Alkaloid Profiling and Anti-Cholinesterase Potential of Three Different Genera of Amaryllidaceae Collected in Ecuador: Urceolina Rchb., Clinanthus Herb. and Stenomesson Herb.
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Alkaloid Extraction
2.3. GC-MS Analysis
2.4. Alkaloid Identification
2.5. Alkaloid Quantification
2.6. AChE and BuChE Inhibitory Activity
2.7. Statistical Analysis
2.8. Molecular Docking
2.9. Molecular Dynamics Simulations (MD)
Free Energy Calculations
3. Results
3.1. Alkaloid Profile
3.2. AChE and BuChE Inhibitory Activity
3.3. Molecular Docking Results
3.4. Molecular Dynamics (MD) Simulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bastida, J.; Lavilla, R.; Viladomat, F. Chemical and biological aspects of Narcissus alkaloids. In The Alkaloids: Chemistry and Physiology; Cordell, G.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 63, pp. 87–179. [Google Scholar]
- Berkov, S.; Osorio, E.; Viladomat, F.; Bastida, J. Chemodiversity, chemotaxonomy and chemoecology of AA. In The Alkaloids: Chemistry and Biology; Knölker, H.-J., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 83, pp. 113–185. [Google Scholar] [CrossRef]
- Meerow, A.W.; Gardner, E.M.; Nakamura, K. Phylogenomicsof the Andean Tetraploid Clade of the American Amaryllidaceae (Subfamily Amaryllidoideae): Unlockinga Polyploid Generic Radiation Abettedby Continental Geodynamics. Front. Plant Sci. 2020, 11, 582422. [Google Scholar] [CrossRef] [PubMed]
- Kornienko, A.; Evidente, A. Chemistry, biology and medicinal potential of narciclasine and its congeners. Chem. Rev. 2008, 108, 1982–2014. [Google Scholar] [CrossRef] [PubMed]
- Meerow, A.W.; Jost, L.; Oleas, N. Two new species of endemic Ecuadorean Amaryllidaceae (Asparagales, Amaryllidaceae, Amarylloideae, Eucharideae). Phytokeys 2015, 48, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Meerow, A.W. Biosyntematics of two sympatric species of Eucharis (Amaryllidaceae). Plant Syst. Evol. 1989, 166, 11–30. [Google Scholar] [CrossRef]
- Meerow, A.W. 202. Amaryllidaceae. In Flora of Ecuador; Harling, G., Andersson, L., Eds.; University of Göteborg/Riksmuseum, Stockholm/Pontificia University Católica del Ecuador: Quito, Ecuador, 1990; Volume 41, pp. 1–52. [Google Scholar]
- Meerow, A.W.; van der Werff, H. Pucara (Amaryllidaceae) Reduced to Synonymy with Stenomesson on the Basis of Nuclear and Plastid DNA Spacer Sequences, and a New Related Species of Stenomesson. Syst. Bot. 2004, 29, 511–517. [Google Scholar] [CrossRef]
- Meerow, A.W.; Guy, C.L.; Li, Q.-B.; Yang, S.-L. Phylogeny of he American Amaryllidaceae based on nrDNA ITS sequences. Syst. Bot. 2000, 25, 708–726. [Google Scholar] [CrossRef]
- Alzate, F.; Lesmes, M.; Cortés, N.; Varela, S.; Osorio, E. Sinopsis de la família Amaryllidaceae em Colombia. Biota Colomb. 2019, 20, 2–20. [Google Scholar] [CrossRef]
- León, B.; Sagástegui, A.; Sánchez, I.; Zapata, M.; Meerow, A.; Cano, A. Amaryllidaceae endémicas del Perú. Rev. Peru. Biol. 2006, 13, 690–697. [Google Scholar] [CrossRef]
- Leiva, S.; Meerow, A.W. A new species of Clinanthus from northern Peru (Asparagales, Amaryllidaceae, Amarylloideae, Clinantheae). PhytoKeys 2016, 63, 99–106. [Google Scholar] [CrossRef]
- Cabezas, F.; Ramírez, A.; Viladomat, F.; Codina, C.; Bastida, J. Alkaloids from Eucharis amazonica (Amaryllidaceae). Chem. Pharm. Bull. 2003, 51, 315–317. [Google Scholar] [CrossRef]
- Vargas, C.C. Phytomorphic representations of the ancient Peruvians. Econ. Bot. 1962, 16, 106–115. [Google Scholar] [CrossRef]
- Acosta, K.; Pigni, N.; Oleas, N.; Bastida, J. Identification of the alkaloids of Steno-messon aurantiacum (Kunth) Herb., an Amaryllidaceae species from the Ecuadorian Andes. Pharmacol. Online 2014, 3, 178–183. [Google Scholar]
- Acosta, K.; Inca, A.; Tallini, L.R.; Osorio, E.H.; Robles, J.; Bastida, J.; Oleas, N.H. Alkaloids of Phaedranassa dubia (Kunth) J.F. Macbr. and Phaedranassa brevifolia Meerow (Amaryllidaceae) from Ecuador and its cholinesterase-inhibitory activity. S. Afr. J. Bot. 2021, 136, 91–99. [Google Scholar] [CrossRef]
- Moreno, R.; Tallini, L.R.; Salazar, C.; Osorio, E.H.; Montero, E.; Bastida, J.; Oleas, N.H.; León, K.A. Chemical profiling and cholinesterase inhibitory activity of five Phaedranassa Herb. (Amaryllidaceae) species from Ecuador. Molecules 2020, 25, 2092. [Google Scholar] [CrossRef] [PubMed]
- Tallini, L.R.; Carrasco, A.; Acosta, K.L.; Vinueza, D.; Bastida, J.; Oleas, N.H. Alkaloid Profiling and Cholinesterase Inhibitory Potential of Crinum × amabile Donn. (Amaryllidaceae) Collected in Ecuador. Plants 2021, 10, 2686. [Google Scholar] [CrossRef] [PubMed]
- WHO. 2023. Available online: https://www.who.int/health-topics/dementia#tab=tab_1 (accessed on 20 November 2023).
- Konrath, E.L.; dos Santos, C.P.; Klein-Júnior, L.C.; Henriques, A.T. Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer’s disease. J. Pharm. Pharm. 2013, 65, 1701–1725. [Google Scholar] [CrossRef] [PubMed]
- Berkov, S.; Georgieva, L.; Kondakova, V.; Atanassov, A.; Viladomat, F.; Bastida, J.; Codina, C. Plant sources of galanthamine: Phytochemical and biotechnological aspects. Biotechnol. Biotechnol. Equip. 2009, 23, 1170–1176. [Google Scholar] [CrossRef]
- Berkov, S.; Georgieva, L.; Sidjimova, B.; Bastida, J. Evaluation of Hippeastrum papilio (Ravenna) Van Scheepen potencial as a new industrial source of galanthamine. Ind. Crops Prod. 2022, 178, 114619. [Google Scholar] [CrossRef]
- Torras-Claveria, L.; Berkov, S.; Codina, C.; Viladomat, F.; Bastida, J. Metabolomic analysis of bioactive Amaryllidaceae alkaloids of ornamental varieties of Narcissus by GC-MS combined with k-means cluster analysis. Ind. Crops Prod. 2014, 56, 211–222. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharm. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- López, S.; Bastida, J.; Viladomat, F.; Codina, C. Acetylcholinesterase inhibitory activity of some Amaryllidaceae alkaloids and Narcissus extracts. Life Sci. 2002, 71, 2521–2529. [Google Scholar] [CrossRef] [PubMed]
- Cheung, J.; Rudolph, M.J.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Love, J.; Franklin, M.C.; Height, J.J. Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Lidands. J. Med. Chem. 2012, 55, 10282–10286. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem. 1999, 19, 1639–1662. [Google Scholar] [CrossRef]
- Neria, E.; Fischer, S.; Karplus, M. Simulation of activation free energies in molecular systems. J. Chem. Phys. 1996, 105, 1902–1921. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Özpinar, G.A.; Peukert, W.; Clark, T. An improved generalized AMBER force field (GAFF) for urea. J. Mol. Model. 2016, 16, 1427–1440. [Google Scholar] [CrossRef] [PubMed]
- Salomon-Ferrer, R.; Case, D.A.; Walker, R.C. An overview of the Amber biomolecular simulation package. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable Molecular Dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef]
- Phillips, J.C.; Hardy, D.J.; Maia, J.D.; Stone, J.E.; Ribeiro, J.V.; Bernardi, R.C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 2020, 153, 044130. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.M.; Archontis, G. MM-GB(PB)SA Calculations of Protein-Ligand Binding Free Energies. In Molecular Dynamics—Studies of Synthetic and Biological Macromolecules; Wang, L., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Götz, A.W.; Williamson, M.J.; Xu, D.; Ducan, P.; Grand, S.L.; Walker, R.C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory. Comput. 2012, 8, 1542–1555. [Google Scholar] [CrossRef] [PubMed]
- Abroshan, H.; Akbarzadeh, H.; Parsafar, G.A. Molecular dynamics simulation and MM-PBSA calculations of sickle cell hemoglobin in dimer form with Val, Trp, or Phe at the lateral contact. J. Phys. Org. Chem. 2010, 23, 866–877. [Google Scholar] [CrossRef]
- Soto-Vásquez, M.R.; Alvarado-García, P.A.A.; Osorio, E.H.; Tallini, L.R.; Bastida, J. Antileishmanial activity of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) collected in Peru. Plants 2023, 12, 322. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, J.P.; Pigni, N.B.; Torras-Claveria, L.; Berkov, S.; Codina, C.; Viladomat, F.; Bastida, J. Bioactive alkaloid extracts from Narcissus broussonetii: Mass spectral studies. J. Pharm. Biomed. Anal. 2012, 70, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Cortes, N.; Castañeda, C.; Osorio, E.H.; Cardona-Gomez, G.P.; Osorio, E. Amaryllidaceae alkaloids as agents with protective effects against oxidative neural cell injury. Life Sci. 2018, 203, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Cortes, N.; Sierra, K.; Alzate, F.; Osorio, E.H.; Osorio, E. Alkaloids of Amaryllidaceae as Inhibitors of Cholinesterases (AChEs and BChEs): An Integrated Bioguided Study. Phytochem. Anal. 2018, 29, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Soto-Vásquez, M.R.; Horna-Pinedo, M.V.; Tallini, L.R.; Bastida, J. Chemical Composition and In Vitro Antiplasmodial Activity of the Total Alkaloids of the Bulbs of Two Amaryllidaceae Species from Northern Peru. Pharmacogn. J. 2021, 13, 1046–1052. [Google Scholar] [CrossRef]
- Rodríguez-Escobar, M.L.; Tallini, L.R.; Lisa-Molina, J.; Berkov, S.; Viladomat, F.; Meerow, A.; Bastida, J.; Torras-Claveria, L. Chemical and Biological Aspects of Different Species of the Genus Clinanthus Herb. (Amaryllidaceae) from South America. Molecules 2023, 28, 5408. [Google Scholar] [CrossRef]
- Calderón, A.I.; Cubilla, M.; Espinosa, A.; Gupta, M.P. Screening of plants of Amaryllidaceae and related families from Panama as sources of acetylcholinesterase inhibitors. Pharm. Biol. 2010, 48, 988–993. [Google Scholar] [CrossRef]
- Sierra, K.; de Andrade, J.P.; Tallini, L.R.; Osorio, E.H.; Yañéz, O.; Osorio, M.I.; Oleas, N.H.; García-Beltrán, O.; de Borges, W.S.; Bastida, J.; et al. In vitro and in silico analysis of galanthine from Zephyranthes carinata as an inhibitor of acetylcholinesterase. Biomed. Pharmacother. 2022, 150, 113016. [Google Scholar] [CrossRef] [PubMed]
- Thawai, C.; Bunbamrung, N.; Pittayakhajonwut, P.; Chongruchiroj, S.; Pratuangdejkul, J.; He, Y.-W.; Tadtong, S.; Sareedenchai, V.; Prombutara, P.; Qian, Y. A novel diterpene agent isolated from Microbispora hainanensis strain CSR-4 and its in vitro and in silico inhibition effects on acetylcholine esterase enzyme. Sci. Rep. 2020, 10, 11058. [Google Scholar] [CrossRef] [PubMed]
- Orhan, I.; Sener, B. Bioactivity-directed fractionation of alkaloids from some Amaryllidaceae plants and their anticholinesterase activity. Chem. Nat. Compd. 2003, 39, 383–386. [Google Scholar] [CrossRef]
Alkaloid | RT | RI | MS | A | B | C | D | E |
---|---|---|---|---|---|---|---|---|
ismine (1) | 21.34 | 2304.2 | 257(42), 239(20), 238(100), 196(8), 168(7) | - | - | - | - | 2.8 |
trisphaeridine (2) | 21.65 | 2323.1 | 223(100), 222(39), 164(11), 138(16), 111(6) | - | - | - | - | 8.1 |
5,6-dihydrobicolorine (3) | 22.35 | 2362.2 | 239(57), 238(100), 180(9), 90(4), 89(1) | - | - | - | - | 4.3 |
galanthamine (4) | 23.43 | 2386.1 | 287(92), 286 (100), 270(15), 244(28), 216(34) | 46.2 | 28.2 | - | - | 74.1 |
sanguinine (5) | 23.71 | 2452.4 | 273(100), 272(72), 256(17), 202(21), 160(25) | - | - | - | 3.0 | 7.8 |
unidentified (galanthamine-type) 1 (6) | 24.06 | 2474.4 | 287(55), 286(100), 256(45), 228(29), 211(9) | - | - | - | - | 24.0 |
unidentified (7) | 24.27 | 2481.4 | 301(65), 300(100), 284(14), 270(41), 242(23) | - | - | - | - | 5.1 |
narwedine (8) | 24.60 | 2509.7 | 285(91), 284(100), 242(14), 216(21), 174(23) | - | - | - | - | 3.4 |
galanthindole (9) | 24.99 | 2535.0 | 281(100), 262(18), 252 (13), 225(5) 191(8) | - | - | - | - | 15.8 |
8-O-demethylmaritidine (10) | 25.07 | 2539.9 | 273(100), 254(6) 230(19), 201(67), 189(35) | - | - | 5.5 | - | 6.1 |
anhydrolycorine (11) | 25.12 | 2543.6 | 251(49), 250(100), 192(10), 191(9), 163(2) | - | - | - | 24.5 | - |
unidentified (12) | 25.62 | 2576.1 | 301(100), 286(30), 270(24), 203(32), 174(50) | - | - | - | - | 45.4 |
kirkine (13) | 25.83 | 2590.1 | 253(64), 252(100), 237(19), 209(14), 280(4) | - | - | - | - | 23.1 |
assoanine (14) | 26.10 | 2608.1 | 267(61), 266(100), 250(23), 126(3) | - | - | - | - | 3.3 |
haemanthamine (15) | 26.14 | 2611.5 | 301(11), 272(100), 240(16), 199(9), 181(28) | 172.5 | 37.2 | 101.4 | - | - |
pancratinine C (16) | 26.32 | 2613.5 | 287(99), 203(51), 188(64), 176(100), 174(85) | - | - | - | - | 4.9 |
tazettine (17) | 26.51 | 2620.4 | 331(23), 316(12), 298(19), 247(100), 201(20) | - | - | 32.6 | - | - |
hippeastidine (18) | 26.64 | 2625.8 | 319(100), 304(19), 288(33), 246(14), 233(46) | - | - | - | - | 41.7 |
11,12-dehydroanhydrolycorine (19) | 26.65 | 2644.4 | 249(68), 248(100), 191(8), 190(19), 1985) | - | - | - | 4.9 | 18.4 |
montanine (20) | 26.85 | 2646.5 | 301(100), 271(13), 270(63), 257(31), 226(20) | - | - | - | - | 3.6 |
unidentified (21) | 27.00 | 2650.1 | 349(65), 334(50), 318(100), 291(52), 232(42) | - | - | - | - | 4.0 |
unidentified (pretazettine-type) 1 (22) | 27.39 | 2697.3 | 331(52), 300(15), 261(100),228(24), 201(16) | - | - | - | - | 8.2 |
unidentified (pretazettine-type) 1 (23) | 27.65 | 2795.6 | 331(25), 261(100), 228(23), 197(8), 169(6) | - | - | - | - | 3.8 |
11-hydroxyvittatine (24) | 28.31 | 2716.5 | 287(7), 259(19), 258(100), 242(9), 211(13) | 16.9 | 9.8 | - | - | 108.1 |
lycorine (25) | 29.10 | 2779.4 | 287(22), 268(19), 250(12), 227(62), 226(100) | 251.6 | 273.9 | 168.1 | 149.9 | - |
2-hydroxyanhydrolycorine 2 (26) | 30.20 | 2891.6 | 267(56), 266(100), 236(4), 208(9), 132(6) | - | - | - | 60.2 | - |
Total | 487.2 | 349.1 | 307.6 | 242.5 | 416.0 |
Substrate | MM-GBSA (kcal·mol−1) | Molecular Docking (kcal·mol−1) |
---|---|---|
2-hydroxyanhydrolycorine | −23.695 (2.106) | −8.94 |
galanthamine | −36.710 (2.842) | −9.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tallini, L.R.; Acosta León, K.; Chamorro, R.; Osorio, E.H.; Bastida, J.; Jost, L.; Oleas, N.H. Alkaloid Profiling and Anti-Cholinesterase Potential of Three Different Genera of Amaryllidaceae Collected in Ecuador: Urceolina Rchb., Clinanthus Herb. and Stenomesson Herb. Life 2024, 14, 924. https://doi.org/10.3390/life14080924
Tallini LR, Acosta León K, Chamorro R, Osorio EH, Bastida J, Jost L, Oleas NH. Alkaloid Profiling and Anti-Cholinesterase Potential of Three Different Genera of Amaryllidaceae Collected in Ecuador: Urceolina Rchb., Clinanthus Herb. and Stenomesson Herb. Life. 2024; 14(8):924. https://doi.org/10.3390/life14080924
Chicago/Turabian StyleTallini, Luciana R., Karen Acosta León, Raúl Chamorro, Edison H. Osorio, Jaume Bastida, Lou Jost, and Nora H. Oleas. 2024. "Alkaloid Profiling and Anti-Cholinesterase Potential of Three Different Genera of Amaryllidaceae Collected in Ecuador: Urceolina Rchb., Clinanthus Herb. and Stenomesson Herb." Life 14, no. 8: 924. https://doi.org/10.3390/life14080924
APA StyleTallini, L. R., Acosta León, K., Chamorro, R., Osorio, E. H., Bastida, J., Jost, L., & Oleas, N. H. (2024). Alkaloid Profiling and Anti-Cholinesterase Potential of Three Different Genera of Amaryllidaceae Collected in Ecuador: Urceolina Rchb., Clinanthus Herb. and Stenomesson Herb. Life, 14(8), 924. https://doi.org/10.3390/life14080924