Multiple Testing, Cut-Point Optimization, and Signs of Publication Bias in Prognostic FDG–PET Imaging Studies of Head and Neck and Lung Cancer: A Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Eligibility Criteria for Studies
2.2. Data Extraction
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Young, H.; Baum, R.; Cremerius, U.; Herholz, K.; Hoekstra, O.; Lammertsma, A.A.; Pruim, J.; Price, P. Measurement of Clinical and Subclinical Tumour Response Using [18F]-Fluorodeoxyglucose and Positron Emission Tomography: Review and 1999 Eortc Recommendations. European Organization for Research and Treatment of Cancer (Eortc) Pet Study Group. Eur. J. Cancer 1999, 35, 1773–1782. [Google Scholar] [CrossRef]
- Yang, D.J.; Wallace, S.; Cherif, A.; Li, C.; Gretzer, M.B.; Kim, E.E.; Podoloff, D.A. Development of F-18-Labeled Fluoroerythronitroimidazole as a Pet Agent for Imaging Tumor Hypoxia. Radiology 1995, 194, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Shields, A.F.; Grierson, J.R.; Dohmen, B.M.; Machulla, H.J.; Stayanoff, J.C.; Lawhorn-Crews, J.M.; Obradovich, J.E.; Muzik, O.; Mangner, T.J. Imaging Proliferation in Vivo with [F-18]Flt and Positron Emission Tomography. Nat. Med. 1998, 4, 1334–1346. [Google Scholar] [CrossRef] [PubMed]
- Fujibayashi, Y.; Taniuchi, H.; Yonekura, Y.; Ohtani, H.; Konishi, J.; Yokoyama, A. Copper-62-Atsm: A New Hypoxia Imaging Agent with High Permeability and Low Redox Potential. J. Nucl. Med. 1997, 38, 1155–1160. [Google Scholar]
- Weber, W.A.; Wester, H.J.; Grosu, A.L.; Herz, M.; Dzewas, B.; Feldmann, H.J.; Molls, M.; Stocklin, G.; Schwaiger, M. O-(2-[18F]Fluoroethyl)-L-Tyrosine and L-[Methyl-11c]Methionine Uptake in Brain Tumours: Initial Results of a Comparative Study. Eur. J. Nucl. Med. 2000, 27, 542–549. [Google Scholar] [CrossRef]
- Panebianco, V.; Sciarra, A.; Lisi, D.; Galati, F.; Buonocore, V.; Catalano, C.; Gentile, V.; Laghi, A.; Passariello, R. Prostate Cancer: 1hmrs-Dcemr at 3t Versus [(18)F]Choline Pet/Ct in the Detection of Local Prostate Cancer Recurrence in Men with Biochemical Progression after Radical Retropubic Prostatectomy (Rrp). Eur. J. Radiol. 2012, 81, 700–708. [Google Scholar] [CrossRef]
- Kurdziel, K.A.; Shih, J.H.; Apolo, A.B.; Lindenberg, L.; Mena, E.; McKinney, Y.Y.; Adler, S.S.; Turkbey, B.; Dahut, W.; Gulley, J.L.; et al. The Kinetics and Reproducibility of 18F-Sodium Fluoride for Oncology Using Current Pet Camera Technology. J. Nucl. Med. 2012, 53, 1175–1184. [Google Scholar] [CrossRef] [Green Version]
- Das, S.K.; Ten Haken, R.K. Functional and molecular image guidance in radiotherapy treatment planning optimization. Semin. Radiat. Oncol. 2011, 21, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Wanet, M.; Delor, A.; Hanin, F.X.; Ghaye, B.; Van Maanen, A.; Remouchamps, V.; Clermont, C.; Goossens, S.; Lee, J.A.; Janssens, G.; et al. An individualized radiation dose escalation trial in non-small cell lung cancer based on FDG-PET imaging. Strahlenther. Onkol. 2017, 193, 812–822. [Google Scholar] [CrossRef]
- van Diessen, J.; De Ruysscher, D.; Sonke, J.J.; Damen, E.; Sikorska, K.; Reymen, B.; van Elmpt, W.; Westman, G.; Fredberg Persson, G.; Dieleman, E.; et al. The acute and late toxicity results of a randomized phase II dose-escalation trial in non-small cell lung cancer (PET-boost trial). Radiother. Oncol. 2019, 131, 166–173. [Google Scholar] [CrossRef]
- Differding, S.; Sterpin, E.; Janssens, G.; Hanin, F.X.; Lee, J.A.; Gregoire, V. Methodology for adaptive and robust FDG-PET escalated dose painting by numbers in head and neck tumors. Acta Oncol. 2016, 55, 217–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, J.H.; Hakansson, K.; Vogelius, I.R.; Aznar, M.C.; Fischer, B.M.; Friborg, J.; Loft, A.; Kristensen, C.A.; Bentzen, S.M.; Specht, L. Phase I trial of 18F-Fludeoxyglucose based radiation dose painting with concomitant cisplatin in head and neck cancer. Radiother. Oncol. 2016, 120, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Li, M.; Zhao, H.; Sun, X.; Fu, Z.; Yu, J. 18F-FDG PET or PET-CT to evaluate prognosis for head and neck cancer: A meta-analysis. J. Cancer Res. Clin. Oncol. 2011, 137, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- Faraggi, D.; Simon, R. A simulation study of cross-validation for selecting an optimal cutpoint in univariate survival analysis. Stat. Med. 1996, 15, 2203–2213. [Google Scholar] [CrossRef]
- Hilsenbeck, S.G.; Clark, G.M.; McGuire, W.L. Why do so many prognostic factors fail to pan out? Breast Cancer Res. Treat. 1992, 22, 197–206. [Google Scholar] [CrossRef]
- Nguyen, X.C.; Lee, W.W.; Chung, J.H.; Park, S.Y.; Sung, S.W.; Kim, Y.K.; So, Y.; Lee, D.S.; Chung, J.K.; Lee, M.C.; et al. FDG uptake, glucose transporter type 1, and Ki-67 expressions in non-small-cell lung cancer: Correlations and prognostic values. Eur. J. Radiol. 2007, 62, 214–219. [Google Scholar] [CrossRef]
- Review Manager (RevMan) [Computer Program]; The Nordic Cochrane Centre, The Cochrane Collaboration: Copenhagen, Switzerland, 2012.
- Diez, P.; Vogelius, I.S.; Bentzen, S.M. A new method for synthesizing radiation dose-response data from multiple trials applied to prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 1066–1071. [Google Scholar] [CrossRef] [Green Version]
- Moreno, S.G.; Sutton, A.J.; Ades, A.E.; Stanley, T.D.; Abrams, K.R.; Peters, J.L.; Cooper, N.J. Assessment of regression-based methods to adjust for publication bias through a comprehensive simulation study. BMC Med. Res. Methodol. 2009, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, D.; Rajendran, J.; Yueh, B.; Coltrera, M.; LeBlanc, M.; Eary, J.; Krohn, K. FDG-PET prediction of head and neck squamous cell cancer outcomes. Arch. Otolaryngol. Head Neck Surg. 2004, 130, 1361–1367. [Google Scholar] [CrossRef] [Green Version]
- Akagunduz, O.O.; Savas, R.; Yalman, D.; Kocacelebi, K.; Esassolak, M. Can adaptive threshold-based metabolic tumor volume (MTV) and lean body mass corrected standard uptake value (SUL) predict prognosis in head and neck cancer patients treated with definitive radiotherapy/chemoradiotherapy? Nucl. Med. Biol. 2015, 42, 899–904. [Google Scholar] [CrossRef]
- Allal, A.S.; Slosman, D.O.; Kebdani, T.; Allaoua, M.; Lehmann, W.; Dulguerov, P. Prediction of outcome in head-and-neck cancer patients using the standardized uptake value of 2-[18F]fluoro-2-deoxy-D-glucose. Int. J. Radiat. Oncol. Biol. Phys. 2004, 59, 1295–1300. [Google Scholar] [CrossRef] [Green Version]
- Baschnagel, A.M.; Wobb, J.L.; Dilworth, J.T.; Williams, L.; Eskandari, M.; Wu, D.; Pruetz, B.L.; Wilson, G.D. The association of (18)F-FDG PET and glucose metabolism biomarkers GLUT1 and HK2 in p16 positive and negative head and neck squamous cell carcinomas. Radiother. Oncol. 2015, 117, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Brun, E.; Kjellén, E.; Tennvall, J.; Ohlsson, T.; Sandell, A.; Perfekt, R.; Wennerberg, J.; Strand, S. FDG PET studies during treatment: Prediction of therapy outcome in head and neck squamous cell carcinoma. Head Neck 2002, 24, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Cacicedo, J.; Fernandez, I.; Del Hoyo, O.; Navarro, A.; Gomez-Iturriaga, A.; Pijoan, J.I.; Martinez-Indart, L.; Escudero, J.; Gomez-Suarez, J.; de Zarate, R.O.; et al. Prognostic value of maximum standardized uptake value measured by pretreatment 18F-FDG PET/CT in locally advanced head and neck squamous cell carcinoma. Clin. Transl. Oncol. 2017, 19, 1337–1349. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.C.; Cheng, N.M.; Hsieh, C.H.; Ng, S.H.; Lin, C.Y.; Yen, T.C.; Hsu, C.L.; Wan, H.M.; Liao, C.T.; Chang, K.P.; et al. Multiparametric imaging using (18)F-FDG PET/CT heterogeneity parameters and functional MRI techniques: Prognostic significance in patients with primary advanced oropharyngeal or hypopharyngeal squamous cell carcinoma treated with chemoradiotherapy. Oncotarget 2017, 8, 62606–62621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, M.K.; Jeong, H.S.; Park, S.G.; Jang, J.Y.; Son, Y.I.; Choi, J.Y.; Hyun, S.H.; Park, K.; Ahn, M.J.; Ahn, Y.C.; et al. Metabolic tumor volume of [18F]-fluorodeoxyglucose positron emission tomography/computed tomography predicts short-term outcome to radiotherapy with or without chemotherapy in pharyngeal cancer. Clin. Cancer Res. 2009, 15, 5861–5868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halfpenny, W.; Hain, S.; Biassoni, L.; Maisey, M.; Sherman, J.; McGurk, M. FDG-PET. A possible prognostic factor in head and neck cancer. Br. J. Cancer 2002, 86, 512–516. [Google Scholar] [CrossRef]
- Higgins, K.A.; Hoang, J.K.; Roach, M.C.; Chino, J.; Yoo, D.S.; Turkington, T.G.; Brizel, D.M. Analysis of pretreatment FDG-PET SUV parameters in head-and-neck cancer: Tumor SUVmean has superior prognostic value. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 548–553. [Google Scholar] [CrossRef]
- Kim, S.Y.; Roh, J.L.; Kim, M.R.; Kim, J.S.; Choi, S.H.; Nam, S.Y.; Lee, S.W.; Kim, S.B. Use of 18F-FDG PET for primary treatment strategy in patients with squamous cell carcinoma of the oropharynx. J. Nucl. Med. 2007, 48, 752–757. [Google Scholar] [CrossRef] [Green Version]
- Kitajima, K.; Suenaga, Y.; Kanda, T.; Miyawaki, D.; Yoshida, K.; Ejima, Y.; Sasaki, R.; Komatsu, H.; Saito, M.; Otsuki, N.; et al. Prognostic value of FDG PET imaging in patients with laryngeal cancer. PLoS ONE 2014, 9, e96999. [Google Scholar] [CrossRef] [Green Version]
- Komar, G.; Lehtio, K.; Seppanen, M.; Eskola, O.; Levola, H.; Lindholm, P.; Sipila, H.; Seppala, J.; Grenman, R.; Solin, O.; et al. Prognostic value of tumour blood flow, [18F]EF5 and [18F]FDG PET/CT imaging in patients with head and neck cancer treated with radiochemotherapy. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 2042–2050. [Google Scholar] [CrossRef] [PubMed]
- Koyasu, S.; Nakamoto, Y.; Kikuchi, M.; Suzuki, K.; Hayashida, K.; Itoh, K.; Togashi, K. Prognostic value of pretreatment 18F-FDG PET/CT parameters including visual evaluation in patients with head and neck squamous cell carcinoma. AJR Am. J. Roentgenol. 2014, 202, 851–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunkel, M.; Reichert, T.E.; Benz, P.; Lehr, H.A.; Jeong, J.H.; Wieand, S.; Bartenstein, P.; Wagner, W.; Whiteside, T.L. Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer 2003, 97, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.T.; Chang, J.T.; Wang, H.M.; Ng, S.H.; Hsueh, C.; Lee, L.Y.; Lin, C.H.; Chen, I.H.; Huang, S.F.; Cheng, A.J.; et al. Pretreatment primary tumor SUVmax measured by FDG-PET and pathologic tumor depth predict for poor outcomes in patients with oral cavity squamous cell carcinoma and pathologically positive lymph nodes. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Machtay, M.; Natwa, M.; Andrel, J.; Hyslop, T.; Anne, P.R.; Lavarino, J.; Intenzo, C.M.; Keane, W. Pretreatment FDG-PET standardized uptake value as a prognostic factor for outcome in head and neck cancer. Head Neck 2009, 31, 195–201. [Google Scholar] [CrossRef]
- Minn, H.; Lapela, M.; Klemi, P.; Grénman, R.; Leskinen, S.; Lindholm, P.; Bergman, J.; Eronen, E.; Haaparanta, M.; Joensuu, H. Prediction of survival with fluorine-18-fluorodeoxyglucose and PET in head and neck cancer. J. Nucl. Med. 1997, 38, 1907–1911. [Google Scholar]
- Moon, S.H.; Choi, J.Y.; Lee, H.J.; Son, Y.I.; Baek, C.H.; Ahn, Y.C.; Ahn, M.J.; Park, K.; Kim, B.T. Prognostic value of volume-based positron emission tomography/computed tomography in patients with nasopharyngeal carcinoma treated with concurrent chemoradiotherapy. Clin. Exp. Otorhinolaryngol. 2015, 8, 142–148. [Google Scholar] [CrossRef]
- Ng, S.H.; Liao, C.T.; Lin, C.Y.; Chan, S.C.; Lin, Y.C.; Yen, T.C.; Chang, J.T.; Ko, S.F.; Fan, K.H.; Wang, H.M.; et al. Dynamic contrast-enhanced MRI, diffusion-weighted MRI and (18)F-FDG PET/CT for the prediction of survival in oropharyngeal or hypopharyngeal squamous cell carcinoma treated with chemoradiation. Eur. Radiol. 2016, 26, 4162–4172. [Google Scholar] [CrossRef] [PubMed]
- Preda, L.; Conte, G.; Bonello, L.; Giannitto, C.; Travaini, L.L.; Raimondi, S.; Summers, P.E.; Mohssen, A.; Alterio, D.; Cossu Rocca, M.; et al. Combining standardized uptake value of FDG-PET and apparent diffusion coefficient of DW-MRI improves risk stratification in head and neck squamous cell carcinoma. Eur. Radiol. 2016, 26, 4432–4441. [Google Scholar] [CrossRef]
- Roh, J.L.; Pae, K.H.; Choi, S.H.; Kim, J.S.; Lee, S.; Kim, S.B.; Nam, S.Y.; Kim, S.Y. 2-[18F]-Fluoro-2-deoxy-D-glucose positron emission tomography as guidance for primary treatment in patients with advanced-stage resectable squamous cell carcinoma of the larynx and hypopharynx. Eur. J. Surg. Oncol. 2007, 33, 790–795. [Google Scholar] [CrossRef]
- Schwartz, D.L.; Harris, J.; Yao, M.; Rosenthal, D.I.; Opanowski, A.; Levering, A.; Ang, K.K.; Trotti, A.M.; Garden, A.S.; Jones, C.U.; et al. Metabolic tumor volume as a prognostic imaging-based biomarker for head-and-neck cancer: Pilot results from Radiation Therapy Oncology Group protocol 0522. Int. J. Radiat. Oncol. Biol. Phys. 2015, 91, 721–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, H.; Kato, K.; Fujimoto, Y.; Itoh, Y.; Hiramatsu, M.; Naganawa, S.; Hasegawa, Y.; Nakashima, T. Prognostic value of (18)F-fluorodeoxyglucose uptake before treatment for pharyngeal cancer. Ann. Nucl. Med. 2014, 28, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Suzuki-Shibata, S.; Yamamoto, Y.; Yoshida, T.; Mizoguchi, N.; Nonaka, T.; Kubota, A.; Narimatsu, H.; Miyagi, Y.; Kobayashi, T.; Kaneta, T.; et al. Prognostic value of volumetric FDG PET/CT parameters in patients with oral tongue squamous cell carcinoma who were treated by superselective intra-arterial chemoradiotherapy. Jpn. J. Radiol. 2017, 35, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Torizuka, T.; Tanizaki, Y.; Kanno, T.; Futatsubashi, M.; Naitou, K.; Ueda, Y.; Ouchi, Y. Prognostic value of 18F-FDG PET in patients with head and neck squamous cell cancer. AJR Am. J. Roentgenol. 2009, 192, W156–W160. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Yue, J.B.; Fu, Z.; Feng, R.; Yu, J.M. Prognostic value of 18F-FDG PET/CT before and after radiotherapy for locally advanced nasopharyngeal carcinoma. Ann. Oncol. 2010, 21, 1078–1082. [Google Scholar] [CrossRef]
- Ahuja, V.; Coleman, R.; Herndon, J.; Patz, E. The prognostic significance of fluorodeoxyglucose positron emission tomography imaging for patients with non-small cell lung carcinoma. Cancer 1998, 83, 918–924. [Google Scholar] [CrossRef]
- Aoki, M.; Akimoto, H.; Sato, M.; Hirose, K.; Kawaguchi, H.; Hatayama, Y.; Seino, H.; Kakehata, S.; Tsushima, F.; Fujita, H.; et al. Impact of pretreatment whole-tumor perfusion computed tomography and 18F-fluorodeoxyglucose positron emission tomography/computed tomography measurements on local control of non-small cell lung cancer treated with stereotactic body radiotherapy. J. Radiat. Res. 2016, 57, 533–540. [Google Scholar] [CrossRef]
- Borst, G.R.; Belderbos, J.S.; Boellaard, R.; Comans, E.F.; De Jaeger, K.; Lammertsma, A.A.; Lebesque, J.V. Standardised FDG uptake: A prognostic factor for inoperable non-small cell lung cancer. Eur. J. Cancer 2005, 41, 1533–1541. [Google Scholar] [CrossRef]
- Carvalho, S.; Leijenaar, R.T.; Velazquez, E.R.; Oberije, C.; Parmar, C.; van Elmpt, W.; Reymen, B.; Troost, E.G.; Oellers, M.; Dekker, A.; et al. Prognostic value of metabolic metrics extracted from baseline positron emission tomography images in non-small cell lung cancer. Acta Oncol. 2013, 52, 1398–1404. [Google Scholar] [CrossRef] [Green Version]
- Cerfolio, R.J.; Bryant, A.S.; Ohja, B.; Bartolucci, A.A. The maximum standardized uptake values on positron emission tomography of a non-small cell lung cancer predict stage, recurrence, and survival. J. Thorac. Cardiovasc. Surg. 2005, 130, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Chiu, N.; Su, W.; Guo, H.; Lee, B. Prognostic value of whole-body total lesion glycolysis at pretreatment FDG PET/CT in non-small cell lung cancer. Radiology 2012, 264, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Clarke, K.; Taremi, M.; Dahele, M.; Freeman, M.; Fung, S.; Franks, K.; Bezjak, A.; Brade, A.; Cho, J.; Hope, A.; et al. Stereotactic body radiotherapy (SBRT) for non-small cell lung cancer (NSCLC): Is FDG-PET a predictor of outcome? Radiother. Oncol. 2012, 104, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Hamamoto, Y.; Sugawara, Y.; Inoue, T.; Kataoka, M.; Ochi, T.; Takahashi, T.; Sakai, S. Relationship between pretreatment FDG uptake and local control after stereotactic body radiotherapy in stage I non-small-cell lung cancer: The preliminary results. Jpn. J. Clin. Oncol. 2011, 41, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Hofheinz, F.; Hoff, J.; Steffen, I.G.; Lougovski, A.; Ego, K.; Amthauer, H.; Apostolova, I. Comparative evaluation of SUV, tumor-to-blood standard uptake ratio (SUR), and dual time point measurements for assessment of the metabolic uptake rate in FDG PET. EJNMMI Res. 2016, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Horne, Z.D.; Clump, D.A.; Vargo, J.A.; Shah, S.; Beriwal, S.; Burton, S.A.; Quinn, A.E.; Schuchert, M.J.; Landreneau, R.J.; Christie, N.A.; et al. Pretreatment SUVmax predicts progression-free survival in early-stage non-small cell lung cancer treated with stereotactic body radiation therapy. Radiat. Oncol. 2014, 9, 41. [Google Scholar] [CrossRef] [Green Version]
- Hyun, S.H.; Ahn, H.K.; Ahn, M.J.; Ahn, Y.C.; Kim, J.; Shim, Y.M.; Choi, J.Y. Volume-Based Assessment With 18F-FDG PET/CT Improves Outcome Prediction for Patients With Stage IIIA-N2 Non-Small Cell Lung Cancer. AJR Am. J. Roentgenol. 2015, 205, 623–628. [Google Scholar] [CrossRef]
- Imamura, Y.; Azuma, K.; Kurata, S.; Hattori, S.; Sasada, T.; Kinoshita, T.; Okamoto, M.; Kawayama, T.; Kaida, H.; Ishibashi, M.; et al. Prognostic value of SUVmax measurements obtained by FDG-PET in patients with non-small cell lung cancer receiving chemotherapy. Lung Cancer 2011, 71, 49–54. [Google Scholar] [CrossRef]
- Jiang, X.E.; Xu, T.; Wei, Q.; Li, P.; Gomez, D.R.; Court, L.E.; Liao, Z. DNA repair capacity correlates with standardized uptake values from (18)F-fluorodeoxyglucose positron emission tomography/CT in patients with advanced non-small-cell lung cancer. Chronic Dis. Transl. Med. 2018, 4, 109–116. [Google Scholar] [CrossRef]
- Kohutek, Z.A.; Wu, A.J.; Zhang, Z.; Foster, A.; Din, S.U.; Yorke, E.D.; Downey, R.; Rosenzweig, K.E.; Weber, W.A.; Rimner, A. FDG-PET maximum standardized uptake value is prognostic for recurrence and survival after stereotactic body radiotherapy for non-small cell lung cancer. Lung Cancer 2015, 89, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.Y.; Lee, K.S.; Park, J.; Han, J.; Kim, B.T.; Kwon, O.J.; Ahn, Y.C.; Ahn, M.J.; Park, K.; Kim, J.; et al. Baseline SUVmax at PET-CT in stage IIIA non-small-cell lung cancer patients undergoing surgery after neoadjuvant therapy: Prognostic implication focused on histopathologic subtypes. Acad. Radiol. 2012, 19, 440–445. [Google Scholar] [CrossRef]
- Nair, V.J.; MacRae, R.; Sirisegaram, A.; Pantarotto, J.R. Pretreatment [18F]-fluoro-2-deoxy-glucose positron emission tomography maximum standardized uptake value as predictor of distant metastasis in early-stage non-small cell lung cancer treated with definitive radiation therapy: Rethinking the role of positron emission tomography in personalizing treatment based on risk status. Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Nawara, C.; Rendl, G.; Wurstbauer, K.; Lackner, B.; Rettenbacher, L.; Datz, L.; Studnicka, M.; Sedlmayer, F.; Pirich, C. The impact of PET and PET/CT on treatment planning and prognosis of patients with NSCLC treated with radiation therapy. Q. J. Nucl. Med. Mol. Imaging 2012, 56, 191–201. [Google Scholar] [PubMed]
- Pyka, T.; Bundschuh, R.A.; Andratschke, N.; Mayer, B.; Specht, H.M.; Papp, L.; Zsoter, N.; Essler, M. Textural features in pre-treatment [F18]-FDG-PET/CT are correlated with risk of local recurrence and disease-specific survival in early stage NSCLC patients receiving primary stereotactic radiation therapy. Radiat. Oncol. 2015, 10, 100. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, R.; Komaki, R.; Macapinlac, H.; Erasmus, J.; Allen, P.; Forster, K.; Putnam, J.B.; Herbst, R.S.; Moran, C.A.; Podoloff, D.A.; et al. [18F]fluorodeoxyglucose uptake by positron emission tomography predicts outcome of non-small-cell lung cancer. J. Clin. Oncol. 2005, 23, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Shirai, K.; Abe, T.; Saitoh, J.I.; Mizukami, T.; Irie, D.; Takakusagi, Y.; Shiba, S.; Okano, N.; Ebara, T.; Ohno, T.; et al. Maximum standardized uptake value on FDG-PET predicts survival in stage I non-small cell lung cancer following carbon ion radiotherapy. Oncol. Lett. 2017, 13, 4420–4426. [Google Scholar] [CrossRef] [Green Version]
- Sugawara, Y.; Quint, L.; Iannettoni, M.; Orringer, M.; Russo, J.; Recker, B.; Saran, P.; Wahl, R. Does the FDG uptake of primary non-small cell lung cancer predict prognosis?: A work in progress. Clin. Positron Imaging 1999, 2, 111–118. [Google Scholar] [CrossRef]
- Takeda, A.; Yokosuka, N.; Ohashi, T.; Kunieda, E.; Fujii, H.; Aoki, Y.; Sanuki, N.; Koike, N.; Ozawa, Y. The maximum standardized uptake value (SUVmax) on FDG-PET is a strong predictor of local recurrence for localized non-small-cell lung cancer after stereotactic body radiotherapy (SBRT). Radiother. Oncol. 2011, 101, 291–297. [Google Scholar] [CrossRef]
- Takeda, A.; Sanuki, N.; Fujii, H.; Yokosuka, N.; Nishimura, S.; Aoki, Y.; Oku, Y.; Ozawa, Y.; Kunieda, E. Maximum standardized uptake value on FDG-PET is a strong predictor of overall and disease-free survival for non-small-cell lung cancer patients after stereotactic body radiotherapy. J. Thorac. Oncol. 2014, 9, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Takeda, K.; Takanami, K.; Shirata, Y.; Yamamoto, T.; Takahashi, N.; Ito, K.; Takase, K.; Jingu, K. Clinical utility of texture analysis of 18F-FDG PET/CT in patients with Stage I lung cancer treated with stereotactic body radiotherapy. J. Radiat. Res. 2017, 58, 862–869. [Google Scholar] [CrossRef] [Green Version]
- Ulger, S.; Demirci, N.Y.; Eroglu, F.N.; Cengiz, H.H.; Tunc, M.; Tatci, E.; Yilmaz, U.; Cetin, E.; Avci, E.; Cengiz, M. High FDG uptake predicts poorer survival in locally advanced nonsmall cell lung cancer patients undergoing curative radiotherapy, independently of tumor size. J. Cancer Res. Clin. Oncol. 2014, 140, 495–502. [Google Scholar] [CrossRef]
- Vansteenkiste, J.; Stroobants, S.; Dupont, P.; De Leyn, P.; Verbeken, E.; Deneffe, G.; Mortelmans, L.; Demedts, M. Prognostic importance of the standardized uptake value on 18F-Fluoro-2-deoxy-glucose-positron emission tomography scan in non-small-cell lung cancer: An analysis of 125 cases. J. Clin. Oncol. 1999, 17, 3201–3206. [Google Scholar] [CrossRef] [PubMed]
- Vesselle, H.; Freeman, J.D.; Wiens, L.; Stern, J.; Nguyen, H.Q.; Hawes, S.E.; Bastian, P.; Salskov, A.; Vallieres, E.; Wood, D.E. Fluorodeoxyglucose uptake of primary non-small cell lung cancer at positron emission tomography: New contrary data on prognostic role. Clin. Cancer Res. 2007, 13, 3255–3263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vu, C.C.; Matthews, R.; Kim, B.; Franceschi, D.; Bilfinger, T.V.; Moore, W.H. Prognostic value of metabolic tumor volume and total lesion glycolysis from 18F-FDG PET/CT in patients undergoing stereotactic body radiation therapy for stage I non-small-cell lung cancer. Nucl. Med. Commun. 2013, 34, 959–963. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.L.; Erasmus, J.; Komaki, R.; Cox, J.D.; Chang, J.Y. FDG uptake correlates with recurrence and survival after treatment of unresectable stage III non-small cell lung cancer with high-dose proton therapy and chemotherapy. Radiat. Oncol. 2012, 7, 144. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, U.; Batum, O.; Koparal, H.; Ozbilek, E.; Kirakli, E. Prognostic value of primary tumor SUVmax on pre-treatment (18)F-FDG PET/CT imaging in patients with stage iii non-small cell lung cancer. Rev. Esp. Med. Nucl. Imagen Mol. 2018. [Google Scholar] [CrossRef]
- Port, J.L.; Andrade, R.S.; Levin, M.A.; Korst, R.J.; Lee, P.C.; Becker, D.E.; Altorki, N.K. Positron emission tomographic scanning in the diagnosis and staging of non-small cell lung cancer 2 cm in size or less. J. Thorac. Cardiovasc. Surg. 2005, 130, 1611–1615. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Oh, S.; Kim, J.S.; Kim, Y.K.; Kim, K.H.; Oh, D.H.; Lee, D.H.; Jeong, W.J.; Jung, Y.H. Prognostic value of FDG PET/CT during radiotherapy in head and neck cancer patients. Radiat. Oncol. J. 2018, 36, 95–102. [Google Scholar] [CrossRef]
- Turner, E.H.; Matthews, A.M.; Linardatos, E.; Tell, R.A.; Rosenthal, R. Selective publication of antidepressant trials and its influence on apparent efficacy. N. Engl. J. Med. 2008, 358, 252–260. [Google Scholar] [CrossRef] [Green Version]
- Button, K.S.; Ioannidis, J.P.; Mokrysz, C.; Nosek, B.A.; Flint, J.; Robinson, E.S.; Munafo, M.R. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013, 14, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD Statement. BMC Med. 2015, 13, 1. [Google Scholar] [CrossRef] [Green Version]
- Royston, P.; Altman, D.G.; Sauerbrei, W. Dichotomizing continuous predictors in multiple regression: A bad idea. Stat. Med. 2006, 25, 127–141. [Google Scholar] [CrossRef] [PubMed]
Author | Year | Tumor Type | Patients | Endpoints | MVA * | Uptake Metric | Cut-Off Value | SUV Threshold | Reconstruction Algorithm | Treatment | Stage | Median Follow Up Time | Data Extraction |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Akagunduz et al. | 2015 | HN | 62 | LRFS, DFS, OS | No | SUVmax, SULmax, MTV | 10.15 (SUL) | Fitted | - | RT/CRT | 18 months | KM | |
Allal et al. | 2004 | HNSCC | 120 | LC, DFS, OS | Yes | SUVmax | 4.76 3.5 | Median Fitted | - | RT +/− CT, surgery +/− RT | I-IV | 48 months | HR |
Baschnagel et al. | 2015 | HNSCC | 74 | LC, LRC, DFS | Yes | SUVmax | 13.8 | Median | - | CRT | T1-T4, N0-N3 | 35 months | HR |
Brun et al. | 2002 | HNSCC | 47 | CR, LRC, OS | No | SUV, MR | 9.0 | Median | Iterative ML | RT, CRT | II-IV | 3.3 years | HR |
Cacicedo et al. | 2017 | HNSCC | 58 | DFS, LRC, DMFS, OS | Yes | SUVmax | 11.85 (SUV-T), 5.4 (SUV-N) | Median | - | Surgery + RT, RT +/− CT | III-IVB | 31 months | KM |
Chan et al. | 2017 | OHSCC | 124 | OS, RFS | Yes | SUVmax, SUVmean, MTV, TLG, entropy, contrast, busyness, complexity | 14.22 | OSEM | CRT | III-IV | 28.7 months | HR | |
Chung et al. | 2009 | SCC | 82 | CR, DFS | Yes | MTV, SUV > 2.5 | 10.0 | Median | OSEM | RT, CRT | I-IV | 34.8 months | HR |
Halfpenny et al. | 2002 | HNSCC | 58 | Survival | Yes | SUVpeak | 10.0 | Fitted | FBP | Surgery, +/−RT | I-IV | 39 months | HR |
Higgins et al. | 2012 | HNSCC | 8 | DFS, LRC, DMFS, OS | No | SUVmax, SUV mean, TLG | 15.4 | Median | OSEM | RT, CRT | III-IV (97%) | 15 months | KM |
Kim et al. | 2007 | OSCC | 52 | LC, DFS, OS | Yes | SUVmax | 6.0 | Median | - | Surgery +/− RT/CRT | I-IV | 36 months | HR |
Kitajima et al. | 2014 | Laryngeal | 51 | PFS, LC, NPFS, DMFS | Yes | SUVmax | 4.6 | Fitted | RAMLA | RT +/− CT, surgery +/− CRT | 48.6 months | KM | |
Komar et al. | 2014 | HNSCC | 22 | OS | No | SUVmax, MATV | 11.74 | Median | - | Surgery +/− CRT, RT | I-IV | 41 months | KM |
Koyasu et al. | 2014 | SCC | 108 | DFS | Yes | SUVmax, MTV, TLG | 10.0 | Fitted | 3D iterative | RT +/− CT, surgery +/− RT | I-IV | 36.4 months | HR |
Kunkel et al. | 2003 | OSCC | 44 | OS | Yes | SUVpeak | 5.6 | Median | - | RT (preop.) + surgery | I-IV | 38 months | HR |
Liao et al. | 2009 | OSCC | 109 | LC, DFS, DSS, OS | No | SUVmax | 19.3 | Median | ML, OSEM | Surgery + RT/CRT | III-IV | 39 months | HR |
Machtay et al. | 2009 | HNSCC | 60 | DFS, OS | Yes | SUVmax | 9.0 | Literature | - | RT, CRT, surgery + CRT/RT | I-IV | - | HR |
Minn et al. | 1997 | HNSCC | 37 | OS | No | SUVlean, MR | 9.0 | Median | - | RT +/− surgery | II-IV | 43 months | HR |
Moon et al. | 2015 | NPC | 44 | DFS | Yes | SUVmax, SUVmean, TLG, MTV | 7.8 | Fitted | OSEM | CRT | II-IVB | 40 months | HR |
Ng et al. | 2016 | OHSCC | 86 | PFS, OS | Yes | SUVmax, SUVmean, TLG, MTV | 19.44 | Fitted | - | CRT | III-IVB | 28 months | HR |
Preda et al. | 2016 | HNSCC | 57 | DFS | Yes | SUVmax | 5.75 | Fitted | OSEM | Surgery + RT +/− CT, RT + CT | T1-T4, N0-N2 | 21.3 months | HR |
Roh et al. | 2007 | SCC | 79 | DFS, LC, OS | No | SUVmax | 8.0 | Fitted | - | Surgery +/− RT or RT +/− CT | III-IV | 36 months | KM |
Schwartz et al. | 2004 | HNSCC | 54 | LRFS, DFS, OS | No | SUVmax | 9.0 | Median | FBP | RT +/− CT, surgery +/− RT | I-IV | 17.5 months | KM |
Schwartz et al. | 2015 | HNSCC | 74 | PFS, OS | No | SUVmax, MTV | 15.07 | Median | - | CRT | III-IV | 4.2 years | HR |
Suzuki et al. | 2014 | OPSCC + HPSCC | 49 | OS | Yes | SUVmax | 8.0 | Fitted | OSEM | Surgery + RT +/− CT, RT + CT | I-IV | 33 months | HR |
Suzuki-Shibata et al. | 2017 | OTSCC | 33 | PFS, OS | Yes | SUVmax, MTV | 15.7 | Fitted | FORE-OSEM | CRT | II-IVA | 36 months | HR |
Torizuka et al. | 2009 | HNSCC | 50 | LC, DFS | No | SUVpeak, SUV cont. variable | 7.0 | Fitted | OSEM | RT, CRT, surgery +/− CRT | I-IV | 15 months | KM |
Xie et al. | 2010 | NPC | 62 | OS, DFS | No | SUVmax | 8.0 | Fitted | - | CRT | III-IVB | 61 months | KM |
Author | Year | Tumor Type | Patients | Endpoints | MVA * | Uptake Metric | Cut-Off Value | SUV Threshold | Reconstruction Algorithm | Treatment | Stage | Median Follow Up Time | Data Extraction |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ahuja et al. | 1998 | NSCLC | 155 | OS | Yes | SUVpeak (SUR) 80% of max | 10.0 | Fitted | - | Surgery, RT, CRT | I-IV | 20.9 months | HR |
Aoki et al. | 2016 | NSCLC | 74 | LC | Yes | SUVmax, AID | 4.0 | Literature | - | SBRT | I | 24.5 months | HR |
Borst et al. | 2005 | NSCLC | 51 | DSS, OS | No | SUVmax, SUV cont. variable | 15.0 | Median | OSEM | CRT | I-III | 17 months | KM |
Carvalho et al. | 2013 | NSCLC | 220 | OS | No | MTV, SUVmax, SUV | 10.12 | Median | OSEM | RT, CRT | I-IIIB | 1.47 years | KM |
Cerfolio et al. | 2005 | NSCLC | 315 | OS, DFS | Yes | SUVmax | 10.0 | Median | Iterative | Surgery +/− CRT | I-IV | 26 months | HR |
Chen et al. | 2012 | NSCLC | 105 | PFS, OS | Yes | TLG, MTV, SUVmax | 15.0 | Fitted | OSEM | Surgery, CT, RT or CRT | I-IV | 3.1 years | HR |
Clarke et al. | 2012 | NSCLC | 82 | OS, RFS, DFS, CSS, RR, LR, DM | No | SUVmax | 4.75 | Median | - | SBRT | I | 2 years | KM |
Hamamoto et al. | 2011 | NSCLC | 26 | LFF | No | SUVmax | 5.0 | Fitted | - | SBRT | I | 21 months | KM |
Hofheinz et al. | 2016 | NSCLC | 31 | PFS, OS | No | SUV, SURtc, Kslope | 7.6 | Fitted | PSF + TOF | CRT and/or surgery | T1-4N0-3M0 | - | HR |
Horne et al. | 2014 | NSCLC | 95 | LC, PFS, OS | Yes | SUVmax | 5.0 | Literature | - | SBRT | IA-IB | 16.33 months | HR |
Huyn et al. | 2015 | NSCLC | 161 | DFS, OS | Yes | SUVmax, MTV | 14.0 | Fitted | OSEM | Surgery +/− CT and/or RT | IIIA-N2 | 20 months | HR |
Imamura et al. | 2011 | NSCLC | 62 | OS, PFS | No | SUVmax | 6.0 | Median | 3D-RAMLA | CT or CRT | IIB-IV | 464 days | KM |
Jiang et al. | 2018 | NSCLC | 151 | OS | No | SUVmax | 13.8 | Median | - | CRT, RT, CT | I-IV | 10 years | HR |
Kohutek et al. | 2015 | NSCLC | 211 | OS | Yes | SUVmax, GTV | 3.0 | Fitted | OSEM | SBRT | T1-2N0M0 | 25.2 months | HR |
Lee et al. | 2012 | NSCLC | 205 | OS | Yes | SUVmax | 13.0 | Fitted | Iterative | Neoadj. CRT, + surgery | IIIA | 1.6 years | HR |
Nair et al. | 2014 | NSCLC | 163 | PFS, OS, LRFS, DMFS | Yes | SUVmax | 7.0 | Median | - | RT, SBRT | T1-2N0M0 | 16 months | KM |
Nawara et al. | 2012 | NSCLC | 91 | OS | No | SUVmax, SUVmean | 7.0 | Median | Iterative | RT +/− induction CT | I-IIIB | - | KM |
Pyka et al. | 2015 | NSCLC | 45 | DSS, OS | Yes | SUVmax, SUVmean, MTV, COV, entropy, coarseness, contrast, correlation | 11.2 (OS), 12.3 (DSS) | Fitted | OSEM | SBRT | T1-2N0M0 | 21.4 months | KM |
Sasaki et al. | 2005 | NSCLC | 162 | OS, DFS | Yes | SUVmax | 5.0 | Fitted | Iterative | Surgery +/− RT or RT/CRT | I-IIIB | 17 months | HR |
Shirai et al. | 2017 | NSCLC | 45 | LC, PFS, OS | No | SUVmax | 5.5 | Median | - | C-ion RT | I | 28.9 months | KM |
Sugawara et al. | 1999 | NSCLC | 38 | OS | No | SUVlean | 8.72 | Median | Hanning filter | Surgery, CRT | I-IV | 26.5 months | KM |
Takeda et al. | 2011 | NSCLC | 95 | LC | No | SUVmax | 6.0 | Fitted | DRAMA | SBRT | IA-IIIB | 16 months | KM |
Takeda et al. | 2014 | NSCLC | 152 | OS, DFS. LC, RC, DMC, CSS | Yes | SUVmax | 3.35 (LC), 3.64 (RC), 2.47 (DMC, DFS), 2.55 (CSS, OS) | Fitted | RAMLA | SBRT | T1-2N0M0 | 25.3 months | HR |
Takeda et al. | 2017 | NSCLC | 26 | LC, PFS, OS | No | SUV, MTV, TLG, entropy, dissimilarity, HILAE, zone percentage | 8.18 | Median | OSEM | SBRT | T1-2N0M0 | 36 months | KM |
Ulger et al. | 2014 | NSCLC | 103 | OS, RFS, DFS | Yes | SUVmax | 10.7 | Median | - | 3D-CRT | IIIA-IIIB | 22.63 months | HR |
Vansteenkiste et al. | 1999 | NSCLC | 125 | OS | Yes | SUVmax | 7.0 | Fitted | - | Surgery +/− induction CT, RT +/− induction CT | I-IIIB | 19 months (mean) | HR |
Vesselle et al. | 2007 | NSCLC | 208 | OS, DFS | Yes | SUVmax | 7.0 | Fitted | Hanning filter | Surgery +/− neoadj. Or adjuvant therapy | I-IV | 37 months | HR |
Vu et al. | 2013 | NSCLC | 50 | OS, RFS | No | SUVmax, TLG, MTV | 6.43 | Median | - | SBRT | I | 25.1 months | HR |
Xiang et al. | 2012 | NSCLC | 84 | LRFS, DMFS, PFS, OS | Yes | SUVmax | 14.2 | Median | - | High dose proton + CT | III | 19.2 months | HR |
Yilmaz et al. | 2018 | NSCLC | 67 | PFS, OS | Yes | SUVmax | 15.0 | Median | - | CRT | III | 20.7 months | HR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clausen, M.M.; Vogelius, I.R.; Kjær, A.; Bentzen, S.M. Multiple Testing, Cut-Point Optimization, and Signs of Publication Bias in Prognostic FDG–PET Imaging Studies of Head and Neck and Lung Cancer: A Review and Meta-Analysis. Diagnostics 2020, 10, 1030. https://doi.org/10.3390/diagnostics10121030
Clausen MM, Vogelius IR, Kjær A, Bentzen SM. Multiple Testing, Cut-Point Optimization, and Signs of Publication Bias in Prognostic FDG–PET Imaging Studies of Head and Neck and Lung Cancer: A Review and Meta-Analysis. Diagnostics. 2020; 10(12):1030. https://doi.org/10.3390/diagnostics10121030
Chicago/Turabian StyleClausen, Malene M., Ivan R. Vogelius, Andreas Kjær, and Søren M. Bentzen. 2020. "Multiple Testing, Cut-Point Optimization, and Signs of Publication Bias in Prognostic FDG–PET Imaging Studies of Head and Neck and Lung Cancer: A Review and Meta-Analysis" Diagnostics 10, no. 12: 1030. https://doi.org/10.3390/diagnostics10121030
APA StyleClausen, M. M., Vogelius, I. R., Kjær, A., & Bentzen, S. M. (2020). Multiple Testing, Cut-Point Optimization, and Signs of Publication Bias in Prognostic FDG–PET Imaging Studies of Head and Neck and Lung Cancer: A Review and Meta-Analysis. Diagnostics, 10(12), 1030. https://doi.org/10.3390/diagnostics10121030