An Electro–Microbial Process to Uncouple Food Production from Photosynthesis for Application in Space Exploration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strain, Fermentation Medium and Bioreactor Culture Conditions
2.2. Chemical Analysis of Yeast Biomass
3. Results
3.1. Production and Compositional Analyses of Yeast Strain VITF1 Biomass Propagated by Aerobic Growth on Medium Containing Only Ethanol, Urea, and Inorganic Salts without Vitamins
3.2. Comparison between Nutritional Value of Yeast Strain VITF1 and Recommended Daily Intakes for Active Adult Humans
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frey, C.N. History and development of the modern yeast industry. Ind. Eng. Chem. 1930, 22, 1154–1162. [Google Scholar] [CrossRef]
- Evans, I.H. Yeast Strains for Baking: Recent Developments. In Yeast Technology; Spencer, J.F.T., Spencer, D.M., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 13–54. [Google Scholar]
- Johnson, E.A.; Echavarri-Evasun, C. Yeast biotechnology. In The Yeasts, a Taxonomic Study, 5th ed.; Kurtzman, C.P., Fell, J.W., Boekhout, T., Eds.; Elsevier, B.V.: Amsterdam, The Netherlands, 2011; Volume 1, pp. 21–44. [Google Scholar]
- Reed, G.; Nagodawithana, T.G. Yeast Technology, 2nd ed.; Van Nostrand Reinhold: New York, NY, USA, 1991. [Google Scholar]
- Arevalo-Villena, M.; Briones-Perez, A.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Biotechnological application of yeasts in food science: Starter cultures, probiotics and enzyme production. J. Appl. Microbiol. 2017, 123, 1360–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Wang, W.; Huang, X.; Guo, T.; Wen, W.; Feng, L.; Wei, L. The effect of replacement of fish meal by yeast extract on the digestibility, growth and muscle composition of the shrimp Litopenaeus vannamei. Aquac. Res. 2017, 48, 311–320. [Google Scholar] [CrossRef]
- Shurson, G.C. Yeast and yeast derivatives in feed additives and ingredients: Sources, characteristics, animal responses, and quantification methods. Anim. Feed Sci. Technol. 2018, 235, 60–76. [Google Scholar] [CrossRef]
- Parapouli, M.; Vasileiadis, A.; Afendra, A.S.; Hatziloukas, E. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol. 2020, 6, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Kornienko, N.; Zhang, J.Z.; Sakimoto, K.K.; Yang, P.; Reisner, E. Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotech. 2018, 13, 890–899. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, L. Artificial photosynthesis: Opportunities and challenges of molecular catalysts. Chem. Soc. Rev. 2019, 48, 2216–2264. [Google Scholar] [CrossRef] [Green Version]
- Kordyuma, E.; Hasenstein, K.H. Plant biology for space exploration—Building on the past, preparing for the future. Life Sci. Space Res. 2021, 29, 1–7. [Google Scholar] [CrossRef]
- Putnam, D.F. Composition and Concentratative Properties of Human Urine. Available online: https://ntrs.nasa.gov/api/citations/19710023044/downloads/19710023044.pdf (accessed on 12 April 2022).
- Sarigul, N.; Korkmaz, F.; Kurultak, İ. A new artificial urine protocol to better imitate human urine. Sci. Rep. 2019, 9, 20159. [Google Scholar] [CrossRef]
- James, J.T.; Zalesak, S.M. Surprising effects of CO2 exposure on decision making. In Proceedings of the AIAA 43rd International Conference on Environmental Systems, Vail, CO, USA, 14–18 July 2013; pp. 2013–3463. [Google Scholar] [CrossRef]
- Mitchell, C.A. Bioregenerative life-support systems. Am. J. Clin. Nutr. 1994, 60, 820S–824S. [Google Scholar] [CrossRef]
- Zabel, P.; Bamsey, M.; Schubert, D.; Tajmar, M. Review and analysis of over 40 years of space plant growth systems. Life Sci. Space Res. 2016, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Blankenship, R.E.; Tiede, D.M.; Barber, J.; Brudvig, G.W.; Fleming, G.; Ghirardi, M.; Gunner, M.R.; Junge, W.; Kramer, D.M.; Melis, A.; et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 2011, 332, 805–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaschubek, D. Optimized crop growth area composition for long duration spaceflight. Life Sci. Space Res. 2021, 30, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Waters, G.C.R.; Olabi, A.; Hunter, J.B.; Dixon, M.A.; Lasseur, C. Bioregenerative food system cost based on optimized menus for advanced life support. Life Support Biosph. Sci. 2002, 8, 199–210. Available online: https://pubmed.ncbi.nlm.nih.gov/12481812/ (accessed on 12 April 2022).
- Fang, H.; Kang, J.; Zhang, D. Microbial production of vitamin B12: A review and future perspectives. Microb. Cell Fact. 2017, 16, 15. [Google Scholar] [CrossRef] [Green Version]
- Martens, J.-H.; Barg, H.; Warren, M.J.; Jahn, D. Microbial production of vitamin B12. Appl. Microbiol. Biotechnol. 2002, 58, 275–285. [Google Scholar] [CrossRef]
- Saxena, J.; Tanner, R.S. Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei. J. Ind. Microbiol. Biotechnol. 2011, 38, 513–521. [Google Scholar] [CrossRef]
- Takors, R.; Kopf, M.; Mampel, J.; Bluemke, W.; Blombach, B.; Eikmanns, B.; Bengelsdorf, F.R.; Weuster-Botz, D.; Dürre, P. Using gas mixtures of CO, CO2 and H2 as microbial substrates: The do’s and don’ts of successful technology transfer from laboratory to production scale. Microb. Biotechnol. 2018, 11, 606–625. [Google Scholar] [CrossRef]
- Xu, H.; Rebollar, D.; He, H.; Chong, L.; Liu, Y.; Liu, C.; Sun, C.-J.; Li, T.; Muntean, J.V.; Winans, R.E.; et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 2020, 5, 623–632. [Google Scholar] [CrossRef]
- Wang, X.; Ramírez, P.J.; Liao, W.; Rodriguez, J.A.; Liu, P. Cesium-induced active sites for C–C coupling and ethanol synthesis from CO2 hydrogenation on Cu/ZnO(0001) surfaces. J. Am. Chem. Soc. 2021, 143, 13103–13112. [Google Scholar] [CrossRef]
- Chen, S.L.; Chiger, M. Production of Baker’s Yeast. In Comprehensive Biotechnology; Blanch, H., Drew, S., Wang, D.I.C., Eds.; Pergamon Press: New York, NY, USA, 1985; Volume 1, pp. 429–462. [Google Scholar]
- Perli, T.; Wronska, A.K.; Ortiz-Merino, R.A.; Pronk, J.T.; Daran, J.-M. Vitamin requirements and biosynthesis in Saccharomyces cerevisiae. Yeast 2020, 37, 283–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Official Methods of Analysis of Association of Official Analytical Chemists International, 21st Edition. Available online: https://www.amazon.com/Official-Methods-Analysis-INTERNATIONAL-Three/dp/0935584897 (accessed on 5 April 2022).
- Vetvicka, V.; Vetvickova, J. Effects of yeast-derived β-glucans on blood cholesterol and macrophage functionality. J. Immunotoxicol. 2009, 6, 30–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francois, J.; Parrou, J.-L. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 2001, 25, 125–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dijck, P.; Colavizza, D.; Smet, P.; Thevelein, J.M. Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 1995, 61, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Klug, L.; Daum, G. Yeast lipid metabolism at a glance. FEMS Yeast Res. 2014, 14, 369–388. [Google Scholar] [CrossRef] [Green Version]
- Jia, L.L.; Brough, L.; Weber, J.L. Saccharomyces cerevisiae yeast-based supplementation as a galactagogue in breastfeeding women? A review of evidence from animal and human studies. Nutrients 2021, 13, 727. [Google Scholar] [CrossRef]
- Eat for Health Australian Dietary Guidelines. Australian Government National Health and Medical Research Council, Table A2. Available online: https://www.eatforhealth.gov.au/sites/default/files/files/the_guidelines/n55_australian_dietary_guidelines.pdf (accessed on 14 January 2022).
- Redman, L.M.; Kraus, W.E.; Bhapkar, M.; Krupa Das, S.; Racette, S.B.; Martin, C.K.; Fontana, L.; Wong, W.W.; Roberts, S.B.; Ravussin, E. Energy requirements in nonobese men and women: Results from CALERIE. Am. J. Clin. Nutr. 2014, 99, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Shetty, P. Energy requirements of adults. Public Health Nutr. 2005, 8, 994–1009. [Google Scholar] [CrossRef] [Green Version]
- The National Academies of Sciences, Engineering and Medicine Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Available online: https://www.nap.edu/read/10490/chapter/12 (accessed on 14 April 2022).
- Kubala, J. Essential Amino Acids: Definition, Benefits and Food Sources. 2018. Available online: https://www.healthline.com/nutrition/essential-amino-acids/ (accessed on 14 April 2022).
- Institute of Medicine (US). Standing Committee on the Scientific Evaluation of Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academies Press: Washington, DC, USA, 1998. [Google Scholar] [CrossRef]
- Beitz, R.; Mensink, G.B.M.; Fischer, B.; Thamm, M. Vitamins—Dietary intake and intake from dietary supplements in Germany. Eur. J. Clin. Nutr. 2002, 56, 539–545. [Google Scholar] [CrossRef] [Green Version]
- Purevdorj-Gage, B.; Sheehan, K.B.; Hyman, L.E. Effects of low-shear modeled microgravity on cell function, gene expression, and phenotype in Saccharomyces cerevisiae. Appl. Environ Microbiol. 2006, 72, 4569–4575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menin, R.; Spolaore, P.; Mouly, I. Yeast Proteins. Patent FR3080521A1, 9 July 2021. Available online: https://patents.google.com/patent/FR3080521A1/en (accessed on 6 June 2022).
- Green, M. Biospringer Launches “Revolutionary” Yeast Protein Eliminating Off-Notes from Plant-Based Foods. 2022. Available online: https://www.foodingredientsfirst.com/news/ (accessed on 8 June 2022).
- Abu-Elala, N.; Marzouk, M.; Moustafa, M. Use of different Saccharomyces cerevisiae biotic forms as immune-modulator and growth promoter for Oreochromis niloticus challenged with some fish pathogens. Int. J. Vet. Sci. Med. 2013, 1, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Ernesto Ceseña, C.; Vega-Villasante, F.; Aguirre-Guzman, G.; Luna-Gonzalez, A.; Campa-Cordova, A. Update on the use of yeast in shrimp aquaculture: A minireview. Int. Aquat. Res. 2021, 13, 1–16. [Google Scholar] [CrossRef]
- Elghandour, M.M.Y.; Tan, Z.L.; Abu Hafsa, S.H.; Adegbeye, M.J.; Greiner, R.; Ugbogu, E.A.; Cedillo Monroy, J.; Salem, A.Z.M. Saccharomyces cerevisiae as a probiotic feed additive to non and pseudo-ruminant feeding: A review. J. Appl. Microbiol. 2019, 128, 658–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iraqi, K.; Fayed, R. Effect of yeast as feed supplement on behavioural and productive performance of broiler chickens. Life Sci. J. 2012, 99, 4026–4031. Available online: http://www.lifesciencesite.com/lsj/life0904/600_13283life0904_4026_4031.pdf (accessed on 12 April 2022).
- Wu, W.-J.; Ahn, B.-Y. Statistical optimization of ultraviolet irradiate conditions for vitamin D2 synthesis in oyster mushrooms (Pleurotus ostreatus) using response surface methodology. PLoS ONE 2014, 9, e95359. [Google Scholar] [CrossRef]
- Ragsdale, S.W. Enzymology of the Wood–Ljungdahl pathway of acetogenesis. Ann. N. Y. Acad. Sci. 2008, 1125, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Hong, K.-K.; Nielsen, J. Metabolic engineering of Saccharomyces cerevisiae: A key cell factory platform for future biorefineries. Cell. Mol. Life Sci. 2012, 69, 2671–2690. [Google Scholar] [CrossRef]
- Yamano, S.; Ishii, T.; Nakagawa, M.; Ikenaga, H.; Misawa, N. Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 1994, 58, 1112–1114. [Google Scholar] [CrossRef] [Green Version]
- Branduardi, P.; Fossati, T.; Sauer, M.; Pagani, R.; Mattanovich, D.; Porro, D. Biosynthesis of vitamin C by yeast leads to increased stress resistance. PLoS ONE 2007, 2, e1092. [Google Scholar] [CrossRef]
- Shen, B.; Zho, P.; Jiao, X.; Yao, Z.; Ye, L.; Yu, H. Fermentative production of Vitamin E tocotrienols in Saccharomyces cerevisiae under cold-shock-triggered temperature control. Nat. Commun. 2020, 11, 5155. [Google Scholar] [CrossRef]
- Yazawa, H.; Iwahashi, H.; Kamisaka, Y.; Kimura, K.; Uemura, H. Production of polyunsaturated fatty acids in yeast Saccharomyces cerevisiae and its relation to alkaline pH tolerance. Yeast 2009, 26, 167–184. [Google Scholar] [CrossRef]
- Fukuda, A.P.M.; Camandona, V.L.; Francisco, K.J.M.; Rios-Anjos, R.M.; Lucio do Lago, C.; Ferreira-Junior, J.R. Simulated microgravity accelerates aging in Saccharomyces cerevisiae. Life Sci. Space Res. 2021, 28, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Bijlani, S.; Stephens, E.; Kumar Singh, N.; Venkateswaran, K.; Wang, C.C.C. Advances in space microbiology. iScience 2021, 24, 102395. [Google Scholar] [CrossRef] [PubMed]
- Dawes, I.W.; Perrone, G.G. Stress and ageing in yeast. FEMS Yeast Res. 2020, 20, foz085. [Google Scholar] [CrossRef] [PubMed]
- Attfield, P.V. Crucial aspects of metabolism and cell biology relating to industrial production and processing of Saccharomyces biomass. Crit. Rev. Biotechnol. 2022, in press. [CrossRef] [PubMed]
- Pérez-Torrado, R.; Bruno-Bárcena, J.M.; Matallana, E. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making. Appl. Environ. Microbiol. 2005, 71, 6831–6837. [Google Scholar] [CrossRef] [Green Version]
- Alugongo, G.M.; Xiao, J.; Wu, Z.; Li, S.; Wang, Y.; Cao, Z. Review: Utilization of yeast of Saccharomyces cerevisiae origin in artificially raised calves. J. Anim. Sci. Biotechnol. 2017, 8, 34. [Google Scholar] [CrossRef]
Component | Amount (g per 100 g of Dry Yeast) |
---|---|
Dietary fibre | 38 |
Trehalose | 12.7 |
Energy * | 1310 |
Protein (amino N × 6.25) | 32.5 |
Ash | 7.0 |
Total lipids | 10 |
Amino Acid | Amount (mg per kg Dry Yeast) |
---|---|
Aspartic acid | 35,000 |
Serine | 18,000 |
Glutamic acid | 56,000 |
Glycine | 14,000 |
Histidine | 7400 |
Arginine | 15,000 |
Threonine | 18,000 |
Alanine | 19,000 |
Proline | 14,000 |
Tyrosine | 10,000 |
Valine | 15,000 |
Lysine | 26,000 |
Isoleucine | 13,000 |
Leucine | 23,000 |
Phenylalanine | 13,000 |
Methionine | 4700 |
Hydroxyproline | 93 |
Taurine | <50 |
Cysteine | 5800 |
Tryptophan | 3400 |
Nutrient | Nutrient (mg per 100 g Dry Yeast) | RDI (mg) * | Yeast (g per Day to Meet RDI) | Number of People 108 kg Yeast Could Support |
---|---|---|---|---|
Amino acids | ||||
Lysine | 2600 | 3040 | 117 | 923 |
Histidine | 740 | 1120 | 151 | 715 |
Threonine | 1800 | 1600 | 89 | 1213 |
Cysteine + Methionine | 1050 | 1520 | 145 | 745 |
Valine | 1500 | 1920 | 128 | 844 |
Isoleucine | 1300 | 1520 | 117 | 923 |
Leucine | 2300 | 3360 | 146 | 740 |
Phenylalanine + Tyrosine | 2300 | 2640 | 115 | 939 |
Tryptophan | 340 | 400 | 118 | 915 |
Vitamins | ||||
Pantothenate | 2.2 | 5 | 227 | 475 |
Biotin | 0.013 | 0.030 | 231 | 468 |
Thiamine | 0.27 | 1.2 | 444 | 243 |
Riboflavin | 2.6 | 1.3 | 50 | 2160 |
Niacin | 23 | 16 | 70 | 1553 |
Pyridoxine | 2.1 | 1.3 | 62 | 1742 |
Folate | 0.26 | 0.4 | 154 | 702 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bell, P.J.L.; Paras, F.E.; Mandarakas, S.; Arcenal, P.; Robinson-Cast, S.; Grobler, A.S.; Attfield, P.V. An Electro–Microbial Process to Uncouple Food Production from Photosynthesis for Application in Space Exploration. Life 2022, 12, 1002. https://doi.org/10.3390/life12071002
Bell PJL, Paras FE, Mandarakas S, Arcenal P, Robinson-Cast S, Grobler AS, Attfield PV. An Electro–Microbial Process to Uncouple Food Production from Photosynthesis for Application in Space Exploration. Life. 2022; 12(7):1002. https://doi.org/10.3390/life12071002
Chicago/Turabian StyleBell, Philip J. L., Ferdinand E. Paras, Sophia Mandarakas, Psyche Arcenal, Sinead Robinson-Cast, Anna S. Grobler, and Paul V. Attfield. 2022. "An Electro–Microbial Process to Uncouple Food Production from Photosynthesis for Application in Space Exploration" Life 12, no. 7: 1002. https://doi.org/10.3390/life12071002
APA StyleBell, P. J. L., Paras, F. E., Mandarakas, S., Arcenal, P., Robinson-Cast, S., Grobler, A. S., & Attfield, P. V. (2022). An Electro–Microbial Process to Uncouple Food Production from Photosynthesis for Application in Space Exploration. Life, 12(7), 1002. https://doi.org/10.3390/life12071002