Food for Thought: Proteomics for Meat Safety
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Subject Area Semantic Network Description
3.2. Genetic Determinants of Resistance
3.3. Proteomic Methods for Studying the Microbiome of Food Industries
- (a)
- Panoramic mass spectrometry
- (b)
- Targeted mass spectrometry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jadhav, S.R.; Shah, R.M.; Karpe, A.V.; Morrison, P.D.; Kouremenos, K.; Beale, D.J.; Palombo, E.A. Detection of Foodborne Pathogens Using Proteomics and Metabolomics-Based Approaches. Front. Microbiol. 2018, 9, 3132. [Google Scholar] [CrossRef] [PubMed]
- Kataria, R.; Kaundal, R. WeCoNET: A Host–Pathogen Interactome Database for Deciphering Crucial Molecular Networks of Wheat-Common Bunt Cross-Talk Mechanisms. Plant Methods 2022, 18, 73. [Google Scholar] [CrossRef]
- Piras, C.; Roncada, P.; Rodrigues, P.M.; Bonizzi, L.; Soggiu, A. Proteomics in Food: Quality, Safety, Microbes, and Allergens. Proteomics 2016, 16, 799–815. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Ashton, P.M.; Nair, S.; Peters, T.M.; Bale, J.A.; Powell, D.G.; Painset, A.; Tewolde, R.; Schaefer, U.; Jenkins, C.; Dallman, T.J.; et al. Identification of Salmonella for Public Health Surveillance Using Whole Genome Sequencing. PeerJ 2016, 4, e1752. [Google Scholar] [CrossRef]
- Whole Genome Sequencing (WGS) Program|FDA. Available online: https://www.fda.gov/food/science-research-food/whole-genome-sequencing-wgs-program (accessed on 4 January 2023).
- Jagadeesan, B.; Gerner-Smidt, P.; Allard, M.W.; Leuillet, S.; Winkler, A.; Xiao, Y.; Chaffron, S.; Van Der Vossen, J.; Tang, S.; Katase, M.; et al. The Use of next Generation Sequencing for Improving Food Safety: Translation into Practice. Food Microbiol. 2019, 79, 96–115. [Google Scholar] [CrossRef] [PubMed]
- Sheveleva, S.A.; Kuvaeva, I.B.; Efimochkina, N.R.; Minaeva, L.P. Microbiological Safety of Food: Development of Normative and Methodical Base. Vopr. Pitan 2020, 89, 125–145. [Google Scholar] [CrossRef]
- Khalilpour, A.; Kilic, T.; Khalilpour, S.; Álvarez, M.M.; Yazdi, I.K. Proteomic-Based Biomarker Discovery for Development of next Generation Diagnostics. Appl. Microbiol. Biotechnol. 2017, 101, 475–491. [Google Scholar] [CrossRef]
- Shevchuk, O.; Begonja, A.J.; Gambaryan, S.; Totzeck, M.; Rassaf, T.; Huber, T.B.; Greinacher, A.; Renne, T.; Sickmann, A. Proteomics: A Tool to Study Platelet Function. Int. J. Mol. Sci. 2021, 22, 4776. [Google Scholar] [CrossRef]
- Fornelli, L.; Toby, T.K.; Schachner, L.F.; Doubleday, P.F.; Srzentić, K.; DeHart, C.J.; Kelleher, N.L. Top-down Proteomics: Where We Are, Where We Are Going? J. Proteom. 2018, 175, 3–4. [Google Scholar] [CrossRef]
- Sitammagari, K.K.; Masood, W. Creutzfeldt Jakob Disease; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar] [PubMed]
- Virág, D.; Dalmadi-Kiss, B.; Vékey, K.; Drahos, L.; Klebovich, I.; Antal, I.; Ludányi, K. Current Trends in the Analysis of Post-Translational Modifications. Chromatographia 2020, 83, 1–10. [Google Scholar] [CrossRef]
- Rodríguez-Vázquez, R.; Mato, A.; López-Pedrouso, M.; Franco, D.; Sentandreu, M.A.; Zapata, C. Measuring Quantitative Proteomic Distance between Spanish Beef Breeds. Food Chem. 2020, 315, 126293. [Google Scholar] [CrossRef]
- Lasch, P.; Schneider, A.; Blumenscheit, C.; Doellinger, J. Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS1) and in Silico Peptide Mass Libraries. Mol. Cell Proteom. 2020, 19, 2125–2138. [Google Scholar] [CrossRef] [PubMed]
- Ilgisonis, E.; Lisitsa, A.; Kudryavtseva, V.; Ponomarenko, E. Creation of Individual Scientific Concept-Centered Semantic Maps Based on Automated Text-Mining Analysis of PubMed. Adv. Bioinform. 2018, 2018, 4625394. [Google Scholar] [CrossRef]
- Hassani, H.; Beneki, C.; Unger, S.; Mazinani, M.T.; Yeganegi, M.R. Text Mining in Big Data Analytics. Big Data Cogn. Comput. 2020, 4, 1. [Google Scholar] [CrossRef]
- Holinski, A.; Burke, M.L.; Morgan, S.L.; McQuilton, P.; Palagi, P.M. Biocuration-Mapping Resources and Needs. F1000Res 2020, 9, 1094. [Google Scholar] [CrossRef]
- Ponomarenko, E.A.; Lisitsa, A.V.; Il’gisonis, E.V.; Archakov, A.I. Construction of Protein Semantic Networks Using PubMed/MEDLINE. Mol. Biol. 2010, 44, 152–161. [Google Scholar] [CrossRef]
- Tarbeeva, S.; Lyamtseva, E.; Lisitsa, A.; Kozlova, A.; Ponomarenko, E.; Ilgisonis, E. ScanBious: Survey for Obesity Genes Using PubMed Abstracts and DisGeNET. J. Pers. Med. 2021, 11, 246. [Google Scholar] [CrossRef] [PubMed]
- Ilgisonis, E.V.; Pyatnitskiy, M.A.; Tarbeeva, S.N.; Aldushin, A.A.; Ponomarenko, E.A. How to Catch Trends Using MeSH Terms Analysis? Scientometrics 2022, 127, 1953–1967. [Google Scholar] [CrossRef]
- Yang, H.; Lee, H.J. Research Trend Visualization by MeSH Terms from PubMed. Int. J. Environ. Res. Public Health 2018, 15, 1113. [Google Scholar] [CrossRef]
- Rodríguez-López, P.; Rodríguez-Herrera, J.J.; Cabo, M.L. Tracking Bacteriome Variation over Time in Listeria Monocytogenes-Positive Foci in Food Industry. Int. J. Food Microbiol. 2020, 315, 108439. [Google Scholar] [CrossRef] [PubMed]
- Møretrø, T.; Langsrud, S.; Heir, E.; Møretrø, T.; Langsrud, S.; Heir, E. Bacteria on Meat Abattoir Process Surfaces after Sanitation: Characterisation of Survival Properties of Listeria Monocytogenes and the Commensal Bacterial Flora. Adv. Microbiol. 2013, 3, 255–264. [Google Scholar] [CrossRef]
- Palleroni, N.J. Introduction to the Family Pseudomonadaceae. In The Prokaryotes; Springer: Berlin/Heidelberg, Germany, 1981; pp. 655–665. [Google Scholar] [CrossRef]
- Hinton, A.; Cason, J.A.; Ingram, K.D. Tracking Spoilage Bacteria in Commercial Poultry Processing and Refrigerated Storage of Poultry Carcasses. Int. J. Food Microbiol. 2004, 91, 155–165. [Google Scholar] [CrossRef]
- Morales, P.A.; Aguirre, J.S.; Troncoso, M.R.; Figueroa, G.O. Phenotypic and Genotypic Characterization of Pseudomonas Spp. Present in Spoiled Poultry Fillets Sold in Retail Settings. LWT 2016, 73, 609–614. [Google Scholar] [CrossRef]
- Algammal, A.M.; Mabrok, M.; Sivaramasamy, E.; Youssef, F.M.; Atwa, M.H.; El-kholy, A.W.; Hetta, H.F.; Hozzein, W.N. Emerging MDR-Pseudomonas Aeruginosa in Fish Commonly Harbor OprL and ToxA Virulence Genes and BlaTEM, BlaCTX-M, and TetA Antibiotic-Resistance Genes. Sci. Rep. 2020, 10, 15961. [Google Scholar] [CrossRef] [PubMed]
- Hwang, W.; Yoon, S.S. Virulence Characteristics and an Action Mode of Antibiotic Resistance in Multidrug-Resistant Pseudomonas Aeruginosa. Sci. Rep. 2019, 9, 487. [Google Scholar] [CrossRef]
- Madaha, E.L.; Mienie, C.; Gonsu, H.K.; Bughe, R.N.; Fonkoua, M.C.; Mbacham, W.F.; Alayande, K.A.; Bezuidenhout, C.C.; Ateba, C.N. Whole-Genome Sequence of Multi-Drug Resistant Pseudomonas Aeruginosa Strains UY1PSABAL and UY1PSABAL2 Isolated from Human Broncho-Alveolar Lavage, Yaoundé, Cameroon. PLoS ONE 2020, 15, e0238390. [Google Scholar] [CrossRef]
- de Mesquita Sousa Saraiva, M.; Benevides, V.P.; da Silva, N.M.V.; de Mello Varani, A.; de Freitas Neto, O.C.; Berchieri, Â.; Delgado-Suárez, E.J.; de Lima Rocha, A.D.; Eguale, T.; Munyalo, J.A.; et al. Genomic and Evolutionary Analysis of Salmonella Enterica Serovar Kentucky Sequence Type 198 Isolated From Livestock In East Africa. Front. Cell. Infect. Microbiol. 2022, 12, 1. [Google Scholar] [CrossRef]
- Threlfall, E.J. Antimicrobial Drug Resistance in Salmonella: Problems and Perspectives in Food- and Water-Borne Infections. FEMS Microbiol. Rev. 2002, 26, 141–148. [Google Scholar] [CrossRef]
- Aureli, P.; Fiorucci, G.C.; Caroli, D.; Marchiaro, G.; Novara, O.; Leone, L.; Salmaso, S. An Outbreak of Febrile Gastroenteritis Associated with Corn Contaminated by Listeria Monocytogenes. N. Engl. J. Med. 2000, 342, 1236–1241. [Google Scholar] [CrossRef]
- Kathariou, S. Listeria Monocytogenes Virulence and Pathogenicity, a Food Safety Perspective. J. Food Prot. 2002, 65, 1811–1829. [Google Scholar] [CrossRef] [PubMed]
- Jolivet-Gougeon, A.; Bonnaure-Mallet, M. Biofilms as a Mechanism of Bacterial Resistance. Drug Discov. Today Technol. 2014, 11, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Katsikogianni, M.; Missirlis, Y.F.; Harris, L.; Douglas, J. Concise Review of Mechanisms of Bacterial Adhesion to Biomaterials and of Techniques Used in Estimating Bacteria-Material Interactions. Eur. Cell Mater. 2004, 8, 37–57. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An Emergent Form of Bacterial Life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Johansen, C.; Falholt, P.; Gram, L. Enzymatic Removal and Disinfection of Bacterial Biofilms. Appl. Environ. Microbiol. 1997, 63, 3724–3728. [Google Scholar] [CrossRef]
- Palmer, C.; Bik, E.M.; DiGiulio, D.B.; Relman, D.A.; Brown, P.O. Development of the Human Infant Intestinal Microbiota. PLoS Biol. 2007, 5, 1556–1573. [Google Scholar] [CrossRef] [PubMed]
- Goode, K.R.; Asteriadou, K.; Robbins, P.T.; Fryer, P.J. Fouling and Cleaning Studies in the Food and Beverage Industry Classified by Cleaning Type. Compr. Rev. Food Sci. Food Saf. 2013, 12, 121–143. [Google Scholar] [CrossRef]
- Singh, S.; Singh, S.K.; Chowdhury, I.; Singh, R. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents. Open Microbiol. J. 2017, 11, 53. [Google Scholar] [CrossRef]
- Goller, C.C.; Romeo, T. Environmental Influences on Biofilm Development. Curr. Top Microbiol. Immunol. 2008, 322, 37–66. [Google Scholar] [CrossRef]
- McDermott, P.F.; Walker, R.D.; White, D.G. Antimicrobials: Modes of Action and Mechanisms of Resistance. Int. J. Toxicol. 2003, 22, 135–143. [Google Scholar] [CrossRef]
- Martínez, J.L.; Rojo, F. Metabolic Regulation of Antibiotic Resistance. FEMS Microbiol. Rev. 2011, 35, 768–789. [Google Scholar] [CrossRef]
- Matle, I.; Mbatha, K.R.; Madoroba, E. A Review of Listeria Monocytogenes from Meat and Meat Products: Epidemiology, Virulence Factors, Antimicrobial Resistance and Diagnosis. Onderstepoort J. Vet. Res. 2020, 87, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Pusic, P.; Sonnleitner, E.; Bläsi, U. Specific and Global RNA Regulators in Pseudomonas Aeruginosa. Int. J. Mol. Sci. 2021, 22, 8632. [Google Scholar] [CrossRef] [PubMed]
- Chao, Y.; Li, L.; Girodat, D.; Förstner, K.U.; Said, N.; Corcoran, C.; Śmiga, M.; Papenfort, K.; Reinhardt, R.; Wieden, H.J.; et al. In Vivo Cleavage Map Illuminates the Central Role of RNase E in Coding and Non-Coding RNA Pathways. Mol. Cell 2017, 65, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Göpel, Y.; Papenfort, K.; Reichenbach, B.; Vogel, J.; Görke, B. Targeted Decay of a Regulatory Small RNA by an Adaptor Protein for RNase E and Counteraction by an Anti-Adaptor RNA. Genes Dev. 2013, 27, 552–564. [Google Scholar] [CrossRef]
- Fritsche, T.R.; Castanheira, M.; Miller, G.H.; Jones, R.N.; Armstrong, E.S. Detection of Methyltransferases Conferring High-Level Resistance to Aminoglycosides in Enterobacteriaceae from Europe, North America, and Latin America. Antimicrob. Agents Chemother. 2008, 52, 1843–1845. [Google Scholar] [CrossRef]
- Sidoli, S.; Kulej, K.; Garcia, B.A. Why Proteomics Is Not the New Genomics and the Future of Mass Spectrometry in Cell Biology. J. Cell Biol. 2017, 216, 21. [Google Scholar] [CrossRef]
- Manafi, L.; Aliakbarlu, J.; Dastmalchi Saei, H. Antibiotic Resistance and Biofilm Formation Ability of Salmonella Serotypes Isolated from Beef, Mutton, and Meat Contact Surfaces at Retail. J. Food Sci. 2020, 85, 2516–2522. [Google Scholar] [CrossRef]
- Hur, J.; Choi, Y.Y.; Park, J.H.; Jeon, B.W.; Lee, H.S.; Kim, A.R.; Lee, J.H. Antimicrobial Resistance, Virulence-Associated Genes, and Pulsed-Field Gel Electrophoresis Profiles of Salmonella Enterica Subsp. Enterica Serovar Typhimurium Isolated from Piglets with Diarrhea in Korea. Can. J. Vet. Res. 2011, 75, 49. [Google Scholar]
- Anjum, M.F.; Duggett, N.A.; AbuOun, M.; Randall, L.; Nunez-Garcia, J.; Ellis, R.J.; Rogers, J.; Horton, R.; Brena, C.; Williamson, S.; et al. Colistin Resistance in Salmonella and Escherichia Coli Isolates from a Pig Farm in Great Britain. J. Antimicrob. Chemother. 2016, 71, 2306–2313. [Google Scholar] [CrossRef]
- Coldham, N.G.; Randall, L.P.; Piddock, L.J.V.; Woodward, M.J. Effect of Fluoroquinolone Exposure on the Proteome of Salmonella Enterica Serovar Typhimurium. J. Antimicrob. Chemother. 2006, 58, 1145–1153. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, W.; Zhang, R.; Xu, J.; Wang, R.; Wang, L.; Zhao, X.; Li, J. First Acetyl-Proteome Profiling of Salmonella Typhimurium Revealed Involvement of Lysine Acetylation in Drug Resistance. Vet. Microbiol. 2018, 226, 1–8. [Google Scholar] [CrossRef]
- Karatzas, K.A.G.; Randall, L.P.; Webber, M.; Piddock, L.J.V.; Humphrey, T.J.; Woodward, M.J.; Coldham, N.G. Phenotypic and Proteomic Characterization of Multiply Antibiotic-Resistant Variants of Salmonella Enterica Serovar Typhimurium Selected Following Exposure to Disinfectants. Appl. Environ. Microbiol. 2008, 74, 1508. [Google Scholar] [CrossRef]
- Qi, C.; Sun, F.; Wei, Q.; Xu, J.; Li, R.; Zhang, L.; Lu, F.; Jiang, X.; Fu, H.; Zhang, C.; et al. Quantitative Phosphoproteomics Reveals the Effect of BaeSR and AcrB Genes on Protein Phosphorylation in Salmonella Enterica Serovar Typhimurium. Res. Microbiol. 2022, 173, 103886. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Omar, M.; Nagaraja, K.V.; Goyal, S.M.; Vidovic, S. Novel Insight into the Effects of Cpxr on Salmonella Enteritidis Cells during the Chlorhexidine Treatment and Non-Stressful Growing Conditions. Int. J. Mol. Sci. 2021, 22, 8938. [Google Scholar] [CrossRef] [PubMed]
- Fillgrove, K.L.; Pakhomova, S.; Schaab, M.R.; Newcomer, M.E.; Armstrong, R.N. Structure and Mechanism of the Genomically Encoded Fosfomycin Resistance Protein, FosX, from Listeria Monocytogenes. Biochemistry 2007, 46, 8110–8120. [Google Scholar] [CrossRef] [PubMed]
- Bergholz, T.M.; Tang, S.; Wiedmann, M.; Boor, K.J. Nisin Resistance of Listeria Monocytogenes Is Increased by Exposure to Salt Stress and Is Mediated via LiaR. Appl. Environ. Microbiol. 2013, 79, 5682–5688. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, S.; Bender, J.K.; Klare, I.; Halbedel, S.; Grohmann, E.; Szewzyk, U.; Werner, G. Tigecycline Resistance in Clinical Isolates of Enterococcus Faecium Is Mediated by an Upregulation of Plasmid-Encoded Tetracycline Determinants Tet(L) and Tet(M). J. Antimicrob. Chemother. 2016, 71, 871–881. [Google Scholar] [CrossRef]
- Kode, D.; Nannapaneni, R.; Chang, S. Low-Level Tolerance to Antibiotic Trimethoprim in QAC-Adapted Subpopulations of Listeria Monocytogenes. Foods 2021, 10, 1800. [Google Scholar] [CrossRef]
- Yan, S.; Li, M.; Luque-Sastre, L.; Wang, W.; Hu, Y.; Peng, Z.; Dong, Y.; Gan, X.; Nguyen, S.; Anes, J.; et al. Susceptibility (Re)-Testing of a Large Collection of Listeria Monocytogenes from Foods in China from 2012 to 2015 and WGS Characterization of Resistant Isolates. J. Antimicrob. Chemother. 2019, 74, 1786–1794. [Google Scholar] [CrossRef]
- Kovacevic, J.; Ziegler, J.; Walecka-Zacharska, E.; Reimer, A.; Kitts, D.D.; Gilmour, M.W. Tolerance of Listeria Monocytogenes to Quaternary Ammonium Sanitizers Is Mediated by a Novel Efflux Pump Encoded by EmrE. Appl. Environ. Microbiol. 2016, 82, 939–953. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Olsen, R.H.; Shi, L.; Ye, L.; He, J.; Meng, H. Characterization of a Plasmid Carrying Cat, ErmB and TetS Genes in a Foodborne Listeria Monocytogenes Strain and Uptake of the Plasmid by Cariogenic Streptococcus Mutans. Int. J. Food Microbiol. 2016, 238, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Baquero, F.; Lanza, V.F.; Duval, M.; Coque, T.M. Ecogenetics of Antibiotic Resistance in Listeria Monocytogenes. Mol. Microbiol. 2020, 113, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk-Balska, A.; Markiewicz, Z. The Intrinsic Cephalosporin Resistome of Listeria Monocytogenes in the Context of Stress Response, Gene Regulation, Pathogenesis and Therapeutics. J. Appl. Microbiol. 2016, 120, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Abril, A.G.; Carrera, M.; Böhme, K.; Barros-Velázquez, J.; Calo-Mata, P.; Sánchez-Pérez, A.; Villa, T.G. Proteomic Characterization of Antibiotic Resistance in Listeria and Production of Antimicrobial and Virulence Factors. Int. J. Mol. Sci. 2021, 22, 8141. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Suárez, J.V.; Ortiz, S.; López-Alonso, V. Potential Impact of the Resistance to Quaternary Ammonium Disinfectants on the Persistence of Listeria Monocytogenes in Food Processing Environments. Front. Microbiol. 2016, 7, 638. [Google Scholar] [CrossRef] [PubMed]
- Vaz-Moreira, I.; Nunes, O.C.; Manaia, C.M. Diversity and Antibiotic Resistance in Pseudomonas Spp. from Drinking Water. Sci. Total Environ. 2012, 426, 366–374. [Google Scholar] [CrossRef]
- Ranjan, V.K.; Mukherjee, S.; Basak, C.; Chakraborty, R. Abundance of New Delhi Metallo-β-Lactamase-Producing Acinetobacter, Escherichia, Proteus, and Pseudomonas Spp. in Mahananda and Karala Rivers of India. Microb. Drug Resist. 2021, 27, 1603–1615. [Google Scholar] [CrossRef]
- Ghosh, A.; Saran, N.; Saha, S. Survey of Drug Resistance Associated Gene Mutations in Mycobacterium Tuberculosis, ESKAPE and Other Bacterial Species. Sci. Rep. 2020, 10, 8957. [Google Scholar] [CrossRef]
- Meng, L.; Liu, H.; Lan, T.; Dong, L.; Hu, H.; Zhao, S.; Zhang, Y.; Zheng, N.; Wang, J. Antibiotic Resistance Patterns of Pseudomonas Spp. Isolated From Raw Milk Revealed by Whole Genome Sequencing. Front. Microbiol. 2020, 11, 1005. [Google Scholar] [CrossRef]
- Aoike, N.; Saga, T.; Sakata, R.; Yoshizumi, A.; Kimura, S.; Iwata, M.; Yoshizawa, S.; Sugasawa, Y.; Ishii, Y.; Yamaguchi, K.; et al. Molecular Characterization of Extraintestinal Escherichia Coli Isolates in Japan: Relationship between Sequence Types and Mutation Patterns of Quinolone Resistance-Determining Regions Analyzed by Pyrosequencing. J. Clin. Microbiol. 2013, 51, 1692–1698. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gatzeva-Topalova, P.Z.; May, A.P.; Sousa, M.C. Structure and Mechanism of ArnA: Conformational Change Implies Ordered Dehydrogenase Mechanism in Key Enzyme for Polymyxin Resistance. Structure 2005, 13, 929–942. [Google Scholar] [CrossRef] [PubMed]
- Bengoechea, J.A.; Skurnik, M. Temperature-Regulated Efflux Pump/Potassium Antiporter System Mediates Resistance to Cationic Antimicrobial Peptides in Yersinia. Mol. Microbiol. 2000, 37, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Thaker, M.; Spanogiannopoulos, P.; Wright, G.D. The Tetracycline Resistome. Cell. Mol. Life Sci. 2010, 67, 419–431. [Google Scholar] [CrossRef]
- Mima, T.; Joshi, S.; Gomez-Escalada, M.; Schweizer, H.P. Identification and Characterization of TriABC-OpmH, a Triclosan Efflux Pump of Pseudomonas Aeruginosa Requiring Two Membrane Fusion Proteins. J. Bacteriol. 2007, 189, 7600–7609. [Google Scholar] [CrossRef]
- Muratovic, A.Z.; Hagstöm, T.; Rosén, J.; Granelli, K.; Hellenäs, K.E. Quantitative Analysis of Staphylococcal Enterotoxins A and B in Food Matrices Using Ultra High-Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS). Toxins 2015, 7, 3637. [Google Scholar] [CrossRef]
- De Groote, V.N.; Verstraeten, N.; Fauvart, M.; Kint, C.I.; Verbeeck, A.M.; Beullens, S.; Cornelis, P.; Michiels, J. Novel Persistence Genes in Pseudomonas Aeruginosa Identified by High-Throughput Screening. FEMS Microbiol. Lett. 2009, 297, 73–79. [Google Scholar] [CrossRef]
- Erdmann, J.; Thöming, J.G.; Pohl, S.; Pich, A.; Lenz, C.; Häussler, S. The Core Proteome of Biofilm-Grown Clinical Pseudomonas Aeruginosa Isolates. Cells 2019, 8, 1129. [Google Scholar] [CrossRef]
- Bao, K.D.; Letellier, A.; Beaudry, F. Analysis of Staphylococcus Enterotoxin B Using Differential Isotopic Tags and Liquid Chromatography Quadrupole Ion Trap Mass Spectrometry. Biomed. Chromatogr. 2012, 26, 1049–1057. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Zolla, L. We Are What We Eat: Food Safety and Proteomics. J. Proteome Res. 2012, 11, 26–36. [Google Scholar] [CrossRef]
- Andjelkovic, M.; Tsilia, V.; Rajkovic, A.; de Cremer, K.; Van Loco, J. Application of LC-MS/MS MRM to Determine Staphylococcal Enterotoxins (SEB and SEA) in Milk. Toxins 2016, 8, 118. [Google Scholar] [CrossRef] [PubMed]
- Ilgisonis, E.V.; Kopylov, A.T.; Ponomarenko, E.A.; Poverennaya, E.V.; Tikhonova, O.V.; Farafonova, T.E.; Novikova, S.; Lisitsa, A.V.; Zgoda, V.G.; Archakov, A.I. Increased Sensitivity of Mass Spectrometry by Alkaline Two-Dimensional Liquid Chromatography: Deep Cover of the Human Proteome in Gene-Centric Mode. J. Proteome Res. 2018, 17, 4258–4266. [Google Scholar] [CrossRef] [PubMed]
- Dupré, M.; Gilquin, B.; Fenaille, F.; Feraudet-Tarisse, C.; Dano, J.; Ferro, M.; Simon, S.; Junot, C.; Brun, V.; Becher, F. Multiplex Quantification of Protein Toxins in Human Biofluids and Food Matrices Using Immunoextraction and High-Resolution Targeted Mass Spectrometry. Anal. Chem. 2015, 87, 8473–8480. [Google Scholar] [CrossRef] [PubMed]
- Afzaal, M.; Saeed, F.; Hussain, M.; Shahid, F.; Siddeeg, A.; Al-Farga, A. Proteomics as a Promising Biomarker in Food Authentication, Quality and Safety: A Review. Food Sci. Nutr. 2022, 10, 2333–2346. [Google Scholar] [CrossRef] [PubMed]
- Jagadeesh, D.S.; Kannegundla, U.; Reddy, R.K. Application of Proteomic Tools in Food Quality and Safety. Adv. Anim. Vet. Sci. 2017, 5, 213–225. [Google Scholar]
- Stryiński, R.; Łopieńska-Biernat, E.; Carrera, M. Proteomic Insights into the Biology of the Most Important Foodborne Parasites in Europe. Foods 2020, 9, 1403. [Google Scholar] [CrossRef]
Organism | Marker (Gene/Protein) | UniProt ID | Resistance | Reference |
---|---|---|---|---|
Salmonella enterica | tetA, tetG and tetC, TetR | A0A1Z1VWZ4 *, A3RLS9 *, A0A3G1TUX2 *, A0A1Z1VX01 * | Tetracycline | [51,52] |
gyrA | A0A447PDY4 * | Nalidixic acid | [51] | |
mcr-1 | A0A1P8DNG0 * | Colistin | [53] | |
bla(PSE) and bla(TEM) | K9M2D2 *, A0A7D7QQ45 * | Ampicillin, penicillin antibiotics | [52] | |
cat1, cat2 and floR | Q3HNN0, Q7BD42, A0A3K0TB41 * | Chloramphenicol | [52] | |
strA, strB and aadA | A0A5C2D198 *, C4NVB8 *, Q02865 | Streptomycin | [52] | |
sul1 and sul2 | A0A0F6NWV0 *, A0A1S6KR61 * | Sulfizoxazole | [52] | |
AcrAB/TolC, including acetylated lysine (PTM) | A0A759DN94 * | Fluoroquinolone | [54] | |
Quaternary ammonium compounds, chloramphenicol, tetracycline, ampicillin | [55,56] | |||
AcrB | A0A379QMS3 * | Ciprofloxacin | [57] | |
FabI | A0A5Z3DTY7 * | Triclosan | [56] | |
TolB, ElaB, TolC, GrxB, Tpx, Tsx, AhpF, AhpC, NfnB | A0A447MVS8 *, E8XEF3 *, Q54001, A0A6C8EYP6 *, A0A3F3I872 *, A0A379QQ98 *, A0A8E9PK94 *, A0A379WCI5 *, A0A447MWB6 * | Wide range of antimicrobial agents | [56] | |
AcnA | A0A711ME57 * | Quaternary ammonium compounds | [56] | |
RpoE, CpxR | D0ZSY9 *, A0A5Z8M962 * | Chlorhexidine | [58] | |
csgD, bcsA, ardA | O54294, A0A2T8TBA6 *, A0A410J986 * | Quaternary ammonium compounds | [31] | |
Listeria monocytogenes | FosX | Q8Y6I2 | Fosfomycin | [59] |
FosE | A0A3T2HNE9 * | Tetronazine | ||
FosI | A0A5M3ENG4 * | Bleomycin | ||
LiaR | A0A0E1R5S4 * | Nisin | [60] | |
TetM, TetS | Q5WMA8, Q48791 | Tetracyclines, tellurite | [61] | |
dfrD, dfrG, dhfr | Q79CE5 | Trimethoprim | [62] | |
ErmA(TR), ErmB, ErmC | K4NRN0 *, K4NU76 * | Erythromycin, quaternary ammonium compounds | [63,64] | |
lnuB | A0A4D6D220 * | Lincosamide | [65] | |
PBP1 | Q8Y614 | Cephalosporins | [66,67] | |
LysR, LytR, LytTR, Rgg | A0A5M2ZBL1 *, A0A6W3T4B1 *, A0A5Y7CVQ1 *, A0A3H2VUB6 * | Cationic antimicrobial peptides (CAMP) | [68] | |
MerR | A0A3T2B4E2 * | Mercury resistance | [61] | |
bcrA, bcrB, bcrC, qacH, qacA | A0A5Y1L6S6 *, I6ZWK8 *, I7B1C4 *, T2KSX9 *, T1YPL4 * | Quaternary ammonium compounds | [69] | |
Pseudomonas aeruginosa | gyrB | P13364 | Aminocoumarin | [70] |
aadA, rpsL | A0A844NVA2 *, Q9HWD0 | Aminoglycosides | [71,72] | |
blaCTX–M, PBP1a, PBP1b, oprD | A0A0M4CJ048, Q07806, A0A165VXD8 *, P32722 | Beta lactams | [73] | |
gyrA, gyrB, patA, patB, parC, parE, emrA, emrB, mdtK, mfd | P48372, P13364, A0A5E7MVR1 *, Q5BU34, Q9HUK1, Q9HUJ8, A0A5E7FSX8 *, A0A5M9IUB7 *, A0A0B7DI98 *, Q9HZK3 | Fluoroquinolones | [73,74] | |
mdtD, mdtG, mdtH, glpT, murA | A0A5E6SQR7 *, A0A5E6YH70 *, A0A5E6QA20 *, Q9HTV5, Q9Z3Z6 | Fosfomycin | [73] | |
vanA | O05616 | Glycopeptide antibiotics | [73] | |
arnA, bacA, bcrA, liaR, mprF, phoP, phoQ, pmrA, pmrB, pmrE, pmrF, rosB, floR, lpxA, lpxC, cls, pgsA, rpoC | Q02R25, Q02LA5, Q937U9, A0A8D9KX77 *, A0A1B5E8X0 *, Q9I4F9, Q9I4F8, Q9HV32, Q9HV31, A0A0C6ED02 *, A0A519EUM6 *, A0A485GZQ4 *, A0A4D6RIK8 *, Q9X6P4, P47205, A0A2K9MAE4 *, P45419, P19176 | Lipopeptides | [73,75,76], | |
carA, macA, macB | Q88DU5, A0A5E7QUJ5 *, Q88F88 | Macrolides | [73] | |
mefA | A0A383RT01 * | Macrolide-Lincosamide-Streptogramin B | [73] | |
catA1, catB3, catI, floR | T2HGZ6 *, V5LZV8 *, Q8VPF3, A0A4D6RIK8 * | Fenicol | [73] | |
rpoB | P19175 | Rifampin | [73] | |
sul1 | A0A2R4S1K0 * | Sulfonamides | [73] | |
tetA, tetB(P), tetG, tetM | A0A4P2USE6 *, A0A4Y5T9V5 *, Q9X685, A0MZ57 * | Tetracycline | [73,77] | |
katG, kasA | Q88GQ0, A0A379J0D7 * | Isoniazid | [73] | |
triA, triB, triC, opmH | P72156, A0A8F9V618 *, A0A8G1K8C1 *, A0A8G6KPN1 * | Triclosan | [73,78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarbeeva, S.; Kozlova, A.; Sarygina, E.; Kiseleva, O.; Ponomarenko, E.; Ilgisonis, E. Food for Thought: Proteomics for Meat Safety. Life 2023, 13, 255. https://doi.org/10.3390/life13020255
Tarbeeva S, Kozlova A, Sarygina E, Kiseleva O, Ponomarenko E, Ilgisonis E. Food for Thought: Proteomics for Meat Safety. Life. 2023; 13(2):255. https://doi.org/10.3390/life13020255
Chicago/Turabian StyleTarbeeva, Svetlana, Anna Kozlova, Elizaveta Sarygina, Olga Kiseleva, Elena Ponomarenko, and Ekaterina Ilgisonis. 2023. "Food for Thought: Proteomics for Meat Safety" Life 13, no. 2: 255. https://doi.org/10.3390/life13020255
APA StyleTarbeeva, S., Kozlova, A., Sarygina, E., Kiseleva, O., Ponomarenko, E., & Ilgisonis, E. (2023). Food for Thought: Proteomics for Meat Safety. Life, 13(2), 255. https://doi.org/10.3390/life13020255