The Integrated Approach in Patients with Spinal Muscular Atrophy in the Era of Early Diagnosis, Etiopathogenic Therapies and Multidisciplinary Standards of Care and Rehabilitation Interventions Leads to New Phenotypes
Abstract
1. Introduction
2. Materials and Methods
- -
- The first center in Romania to administer, in October 2018, the disease-modifying therapy Nusinersen Spinraza reimbursed by the National Health Program—SMA;
- -
- The first center in Romania to administer Risdiplam treatment in April 2020 within the Compassionate Use Program; we currently have 45 patients in treatment reimbursed through the National Health Program—SMA;
- -
- The first center in Romania to administer gene therapy with Onasemnogene abeparvovec in July 2020 under the Compassionate Use Program; currently, four patients have received gene therapy through the National Health Program—SMA;
- -
- The center with the most pediatric patients in the country, with 135 patients registered for etiopathogenic treatment and standards of care;
- -
- The only center in Romania that is carrying out the neonatal screening pilot study for SMA from August 2022 with 28 maternity hospitals in Bucharest and neighboring counties.
2.1. Study Design and Objective
2.2. Participants and Recruitment
- ✓
- Genetically confirmed diagnosis of SMA with-SMN1 gene homozygous deletion;
- ✓
- Specific SMA types (type I, II or III);
- ✓
- Ability to perform certain functional assessments, depending on the study’s objectives;
- ✓
- Treatment initiated in our clinic (Nusinersen or Risdiplam or Onasemnogene Abepravovec);
- ✓
- Signing of informed consent by the patient or legal representative.
- ✓
- Patients without genetic confirmation of the disease, including SMA non5q;
- ✓
- Refusal to sign the informed consent by the patient/legal representative.
2.3. Data Collection
2.3.1. Sociodemographic and Physical Condition
2.3.2. Tools for Quantified Assessment of Motor Function
2.3.3. Accessibility of Disease-Modifying SMA Therapy in Romania
2.3.4. Statistical Method
3. Results
3.1. Cohort Characteristic
3.2. Motor Function
3.3. Influence of SMN2 Copy Number
3.4. Respiratory and Nutritional Support
3.5. Phenotypic Evolution
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chudakova, D.; Kuzenkova, L.; Fisenko, A.; Savostyanov, K. In Search of Spinal Muscular Atrophy Disease Modifiers. Int. J. Mol. Sci. 2024, 25, 11210. [Google Scholar] [CrossRef]
- Bottai, D.; Adami, R. Spinal Muscular Atrophy: New Findings for an Old Pathology. Brain Pathol. 2013, 23, 613. [Google Scholar] [CrossRef]
- Mercuri, E.; Sumner, C.J.; Muntoni, F.; Darras, B.T.; Finkel, R.S. Spinal muscular atrophy. Nat. Rev. Dis. Primer 2022, 8, 52. [Google Scholar] [CrossRef]
- Farrar, M.A.; Park, S.B.; Vucic, S.; Carey, K.A.; Turner, B.J.; Gillingwater, T.H.; Swoboda, K.J.; Kiernan, M.C. Emerging therapies and challenges in spinal muscular atrophy. Ann. Neurol. 2017, 81, 355–368. [Google Scholar] [CrossRef] [PubMed]
- De Sanctis, R.; Pane, M.; Coratti, G.; Palermo, C.; Leone, D.; Pera, M.C.; Abiusi, E.; Fiori, S.; Forcina, N.; Fanelli, L.; et al. Clinical phenotypes and trajectories of disease progression in type 1 spinal muscular atrophy. Neuromuscul. Disord. 2018, 28, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Mercuri, E.; Bertini, E.; Iannaccone, S.T. Childhood spinal muscular atrophy: Controversies and challenges. Lancet Neurol. 2012, 11, 443–452. [Google Scholar] [CrossRef]
- Servais, L.; Strijbos, P.; Poleur, M.; Mirea, A.; Butoianu, N.; Sansone, V.A.; Vuillerot, C.; Schara-Schmidt, U.; Scoto, M.; Seferian, A.M.; et al. Evidentiary basis of the first regulatory qualification of a digital primary efficacy endpoint. Sci. Rep. 2024, 14, 29681. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brogna, C.; Cristiano, L.; Tartaglione, T.; Verdolotti, T.; Fanelli, L.; Ficociello, L.; Tasca, G.; Battini, R.; Coratti, G.; Forcina, N.; et al. Functional Levels and MRI Patterns of Muscle In-volvement in Upper Limbs in Duchenne Muscular Dystrophy. PLoS ONE 2018, 13, e0199222. [Google Scholar] [CrossRef]
- Wu, Y.F.; Chen, J.A.; Jong, Y.J. Treating neuromuscular diseases: Unveiling gene therapy breakthroughs and pioneering future applications. J. Biomed. Sci. 2025, 32, 30. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tizzano, E.F. La atrofia muscular espinal en el nuevo escenario terapéutico. Rev. Médica Clínica Las Condes. 2018, 29, 512–520. [Google Scholar] [CrossRef]
- Kolb, S.J.; Coffey, C.S.; Yankey, J.W.; Krosschell, K.; Arnold, W.D.; Rutkove, S.B.; Swoboda, K.J.; Reyna, S.P.; Sakonju, A.; Darras, B.T.; et al. Natural history of infantile-onset spinal muscular atrophy. Ann. Neurol. 2017, 82, 883–891. [Google Scholar] [CrossRef]
- Schroth, M.K.; Deans, J.; Bharucha Goebel, D.X.; Burnette, W.B.; Darras, B.T.; Elsheikh, B.H.; Felker, M.V.; Klein, A.; Krueger, J.; Proud, C.M.; et al. Spinal Muscular Atrophy Update in Best Practices. Neurol. Clin. Pract. 2025, 15, e200374. [Google Scholar] [CrossRef]
- Schorling, D.C.; Pechmann, A.; Kirschner, J. Advances in Treatment of Spinal Muscular Atrophy—New Phenotypes, New Challenges, New Implications for Care. J. Neuromuscul. Dis. 2019, 7, 1–13. [Google Scholar] [CrossRef]
- Prior, T.W.; Leach, M.E.; Finanger, E.L. Spinal Muscular Atrophy. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. Available online: http://www.ncbi.nlm.nih.gov/books/NBK1352/ (accessed on 16 February 2025).
- Arnold, W.D.; Kassar, D.; Kissel, J.T. Spinal muscular atrophy: Diagnosis and management in a new therapeutic era. Muscle Nerve 2015, 51, 157–167. [Google Scholar] [CrossRef]
- Tãtaru, E.A.; Ouillade, M.C.; Chan, C.H.; Pearce, D.A. Incorporating a new disease in the newborn screening programs in Europe: The spinal muscular atrophy case study. Rare Dis. Orphan Drugs J. 2024, 3, 19. [Google Scholar] [CrossRef]
- Simple Screening Comparisons Between Countries Mask Complex Differences—UK National Screening Committee. 15 February 2023. Available online: https://nationalscreening.blog.gov.uk/2023/02/15/simple-screening-comparisons-between-countries-mask-complex-differences/ (accessed on 16 February 2025).
- Neil, E.E.; Bisaccia, E.K. Nusinersen: A Novel Antisense Oligonucleotide for the Treatment of Spinal Muscular Atrophy. J. Pediatr. Pharmacol. Ther. JPPT 2019, 24, 194–203. [Google Scholar] [CrossRef]
- Qiu, J.; Wu, L.; Qu, R.; Jiang, T.; Bai, J.; Sheng, L.; Feng, P.; Sun, J. History of development of the life-saving drug “Nusinersen” in spinal muscular atrophy. Front. Cell. Neurosci. 2022, 16, 942976. [Google Scholar] [CrossRef] [PubMed]
- Wurster, C.D.; Ludolph, A.C. Nusinersen for spinal muscular atrophy. Ther. Adv. Neurol. Disord. 2018, 11, 1756285618754459. [Google Scholar] [CrossRef]
- Nusinersen. Available online: https://go.drugbank.com/drugs/DB13161 (accessed on 23 July 2025).
- Ratni, H.; Scalco, R.S.; Stephan, A.H. Risdiplam, the First Approved Small Molecule Splicing Modifier Drug as a Blueprint for Future Transformative Medicines. ACS Med. Chem. Lett. 2021, 12, 874–877. [Google Scholar] [CrossRef]
- Kakazu, J.; Walker, N.L.; Babin, K.C.; Trettin, K.A.; Lee, C.; Sutker, P.B.; Kaye, A.M.; Kaye, A.D. Risdiplam for the Use of Spinal Muscular Atrophy. Orthop. Rev. 2021, 13, 25579. [Google Scholar] [CrossRef] [PubMed]
- How Evrysdi® (risdiplam) Works to Treat SMA|Official Healthcare Professional Site. evrysdi. Available online: https://www.evrysdi-hcp.com/about-evrysdi/how-evrysdi-works.html (accessed on 23 July 2025).
- Risdiplam: Uses, Interactions, Mechanism of Action|DrugBank Online. Available online: https://go.drugbank.com/drugs/DB15305 (accessed on 23 July 2025).
- Ogbonmide, T.; Rathore, R.; Rangrej, S.B.; Hutchinson, S.; Lewis, M.; Ojilere, S.; Carvalho, V.; Kelly, I. Gene Therapy for Spinal Muscular Atrophy (SMA): A Review of Current Challenges and Safety Considerations for Onasemnogene Abeparvovec (Zolgensma). Cureus 2023, 15, e36197. [Google Scholar] [CrossRef]
- Day, J.W.; Finkel, R.S.; Chiriboga, C.A.; Connolly, A.M.; Crawford, T.O.; Darras, B.T.; Iannaccone, S.T.; Kuntz, N.L.; Peña, L.D.M.; Shieh, P.B.; et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): An open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 2021, 20, 284–293. [Google Scholar] [CrossRef] [PubMed]
- AAV Safety Concerns—Parent Project Muscular Dystrophy. Available online: https://www.parentprojectmd.org/library/aav-safety-concerns/ (accessed on 23 July 2025).
- Wang, D.; Tai, P.W.L.; Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 2019, 18, 358–378. [Google Scholar] [CrossRef]
- Duque, S.; Joussemet, B.; Riviere, C.; Marais, T.; Dubreil, L.; Douar, A.-M.; Fyfe, J.; Moullier, P.; Colle, M.-A.; Barkats, M. Intravenous Administration of Self-complementary AAV9 Enables Transgene Delivery to Adult Motor Neurons. Mol. Ther. 2009, 17, 1187–1196. [Google Scholar] [CrossRef]
- Bell, C.L.; Vandenberghe, L.H.; Bell, P.; Limberis, M.P.; Gao, G.-P.; Van Vliet, K.; Agbandje-McKenna, M.; Wilson, J.M. The AAV9 receptor and its modification to improve in vivo lung gene transfer in mice. J. Clin. Investig. 2011, 121, 2427–2435. [Google Scholar] [CrossRef]
- Onasemnogene Abeparvovec for the Treatment of, S.M.A. Neurology Live, 14 May 2021. Available online: https://www.neurologylive.com/view/onasemnogene-abeparvovec-for-the-treatment-of-sma (accessed on 23 July 2025).
- Naveed, A.; Calderon, H. Onasemnogene Abeparvovec (AVXS-101) for the Treatment of Spinal Muscular Atrophy. J. Pediatr. Pharmacol. Ther. 2021, 26, 437–444. [Google Scholar] [CrossRef]
- Therrell, B.L.; Padilla, C.D.; Borrajo, G.J.C.; Khneisser, I.; Schielen, P.C.J.I.; Knight-Madden, J.; Malherbe, H.L.; Kase, M. Current Status of Newborn Bloodspot Screening Worldwide 2024: A Comprehensive Review of Recent Activities (2020–2023). Int. J. Neonatal Screen. 2024, 10, 38. [Google Scholar] [CrossRef] [PubMed]
- Nishio, H.; Niba, E.T.E.; Saito, T.; Okamoto, K.; Takeshima, Y.; Awano, H. Spinal Muscular Atrophy: The Past, Present, and Future of Diagnosis and Treatment. Int. J. Mol. Sci. 2023, 24, 11939. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Finkel, R.S.; Bertini, E.S.; Schroth, M.; Simonds, A.; Wong, B.; Aloysius, A.; Morrison, L.; Main, M.; Crawford, T.O.; et al. Consensus statement for standard of care in spinal muscular atrophy. J. Child Neurol. 2007, 22, 1027–1049. [Google Scholar] [CrossRef]
- Güzin, Y.; Büyükşen, O.; Gençpınar, P.; Olgaç Dündar, N.; Baydan, F. Common complications in spinal muscular atrophy (SMA) type 1 after nusinersen treatment. Turk. J. Pediatr. 2024, 66, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Glanzman, A.M.; Mazzone, E.; Main, M.; Pelliccioni, M.; Wood, J.; Swoboda, K.J.; Scott, C.; Pane, M.; Messina, S.; Bertini, E.; et al. The Children’s Hospital of Philadelphia infant test of neuromuscular disorders (CHOP INTEND): Test development and reliability. Neuromuscul. Disord. 2010, 20, 155–161. [Google Scholar] [CrossRef]
- Glanzman, A.M.; O’Hagen, J.M.; McDermott, M.P.; Martens, W.B.; Flickinger, J.; Riley, S.; Quigley, J.; Montes, J.; Dunaway, S.; Deng, L.; et al. Validation of the Expanded Hammersmith Functional Motor Scale in spinal muscular atrophy type II and III. J. Child Neurol. 2011, 26, 1499–1507. [Google Scholar] [CrossRef]
- Glanzman, A.M.; McDermott, M.P.; Montes, J.; Martens, W.B.; Flickinger, J.; Riley, S.; Quigley, J.; Dunaway, S.; O’Hagen, J.; Deng, L. Validation of the Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND). Pediatr. Phys. Ther. Off. Publ. Sect. Pediatr. Am. Phys. Ther. Assoc. 2011, 23, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Pierzchlewicz, K.; Kępa, I.; Podogrodzki, J.; Kotulska, K. Spinal Muscular Atrophy: The Use of Functional Motor Scales in the Era of Disease-Modifying Treatment. Child Neurol. Open 2021, 8, 2329048X211008725. [Google Scholar] [CrossRef] [PubMed]
- What Is the CHOP INTEND Motor Test for SMA?|mySMAteam. Available online: https://www.mysmateam.com/resources/what-is-the-chop-intend-motor-test-for-sma (accessed on 16 February 2025).
- Philadelphia TCH of Research on Neuromuscular Disorders|Children’s Hospital of Philadelphia. Available online: https://www.chop.edu/centers-programs/neuromuscular-program/research-neuromuscular-disorders (accessed on 16 February 2025).
- Hammersmith Functional Motor Scale Expanded for SMA Type II and III—Manual of Procedures.pdf. Available online: https://www.fundame.net/documentacion/Hammersmith%20Functional%20Motor%20Scale%20Expanded%20for%20SMA%20Type%20II%20and%20III%20-%20Manual%20of%20Procedures.pdf (accessed on 16 February 2025).
- Hammersmith Functional Motor Scale—Expanded (HFMSE) Manual of Procedures and Score Sheets. Available online: https://www.biogenlinc.si/content/dam/intl/europe/slovenia/mta/hcp/biogenlinc-core/sl_SI/media/documents/spinal-muscular-atrophy/sign-and-symptoms/HFSM_scale_block_SLO.pdf (accessed on 16 February 2025).
- Mirea, A.; Leanca, M.C.; Onose, G.; Sporea, C.; Padure, L.; Shelby, E.-S.; Dima, V.; Daia, C. Physical Therapy and Nusinersen Impact on Spinal Muscular Atrophy Rehabilitative Outcome. Front. Biosci.-Landmark 2022, 27, 179. [Google Scholar] [CrossRef]
- Revised Hammersmith Scale (RHS) for Spinal Muscular Atrophy. Physiopedia. Available online: https://www.physio-pedia.com/Revised_Hammersmith_Scale_(RHS)_for_Spinal_Muscular_Atrophy (accessed on 22 July 2025).
- Özkaya, Ö. Functional Rating Scale May Be Useful in SMA Assessment. Rare Disease Advisor. 13 January 2023. Available online: https://www.rarediseaseadvisor.com/news/functional-rating-scale-may-be-useful-in-sma-assessment/ (accessed on 22 July 2025).
- Finkel, R.S.; McDermott, M.P.; Kaufmann, P.; Darras, B.T.; Chung, W.K.; Sproule, D.M.; Kang, P.B.; Foley, A.R.; Yang, M.L.; Martens, W.B.; et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology 2014, 83, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Bobbitt, Z. Friedman Test: Definition, Formula, and Example. Statology, 4 May 2020. Available online: https://www.statology.org/friedman-test/ (accessed on 23 July 2025).
- The Friedman Test. Technology Networks. Available online: http://www.technologynetworks.com/tn/articles/the-friedman-test-387454 (accessed on 23 July 2025).
- Armitage, P.; Berry, G.; Matthews, J.N.S. Statistical Methods in Medical Research, 4th ed.; Reprinted 7; Blackwell Science: Oxford, UK, 2009. [Google Scholar]
- D’Silva, A.M.; Kariyawasam, D.S.T.; Best, S.; Wiley, V.; Farrar, M.A.; NSW SMA NBS Study Group. Integrating newborn screening for spinal muscular atrophy into health care systems: An Australian pilot programme. Dev. Med. Child Neurol. 2022, 64, 625–632. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]











| Parameter | Overall (n = 104 Patients) |
|---|---|
| Male gender | 52 (50%) |
| Age of onset (months) | 48 [9; 106] |
| SMN2 copies | |
| 2 | 52 (50%) |
| 3 | 51 (49%) |
| 4 | 1 (1%) |
| Non-invasive ventilation | 37 (35.6%) |
| Gastrostomy | 3 (2.9%) |
| Nasogastric tube | 8 (7.7%) |
| Oral feeding | 93 (89.4%) |
| Measure | Time Point | Median [IQR] |
|---|---|---|
| CHOP INTEND | Before | 23 [16; 32] |
| CHOP INTEND | 6 months | 40 [28; 47.8] |
| CHOP INTEND | 12 months | 42 [35.2; 52] |
| CHOP INTEND | 18 months | 49 [38.5; 56] |
| CHOP INTEND | 24 months | 53 [40.7; 56.8] |
| HFMSE | Before | 32 [23.7; 45.7] |
| HFMSE | 6 months | 33 [28; 47.3] |
| HFMSE | 12 months | 35 [28; 48.7] |
| HFMSE | 18 months | 35 [29; 49.3] |
| HFMSE | 24 months | 36 [29; 49.3] |
| Parameter | NIV Present (n = 37) | NIV Absent (n = 67) | p-Value |
|---|---|---|---|
| Score before | 16 [10; 28] | 32 [24; 44] | <0.01 |
| Score 24 months | 44 [25; 53] | 46 [34; 54] | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leanca, M.C.; Mirea, A.; Nicolae, G.; Capitanescu, A.; Munteanu, C.; Onose, G. The Integrated Approach in Patients with Spinal Muscular Atrophy in the Era of Early Diagnosis, Etiopathogenic Therapies and Multidisciplinary Standards of Care and Rehabilitation Interventions Leads to New Phenotypes. Life 2025, 15, 1731. https://doi.org/10.3390/life15111731
Leanca MC, Mirea A, Nicolae G, Capitanescu A, Munteanu C, Onose G. The Integrated Approach in Patients with Spinal Muscular Atrophy in the Era of Early Diagnosis, Etiopathogenic Therapies and Multidisciplinary Standards of Care and Rehabilitation Interventions Leads to New Phenotypes. Life. 2025; 15(11):1731. https://doi.org/10.3390/life15111731
Chicago/Turabian StyleLeanca, Madalina Cristina, Andrada Mirea, Georgiana Nicolae, Andrei Capitanescu, Constantin Munteanu, and Gelu Onose. 2025. "The Integrated Approach in Patients with Spinal Muscular Atrophy in the Era of Early Diagnosis, Etiopathogenic Therapies and Multidisciplinary Standards of Care and Rehabilitation Interventions Leads to New Phenotypes" Life 15, no. 11: 1731. https://doi.org/10.3390/life15111731
APA StyleLeanca, M. C., Mirea, A., Nicolae, G., Capitanescu, A., Munteanu, C., & Onose, G. (2025). The Integrated Approach in Patients with Spinal Muscular Atrophy in the Era of Early Diagnosis, Etiopathogenic Therapies and Multidisciplinary Standards of Care and Rehabilitation Interventions Leads to New Phenotypes. Life, 15(11), 1731. https://doi.org/10.3390/life15111731

