Insecticidal and Antifungal Activities of Chemically-Characterized Essential Oils from the Leaves of Withania frutescens L.
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.1.1. Extraction of EOW
2.1.2. Gas Chromatography—Flame Ionization Detector (GC-FID)
2.1.3. Analysis of the Chemical Composition of EOW by GC/MS
2.2. Insecticidal Activity of EOW
2.2.1. Breeding of insects
2.2.2. Toxicity of EOW against Callosobruchus Maculatus
Toxicity by Contact
Toxicity by Inhalation
Repulsion Test
2.3. Antifungal Activity of EOW
2.3.1. Preparation of the Suspension Cultures
2.3.2. Preparation of Culture Media and Incubation of Petri Dishes
2.3.3. Evaluation of Mycelial Growth
Determination of Minimum Inhibitory Concentrations
Determination of the Mycelial Growth Rate (MG)
2.4. Statistical Analysis
3. Results and Discussion
3.1. Identification of EOW Composition by GC/MS
3.2. Insecticidal Activity
3.3. Antifungal Activity of EOW
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frénot, M.; Vierling, E. Biochimie Des Aliments: Diététique Du Sujet Bien Portant; DOIN, CRDP d’Aquita…; Doin: Bordeaux, France, 2001; ISBN 978-2-86617-383-8. [Google Scholar]
- Baudoin, J. Contribution Des Ressources Phytogénétiques à La Sélection Variétale de Légumineuses Alimentaires Tropicales. Biotechnol. Agron. Soc. Environ. 2001, 5, 221–230. [Google Scholar]
- Colas, G. Traité d’Entomologie Appliquée a l’Agriculture; Publié Sous La Direction de A.S. Balachowsky, Professeur Au Muséum National d’Histoire Naturelle, Chef de Service à l’Institut Pasteur. Bull. Société Entomol. Fr. 1962, 67, 224–225. [Google Scholar]
- Butler, M.J.; Day, A.W. Fungal Melanins: A Review. Can. J. Microbiol. 1998, 44, 1115–1136. [Google Scholar] [CrossRef]
- Berner, D.K.; Ikie, F.O.; Aigbokhan, E.I. Some Control Measures for Striga hermonthica Utilizing Critical Infection Period on Maize and Sorghum. In Maize Research for Stress Environments, Proceedings of the Fourth Eastern and Southern Africa Regional Maize Conference, Harare, Zimbabwe, 28 March–1 April 1994; CIMMYT: El Batan, Mexico, 1995; pp. 267–272. [Google Scholar]
- Sathyaseelan, V.; Baskaran, V.; Mohan, S. Efficacy of Some Indigenous Pesticidal Plants against Pulse Beetle, Callosobruchus chinensis (L.) on Green Gram. J. Entomol. 2008, 5, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Caswell, G.H. A Review of the Work Done in the Entomology Section of the Institute for Agricultural Research on the Pests of Stored Grain. Samaru Misc. Pap. 1980, 99, 12. [Google Scholar]
- Ouedraogo, A.P.; Sou, S.; Sanon, A.; Monge, J.P.; Huignard, J.; Tran, B.; Crdland, P.F. Influence of Temperature and Humidity on Population of Callosobruchus Maculatus (Coleoptera: Bruchidae) and Its Parasitoid Dinarmus Basalis (Pteromalidae) in Two Climatic Zones of Burkina Faso. Bull. Entomol. Res. 1996, 86, 695–702. [Google Scholar] [CrossRef]
- Mayer, M.S.; Tullu, A.; Simon, C.J.; Kumar, J.; Kaiser, W.J.; Kraft, J.M.; Muehlbauer, F.J. Development of a DNA Marker for Fusarium Wilt Resistance in Chickpea. Crop Sci. 1997, 37, 1625–1629. [Google Scholar] [CrossRef]
- Landa, B.B.; Navas-Cortés, J.A.; Jiménez-Díaz, R.M. Integrated Management of Fusarium Wilt of Chickpea with Sowing Date, Host Resistance, and Biological Control. Phytopathology 2004, 94, 946–960. [Google Scholar] [CrossRef] [Green Version]
- Navas-Cortés, J.A.; Hau, B.; Jiménez-Díaz, R.M. Yield Loss in Chickpeas in Relation to Development of Fusarium Wilt Epidemics. Phytopathology 2000, 90, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.A.; Alam, S.S.; Jabbar, A. Standardization of Medium for the Production of Maximum Phytotoxic Activity by Fusarium oxysporum f. sp. ciceris. Pak. J. Biol. Sci. 2001, 4, 1374–1376. [Google Scholar] [CrossRef] [Green Version]
- Nzelu, C.O.; Okonkwo, N.J. Evaluation of Melon Seed Oil Citrullus colocynthis (L.) Schrad, for the Protection of Cowpea Vigna Unguiculata Seeds against Callosobruchus Maculatus (Fabricius) (Coleoptera: Bruchidae). Int. Adv. Res. J. Sci. Eng. Technol. ISO 2007, 3, 3297. [Google Scholar] [CrossRef]
- Mirjalili, M.H.; Moyano, E.; Bonfill, M.; Cusido, R.M.; Palazón, J. Steroidal Lactones from Withania Somnifera, an Ancient Plant for Novel Medicine. Molecules 2009, 14, 2373–2393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Broe, M.E.; Gharbi, M.B.; Elseviers, M. Maremar, Prevalence of Chronic Kidney Disease, How to Avoid over-Diagnosis and under-Diagnosis. Nephrol. Ther. 2016, 12, S57–S63. [Google Scholar] [CrossRef]
- Bellakhdar, J. The Traditional Moroccan Pharmacopoeia: Ancient Arabic Medicine and Popular Knowledge; Ibis Press: Paris, France, 1997. [Google Scholar]
- EL Moussaoui, A.; Bourhia, M.; Jawhari, F.Z.; Salamatullah, A.M.; Ullah, R.; Bari, A.; Majid Mahmood, H.; Sohaib, M.; Serhii, B.; Rozhenko, A. Chemical Profiling, Antioxidant, and Antimicrobial Activity against Drug-Resistant Microbes of Essential Oil from Withania frutescens L. Appl. Sci. 2021, 11, 5168. [Google Scholar] [CrossRef]
- Bourhia, M.; Bouothmany, K.; Bakrim, H.; Hadrach, S.; Salamatullah, A.M.; Alzahrani, A.; Khalil Alyahya, H.; Albadr, N.A.; Gmouh, S.; Laglaoui, A. Chemical Profiling, Antioxidant, Antiproliferative, and Antibacterial Potentials of Chemically Characterized Extract of Citrullus colocynthis L. Seeds. Separations 2021, 8, 114. [Google Scholar] [CrossRef]
- El Atki, Y.; Aouam, I.; El Kamari, F.; Taroq, A.; Lyoussi, B.; Oumokhtar, B.; Abdellaoui, A. Phytochemistry, Antioxidant and Antibacterial Activities of Two Moroccan Teucrium polium L. Subspecies: Preventive Approach against Nosocomial Infections. Arab. J. Chem. 2019, 13, 3866–3874. [Google Scholar] [CrossRef]
- Dutra, K.d.A.; de Oliveira, J.V.; Navarro, D.M.d.A.F.; Barbosa, D.R.e.S.; Santos, J.P.O. Control of Callosobruchus maculatus (FABR.) (Coleoptera: Chrysomelidae: Bruchinae) in Vigna unguiculata (L.) WALP. with Essential Oils from Four Citrus spp. Plants. J. Stored Prod. Res. 2016, 68, 25–32. [Google Scholar] [CrossRef]
- Abbott, W.S. A Method of Computing the Effectiveness of an Insecticide. J. Écon. Entomol. 1987, 3, 302–303. [Google Scholar] [CrossRef]
- Zandi-Sohani, N.; Hojjati, M.; Carbonell-Barrachina, Á.A. Insecticidal and Repellent Activities of the Essential Oil of Callistemon citrinus (Myrtaceae) Against Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Neotrop. Entomol. 2013, 42, 89–94. [Google Scholar] [CrossRef]
- Remmal, A.; Bouchikhi, T.; Rhayour, K.; Ettayebi, M.; Tantaoui-Elaraki, A. Improved Method for the Determination of Antimicrobial Activity of Essential Oils in Agar Medium. J. Essent. Oil Res. 1993, 5, 179–184. [Google Scholar] [CrossRef]
- Saghrouchni, H.; El Barnossi, A.; Tanghort, M.; Remmal, A. Chami Fouzia Study the Effect of Carvacrol, Eugenol and Thymol on Fusariums Sp Responsible for Lolium Perenne Fusariosis. Eco. Environ. Cons. 2020, 20, 1059–1067. [Google Scholar]
- El Ajjouri, M.; Satrani, B.; Ghanmi, M.; Aafi, A.; Farah, A.; Rahouti, M.; Amarti, F.; Aberchane, M. Activité Antifongique Des Huiles Essentielles de Thymus Bleicherianus Pomel et Thymus capitatus (L.) Hoffm. & Link Contre Les Champignons de Pourriture Du Bois d’œuvre. Biotechnol. Agron. Soc. Environ. 2008, 12, 345–351. [Google Scholar]
- Akrout, A.; Fadili, K.; Amalich, S.; Dedianhoua, S.K.N.; Bouachrine, M.; Mahjoubi, M.; Mohamed, A.E.H.H.; El-Sayed, M.A.; Hegazy, M.E.; Helaly, S.E.; et al. Chemical Constituents and Biological Activities of Artemisia Herba-Alba. Ann. Rech. Maroc. 2014, 41, 1–25. [Google Scholar] [CrossRef]
- Voda, K.; Boh, B.; Vrtačnik, M.; Pohleven, F. Effect of the Antifungal Activity of Oxygenated Aromatic Essential Oil Compounds on the White-Rot Trametes Versicolor and the Brown-Rot Coniophora Puteana. Int. Biodeterior. Biodegrad. 2003, 51, 51–59. [Google Scholar] [CrossRef]
- Cahagnier, B.; Richard-Molard, D. Analyse Mycologique in Moisissures Des Aliments Peu Hydratés, Ed.; Tec & Doc: Paris, France, 1998. [Google Scholar]
- Chebbac, K.; Moussaoui, A.E.; Bourhia, M.; Salamatullah, A.M.; Alzahrani, A.; Guemmouh, R. Chemical Analysis and Antioxidant and Antimicrobial Activity of Essential Oils from Artemisia negrei L. against Drug-Resistant Microbes. Evid. Based Complement. Alternat. Med. 2021, 2021, 5902851. [Google Scholar] [CrossRef]
- Zekri, N.; Amalich, S.; Boughdad, A.; El Belghiti, M.A.; Zair, T. Phytochemical Study and Insecticidal Activity of Mentha pulegium L. Oils from Morocco against Sitophilus Oryzae. Mediterr. J. Chem. 2013, 2, 607–619. [Google Scholar] [CrossRef]
- Lamiri, A.; Lhaloui, S.; Benjilali, B.; Berrada, M. Insecticidal Effects of Essential Oils against Hessian Fly, Mayetiola Destructor (Say). Field Crops Res. 2001, 71, 9–15. [Google Scholar] [CrossRef]
- Chraibi, M.; Farah, A.; Lebrazi, S.; El Amine, O.; Houssaini, M.I.; Fikri-Benbrahim, K. Antimycobacterial Natural Products from Moroccan Medicinal Plants: Chemical Composition, Bacteriostatic and Bactericidal Profile of Thymus Satureioides and Mentha Pulegium Essential Oils. Asian Pac. J. Trop. Biomed. 2016, 6, 836–840. [Google Scholar] [CrossRef] [Green Version]
- El Moussaoui, A.; Bourhia, M.; Jawhari, F.Z.; Khalis, H.; Chedadi, M.; Agour, A.; Salamatullah, A.M.; Alzahrani, A.; Alyahya, H.K.; Alotaibi, A.; et al. Responses of Withania frutescens (L.) Pauquy (Solanaceae) Growing in the Mediterranean Area to Changes in the Environmental Conditions: An Approach of Adaptation. Front. Ecol. Evol. 2021, 9, 666005. [Google Scholar] [CrossRef]
- Aimad, A.; Sanae, R.; Anas, F.; Abdelfattah, E.M.; Bourhia, M.; Mohammad Salamatullah, A.; Alzahrani, A.; Alyahya, H.K.; Albadr, N.A.; Abdelkrim, A. Chemical Characterization and Antioxidant, Antimicrobial, and Insecticidal Properties of Essential Oil from Mentha pulegium L. Evid. Based Complement. Alternat. Med. 2021, 2021, 1108133. [Google Scholar] [CrossRef] [PubMed]
- Larry, P. Pedigo Entomology and Pest Management, 6th ed.; Pedigo, L.P., Rice, M.E., Eds.; Waveland Press: Iowa, IA, UAS, 2014; ISBN 978-1478622857. [Google Scholar]
- Ikbal, C.; Pavela, R. Essential Oils as Active Ingredients of Botanical Insecticides against Aphids. J. Pest Sci. 2019, 92, 971–986. [Google Scholar] [CrossRef]
- Weaver, D.K.; Dunkel, F.V.; Ntezurubanza, L.; Jackson, L.L.; Stock, D.T. The Efficacy of Linalool, a Major Component of Freshly-Milled Ocimum Canum Sims (Lamiaceae), for Protection against Postharvest Damage by Certain Stored Product Coleoptera. J. Stored Prod. Res. 1991, 27, 213–220. [Google Scholar] [CrossRef]
- Regnault-Roger, C.; Hamraoui, A. Inhibition of Reproduction of Acanthoscelides Obtectus Say (Coleoptera), a Kidney Bean (Phaseolus Vulgaris) Bruchid, by Aromatic Essential Oils. Crop Prot. 1994, 13, 624–628. [Google Scholar] [CrossRef]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential Oils in Insect Control: Low-Risk Products in a High-Stakes World. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef]
- Huignard, J. Analyse Experimentale de Certains Stimuli Externs Influencant Ovogenese Chez Acanthoscelides Obtectus Say (Coleoptera: Bruchidae) In L Influence Des Stimuli Externs Sur La Gametogenese Des Insects, Coll Intern. CNRS 1969, 357–380. [Google Scholar]
- Pouzat, J. Host Plant Chemosensory Influence on Oogenesis in the Bean Weevil, Acanthoscelides Obtectus, (Coleoptera: Bruchidae). Entomol. Exp. Appl. 1978, 24, 601–608. [Google Scholar] [CrossRef]
- Crespo, M.E.; Jimenez, J.; Gomis, E.; Navarro, C. Antibacterial Activity of the Essential Oil of Thymus Serpylloides Subspecies Gadorensis. Microbios 1990, 61, 248–249. [Google Scholar]
- Cosentino, S.; Tuberoso, C.I.G.; Pisano, B.; Satta, M.; Mascia, V.; Arzedi, E.; Palmas, F. In-Vitro Antimicrobial Activity and Chemical Composition of Sardinian Thymus Essential Oils. Lett. Appl. Microbiol. 1999, 29, 130–135. [Google Scholar] [CrossRef]
- Farag, R.S.; Daw, Z.Y.; Hewedi, F.M.; El-Baroty, G.S.A. Antimicrobial Activity of Some Egyptian Spice Essential Oils. J. Food Prot. 1989, 52, 665–667. [Google Scholar] [CrossRef] [PubMed]
- Celimene, C.C.; Micales, J.A.; Ferge, L.; Young, R.A. Efficacy of Pinosylvins against White-Rot and Brown-Rot Fungi. Holzforschung 1999, 53, 491–497. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant Products as Antimicrobial Agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juven, B.J.; Kanner, J.; Schved, F.; Weisslowicz, H. Factors That Interact with the Antibacterial Action of Thyme Essential Oil and Its Active Constituents. J. Appl. Bacteriol. 1994, 76, 626–631. [Google Scholar] [CrossRef]
- Ultee, A.; Kets, E.P.W.; Smid, E.J. Mechanisms of Action of Carvacrol on the Food-Borne Pathogen Bacillus Cereus. Appl. Environ. Microbiol. 1999, 65, 4606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knowles, J.R.; Roller, S.; Murray, D.B.; Naidu, A.S. Antimicrobial Action of Carvacrol at Different Stages of Dual-Species Biofilm Development by Staphylococcus Aureus and Salmonella Enterica Serovar Typhimurium. Appl. Environ. Microbiol. 2005, 71, 797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Malo, A.; Alzamora, S.M.; Palou, E. Aspergillus Flavus Growth in the Presence of Chemical Preservatives and Naturally Occurring Antimicrobial Compounds. Int. J. Food Microbiol. 2005, 99, 119–128. [Google Scholar] [CrossRef]
Medium | PDA (mL) | EOW (mL) | Agar 0.2% (mL) | Concentration (mL) |
---|---|---|---|---|
Control | 40.00 | 0.0 | 0.0 | 0 |
1 | 36.00 | 0.4000 | 3.6000 | 1/100 |
2 | 38.00 | 0.2000 | 1.8000 | 1/200 |
3 | 39.00 | 0.1000 | 0.9000 | 1/400 |
4 | 39.50 | 0.0500 | 0.4500 | 1/800 |
5 | 39.75 | 0.0250 | 0.2250 | 1/1600 |
6 | 39.75 | 0.0125 | 0.1125 | 1/3200 |
Peak | R.T (min) | Name | Formula | Area (%) | RI | Chemical Structure |
---|---|---|---|---|---|---|
1 | 6.70 | Camphene | C10H16 | 4.42 | 946 | |
2 | 6.81 | 1,8-Cineole | C10H18O | 6.93 | 1031 | |
3 | 7.47 | Fenchone | C10H16O | 4.43 | 1086 | |
4 | 7.63 | α-Thujone | C10H16O | 2.88 | 1102 | |
5 | 7.74 | β-Thujone | C10H16O | 1.53 | 1114 | |
6 | 8.09 | Camphor | C10H16O | 9.13 | 1146 | |
7 | 8.95 | Pulegone | C10H16O | 5.37 | 1237 | |
8 | 9.28 | Thymol | C10H14O | 30.08 | 1290 | |
9 | 9.39 | Carvacrol | C10H14O | 31.87 | 1299 | |
10 | 10.03 | Piperitenone oxide | C10H14O2 | 3.37 | 1368 | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelfattah, E.M.; Aimad, A.; Bourhia, M.; Chebbac, K.; Salamatullah, A.M.; Soufan, W.; Nafidi, H.-A.; Aboul-Soud, M.A.M.; Ouahmane, L.; Bari, A. Insecticidal and Antifungal Activities of Chemically-Characterized Essential Oils from the Leaves of Withania frutescens L. Life 2022, 12, 88. https://doi.org/10.3390/life12010088
Abdelfattah EM, Aimad A, Bourhia M, Chebbac K, Salamatullah AM, Soufan W, Nafidi H-A, Aboul-Soud MAM, Ouahmane L, Bari A. Insecticidal and Antifungal Activities of Chemically-Characterized Essential Oils from the Leaves of Withania frutescens L. Life. 2022; 12(1):88. https://doi.org/10.3390/life12010088
Chicago/Turabian StyleAbdelfattah, El Moussaoui, Allali Aimad, Mohammed Bourhia, Khalid Chebbac, Ahmad Mohammad Salamatullah, Walid Soufan, Hiba-Allah Nafidi, Mourad A. M. Aboul-Soud, Lahcen Ouahmane, and Amina Bari. 2022. "Insecticidal and Antifungal Activities of Chemically-Characterized Essential Oils from the Leaves of Withania frutescens L." Life 12, no. 1: 88. https://doi.org/10.3390/life12010088
APA StyleAbdelfattah, E. M., Aimad, A., Bourhia, M., Chebbac, K., Salamatullah, A. M., Soufan, W., Nafidi, H.-A., Aboul-Soud, M. A. M., Ouahmane, L., & Bari, A. (2022). Insecticidal and Antifungal Activities of Chemically-Characterized Essential Oils from the Leaves of Withania frutescens L. Life, 12(1), 88. https://doi.org/10.3390/life12010088