ağbaş, A.; Elevli, M.; Çokuğraş, H. Diagnostic and Prognostic Biomarkers of Coronavirus Disease 2019 in Children. J. Trop. Pediatr. 2022, 68, fmac003. [Google Scholar] [CrossRef]
- Tadj, A.; Lahbib, S.S.M. Our Overall Current Knowledge of COVID-19: An Overview. Microbes Infect. Chemother. 2021, 1, e1262. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–5061. [Google Scholar] [CrossRef] [Green Version]
- Samprathi, M.; Jayashree, M. Biomarkers in COVID-19: An Up-To-Date Review. Front. Pediatr. 2021, 8, 972. [Google Scholar] [CrossRef]
- World Health Organisation (WHO). Laboratory Testing for Coronavirus Disease 2019 (COVID-19) in Suspected Human Cases; Interim Guidance; WHO: Geneva, Switzerland, 19 March 2020; Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/laboratory-guidance (accessed on 15 March 2022).
- COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available online: https://www.covid19treatmentguidelines.nih.gov/ (accessed on 4 April 2022).
- Flick, H.; Arns, B.-M.; Bolitschek, J.; Bucher, B.; Cima, K.; Gingrich, E.; Handzhiev, S.; Hochmair, M.; Horak, F.; Idzko, M.; et al. Management of patients with SARS-CoV-2 infections and of patients with chronic lung diseases during the COVID-19 pandemic (as of 9 May 2020). Wien. Klin. Wochenschr. 2020, 132, 365–386. [Google Scholar] [CrossRef]
- Tali, S.H.S.; LeBlanc, J.J.; Sadiq, Z.; Oyewunmi, O.D.; Camargo, C.; Nikpour, B.; Armanfard, N.; Sagan, S.M.; Jahanshahi-Anbuhi, S. Tools and Techniques for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)/COVID-19 Detection. Clin. Microbiol. Rev. 2021, 34, e00228-20. [Google Scholar] [CrossRef]
- Țarcă, V.; Țarcă, E.; Luca, F.-A. The Impact of the Main Negative Socio-Economic Factors on Female Fertility. Healthcare 2022, 10, 734. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard; World Health Organization: Geneva, Switzerland, 2022; Available online: https://covid19.who.int/?gclid=Cj0KCQjwz4z3BRCgARIsAES_OVezBT1BH_I8YhZousdOX0PeMERwgm-YmKNco1F1bpTPcArm6HIgwM0aAigBEALw_wcB (accessed on 11 April 2022).
- Beyrampour-Basmenj, H.; Milani, M.; Ebrahimi-Kalan, A.; Ben Taleb, Z.; Ward, K.D.; Abbasabad, G.D.; Aliyari-Serej, Z.; Kalan, M.E. An Overview of the Epidemiologic, Diagnostic and Treatment Approaches of COVID-19: What do We Know? Public Health Rev. 2021, 42, 1604061. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Mo, X.; Hu, Y.; Qi, X.; Jiang, F.; Jiang, Z.; Tong, S. Epidemiology of COVID-19 among Children in China. Pediatrics 2020, 145, e20200702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Souza, T.H.; Nadal, J.A.; Nogueira, R.J.N.; Pereira, R.M.; Brandão, M.B. Clinical manifestations of children with COVID-19: A systematic review. Pediatr. Pulmonol. 2020, 55, 1892–1899. [Google Scholar] [CrossRef] [PubMed]
- Mallah, S.I.; Ghorab, O.K.; Al-Salmi, S.; Abdellatif, O.S.; Tharmaratnam, T.; Iskandar, M.A.; Sefen, J.A.N.; Sidhu, P.; Atallah, B.; El-Lababidi, R.; et al. COVID-19: Breaking down a global health crisis. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 35. [Google Scholar] [CrossRef]
- Velavan, T.P.; Kieu Linh, L.T.; Kreidenweiss, A.; Gabor, J.; Krishna, S.; Kremsner, P.G. Longitudinal Monitoring of Lactate in Hospitalized and Ambulatory COVID-19 Patients. Am. J. Trop. Med. Hyg. 2021, 104, 1041–1044. [Google Scholar] [CrossRef]
- US Centers for Disease Control and Prevention. Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19); Updated 16 February 2021; US Centers for Disease Control and Prevention: Atlanta, GA, USA, 2022. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html (accessed on 11 April 2022).
- Alhazzani, W.; Evans, L.; Alshamsi, F.; Møller, M.H.; Ostermann, M.; Prescott, H.C.; Arabi, Y.M.; Loeb, M.; Gong, M.N.; Fan, E.; et al. Surviving sepsis campaign guidelines on the management of adults with coronavirus disease 2019 (COVID-19) in the ICU: 55. Crit. Care Med. 2021, 49, e219–e234. [Google Scholar] [CrossRef]
- Bruno, R.R.; Wernly, B.; Flaatten, H.; Fjølner, J.; Artigas, A.; Bollen Pinto, B.; Schefold, J.C.; Binnebössel, S.; Baldia, P.H.; Kelm, M.; et al. Lactate is associated with mortality in very old intensive care patients suffering from COVID-19: Results from an international observational study of 2860 patients. Ann. Intensive Care 2021, 11, 128. [Google Scholar] [CrossRef]
- Whorld Health Organization. Coronavirus Disease 2019 (COVID-19). Situation Report—46. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200306-sitrep-46-covid-19.pdf?sfvrsn=96b04adf_4 (accessed on 11 April 2022).
- Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 94, 91–95. [Google Scholar] [CrossRef]
- Perikleous, E.; Tsalkidis, A.; Bush, A.; Paraskakis, E. Coronavirus global pandemic: An overview of current findings among pediatric patients. Pediatr. Pulmonol. 2020, 55, 3252–3267. [Google Scholar] [CrossRef] [PubMed]
- Ţarcă, E.; Roșu, S.T.; Cojocaru, E.; Trandafir, L.; Luca, A.C.; Lupu, V.V.; Moisă, Ș.M.; Munteanu, V.; Butnariu, L.I.; Ţarcă, V. Statistical Analysis of the Main Risk Factors of an Unfavorable Evolution in Gastroschisis. J. Pers. Med. 2021, 11, 1168. [Google Scholar] [CrossRef] [PubMed]
- Luca, A.-C.; Miron, I.C.; Mîndru, D.E.; Curpăn, A.Ș.; Stan, R.C.; Țarcă, E.; Luca, F.-A.; Pădureț, A.I. Optimal Nutrition Parameters for Neonates and Infants with Congenital Heart Disease. Nutrients 2022, 14, 1671. [Google Scholar] [CrossRef] [PubMed]
- Götzinger, F.; Santiago-García, B.; Noguera-Julián, A.; Lanaspa, M.; Lancella, L.; Carducci, F.I.C.; Gabrovska, N.; Velizarova, S.; Prunk, P.; Osterman, V.; et al. COVID-19 in children and adolescents in Europe: A multinational, multicentre cohort study. Lancet Child Adolesc. Health 2020, 4, 653–661. [Google Scholar] [CrossRef]
- Caterino, M.; Costanzo, M.; Fedele, R.; Cevenini, A.; Gelzo, M.; Di Minno, A.; Andolfo, I.; Capasso, M.; Russo, R.; Annunziata, A.; et al. The Serum Metabolome of Moderate and Severe COVID-19 Patients Reflects Possible Liver Alterations Involving Carbon and Nitrogen Metabolism. Int. J. Mol. Sci. 2021, 22, 9548. [Google Scholar] [CrossRef]
- Singhal, T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J. Pediatr. 2020, 87, 281–286. [Google Scholar] [CrossRef] [Green Version]
Valid | Missing | Median | MAD | Minimum | Maximum | ||
---|---|---|---|---|---|---|---|
Age | MODERATE | 40 | 0 | 1.000 | 0.920 | 0.000 | 17.000 |
Age | SEVERE | 42 | 0 | 2.000 | 2.000 | 0.000 | 17.000 |
Lenght of Hospit | MODERATE | 40 | 0 | 5.000 | 2.000 | 1.000 | 16.000 |
Lenght of Hospit | SEVERE | 42 | 0 | 10.000 | 2.500 | 2.000 | 36.000 |
Lactatemia | MODERATE | 40 | 0 | 2.100 | 0.800 | 0.700 | 4.700 |
Lactatemia | SEVERE | 42 | 0 | 2.000 | 0.800 | 0.500 | 14.000 |
pH | MODERATE | 40 | 0 | 7.400 | 0.045 | 7.100 | 7.570 |
pH | SEVERE | 42 | 0 | 7.365 | 0.100 | 7.030 | 7.570 |
PaO2 | MODERATE | 40 | 0 | 48.000 | 11.500 | 21.000 | 176.000 |
PaO2 | SEVERE | 42 | 0 | 43.000 | 11.000 | 17.000 | 192.000 |
PaCO2 | MODERATE | 40 | 0 | 34.500 | 8.500 | 20.000 | 53.000 |
PaCO2 | SEVERE | 42 | 0 | 39.500 | 9.500 | 21.000 | 97.000 |
Glycemia | MODERATE | 40 | 0 | 91.000 | 9.000 | 53.000 | 272.000 |
Glycemia | SEVERE | 42 | 0 | 130.500 | 49.000 | 53.000 | 599.000 |
Hb | MODERATE | 40 | 0 | 12.100 | 1.050 | 8.600 | 17.100 |
Hb | SEVERE | 42 | 0 | 11.350 | 1.800 | 6.300 | 19.400 |
Ht | MODERATE | 40 | 0 | 35.650 | 3.050 | 24.000 | 47.710 |
Ht | SEVERE | 42 | 0 | 34.900 | 4.200 | 17.300 | 46.000 |
WBC | MODERATE | 40 | 0 | 10,385.000 | 4045.000 | 1910.000 | 28,960.000 |
WBC | SEVERE | 42 | 0 | 8910.000 | 5140.000 | 2030.000 | 30,980.000 |
Platelet | MODERATE | 40 | 0 | 341,500.000 | 104,000.000 | 35,800.000 | 934,000.000 |
Platelet | SEVERE | 42 | 0 | 280,500.000 | 94,000.000 | 13,000.000 | 786,000.000 |
CRP | MODERATE | 39 | 1 | 2.760 | 2.110 | 0.040 | 118.660 |
CRP | SEVERE | 42 | 0 | 4.115 | 3.425 | 0.000 | 173.070 |
AST | MODERATE | 40 | 0 | 20.500 | 6.500 | 6.000 | 176.000 |
AST | SEVERE | 42 | 0 | 26.500 | 12.500 | 8.000 | 2718.000 |
ALT | MODERATE | 40 | 0 | 29.000 | 8.500 | 13.000 | 113.000 |
ALT | SEVERE | 42 | 0 | 37.500 | 18.500 | 10.000 | 2724.000 |
Proteins | MODERATE | 18 | 22 | 60.785 | 2.915 | 45.060 | 73.580 |
Proteins | SEVERE | 37 | 5 | 55.250 | 7.650 | 31.920 | 75.620 |
Ddimers | MODERATE | 17 | 23 | 762.000 | 577.000 | 34.000 | 4390.000 |
Ddimers | SEVERE | 30 | 12 | 666.500 | 474.000 | 78.000 | 22,176.000 |
Ferritin | MODERATE | 28 | 12 | 88.250 | 46.740 | 23.300 | 10,735.250 |
Ferritin | SEVERE | 36 | 6 | 132.800 | 102.720 | 14.370 | 3026.650 |
Age | Hospital Stay | Lactatemia | pH | PaO2 | PaCO2 | Glycemia | Hb | Ht | WBC | Platelet Count | CRP | ALT | AST | Proteins | Ddimers Ferritin | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mann-Whitney U | 722.000 | 357.000 | 824.500 | 619.000 | 791.500 | 694.000 | 517.000 | 804.500 | 808.500 | 814.000 | 721.500 | 741.500 | 615.000 | 622.000 | 204.000 | 219.000 437.000 |
Wilcoxon W | 1542.000 | 1177.000 | 1727.500 | 1522.000 | 1694.500 | 1514.000 | 1337.000 | 1707.500 | 1711.500 | 1717.000 | 1624.500 | 1521.500 | 1435.000 | 1442.000 | 907.000 | 372.000 843.000 |
Z | −1.098 | −4.492 | −0.144 | −2.052 | −0.450 | −1.355 | −2.997 | −0.329 | −0.292 | −0.241 | −1.099 | −0.733 | −2.088 | −2.023 | −2.314 | −0.797 −0.97 |
Asymp. Sig. (2-tailed) | 0.272 | 0.000 | 0.886 | 0.040 | 0.653 | 0.175 | 0.003 | 0.742 | 0.770 | 0.809 | 0.272 | 0.464 | 0.037 | 0.043 | 0.021 | 0.425 0.365 |
Exact Sig. (2-tailed) | 0.275 | 0.000 | 0.888 | 0.040 | 0.656 | 0.177 | 0.002 | 0.745 | 0.773 | 0.812 | 0.274 | 0.467 | 0.036 | 0.043 | 0.020 | 0.436 0.371 |
Sex | Age (Years) | Days of Hospital. | Lactatemia | pH at Admisssion | PaO2 | PaCO2 | Glycemia | Hb | Ht | WBC | Platelet | CRP | ALT | AST | Proteins |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | 7.0 | 7 | 1.2 | 7.54 | 41 | 44 | 98 | 10.3 | 36.2 | 30,980 | 382,000 | 25.43 | 45 | 57 | 54.88 |
M | 0.3 | 7 | 14 | 7.22 | 143 | 27 | 53 | 9.7 | 30.9 | 12,749 | 171,000 | 8.58 | 255 | 193 | 35.68 |
F | 12.0 | 13 | 1 | 7.48 | 169 | 30 | 138 | 10.9 | 34.4 | 15,650 | 435,000 | 7.95 | 105 | 59 | 49.5 |
M | 0.1 | 10 | 4.4 | 7.18 | 53 | 42 | 75 | 8.8 | 25.4 | 28,180 | 370,000 | 21.12 | 111 | 95 | 68.23 |
M | 0.0 | 9 | 4.3 | 7.24 | 39 | 57 | 251 | 14.9 | 46 | 29,270 | 13,000 | 0.68 | 125 | 290 | 31.92 |
M | 0.2 | 2 | 2.2 | 7.34 | 31 | 53 | 222 | 8.4 | 25.2 | 2030 | 94,000 | 0.41 | 130 | 217 | 45.33 |
M | 0.3 | 10 | 2.2 | 7.33 | 22 | 46 | 599 | 8.1 | 25 | 30,980 | 548,000 | 2.39 | 65 | 51 | 45.03 |
F | 5.0 | 18 | 1 | 7.37 | 75 | 38 | 135 | 12.3 | 36.1 | 6020 | 276,000 | 9.37 | 26 | 32 | 65.15 |
Coefficients | |||||||
---|---|---|---|---|---|---|---|
Wald Test | |||||||
Estimate | Standard Error | Odds Ratio | z | Wald Statistic | df | p | |
(Intercept) | −7.436 | 2.091 | 5.898 × 10−4 | −3.556 | 12.645 | 1 | <0.001 |
Anemia (YES) | 4.478 | 1.496 | 88.056 | 2.993 | 8.956 | 1 | 0.003 |
Comorbidities (YES) | 3.149 | 1.460 | 23.306 | 2.157 | 4.653 | 1 | 0.031 |
Ketoacidosis (YES) | 2.797 | 1.357 | 16.396 | 2.061 | 4.247 | 1 | 0.039 |
Observed | Predicted | ||
---|---|---|---|
NO | YES | % Correct | |
NO | 72 | 2 | 97.297 |
YES | 3 | 5 | 62.500 |
Overall % Correct | 93.902 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belu, A.; Trandafir, L.M.; Țarcă, E.; Cojocaru, E.; Frăsinariu, O.; Stârcea, M.; Moscalu, M.; Tiutiuca, R.C.; Luca, A.C.; Galaction, A. Variations in Biochemical Values under Stress in Children with SARS-CoV-2 Infection. Diagnostics 2022, 12, 1213. https://doi.org/10.3390/diagnostics12051213
Belu A, Trandafir LM, Țarcă E, Cojocaru E, Frăsinariu O, Stârcea M, Moscalu M, Tiutiuca RC, Luca AC, Galaction A. Variations in Biochemical Values under Stress in Children with SARS-CoV-2 Infection. Diagnostics. 2022; 12(5):1213. https://doi.org/10.3390/diagnostics12051213
Chicago/Turabian StyleBelu, Alina, Laura Mihaela Trandafir, Elena Țarcă, Elena Cojocaru, Otilia Frăsinariu, Magdalena Stârcea, Mihaela Moscalu, Razvan Calin Tiutiuca, Alina Costina Luca, and Anca Galaction. 2022. "Variations in Biochemical Values under Stress in Children with SARS-CoV-2 Infection" Diagnostics 12, no. 5: 1213. https://doi.org/10.3390/diagnostics12051213
APA StyleBelu, A., Trandafir, L. M., Țarcă, E., Cojocaru, E., Frăsinariu, O., Stârcea, M., Moscalu, M., Tiutiuca, R. C., Luca, A. C., & Galaction, A. (2022). Variations in Biochemical Values under Stress in Children with SARS-CoV-2 Infection. Diagnostics, 12(5), 1213. https://doi.org/10.3390/diagnostics12051213