The Role of Consecutive Plasma Copeptin Levels in the Screening of Delayed Cerebral Ischemia in Poor-Grade Subarachnoid Hemorrhage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Treatment Protocol
2.3. Detection and Monitoring of DCI
2.4. Study Outcomes
2.5. Blood Sampling and Copeptin Measurement
2.6. Statistical Analysis
3. Results
3.1. Patients’ Clinical Characteristics
3.2. Consecutive Plasma Copeptin Measurement for DCI Prediction
3.3. Copeptin with TCD vs. TCD Alone in DCI Prediction
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, G.; Shahripour, R.B.; Harrigan, M.R. Vasospasm on transcranial doppler is predictive of delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: A systematic review and meta-analysis. J. Neurosurg. 2016, 124, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Hollingworth, M.; Jamjoom, A.A.B.; Bulters, D.; Patel, H.C. How is vasospasm screening using transcranial doppler associated with delayed cerebral ischemia and outcomes in aneurysmal subarachnoid hemorrhage? Acta Neurochir. 2019, 161, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Francoeur, C.L.; Mayer, S.A. Management of delayed cerebral ischemia after subarachnoid hemorrhage. Crit. Care. 2016, 20, 277. [Google Scholar] [CrossRef] [PubMed]
- Rigamonti, A.; Ackery, A.; Baker, A.J. Transcranial doppler monitoring in subarachnoid hemorrhage: A critical tool in critical care. Can. J. Anaesth. 2008, 55, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Esposito, P.; Piotti, G.; Bianzina, S.; Malul, Y.; Dal Canton, A. The syndrome of inappropriate antidiuresis: Pathophysiology, clinical management and new therapeutic options. Nephron Clin. Pract. 2011, 119, c62–c73. [Google Scholar] [CrossRef] [PubMed]
- Katan, M.; Morgenthaler, N.G.; Dixit, K.C.; Rutishauser, J.; Brabant, G.E.; Muller, B.; Christ-Crain, M. Anterior and posterior pituitary function testing with simultaneous insulin tolerance test and a novel copeptin assay. J. Clin. Endocrinol. Metab. 2007, 92, 2640–2643. [Google Scholar] [CrossRef] [PubMed]
- Jochberger, S.; Morgenthaler, N.G.; Mayr, V.D.; Luckner, G.; Wenzel, V.; Ulmer, H.; Schwarz, S.; Hasibeder, W.R.; Friesenecker, B.E.; Dünser, M.W. Copeptin and arginine vasopressin concentrations in critically ill patients. J. Clin. Endocrinol. Metab. 2006, 91, 4381–4386. [Google Scholar] [CrossRef]
- Zuo, Z.; Ji, X. Prognostic value of copeptin in patients with aneurysmal subarachnoid hemorrhage. J. Neuroimmunol. 2019, 330, 116–122. [Google Scholar] [CrossRef]
- Aksu, F.; Gurger, M.; Yilmaz, M.; Atescelik, M.; Yildiz, M.; Ilhan, N.; Goktekin, M.C. Copeptin levels in cerebral infarction, intracranial hemorrhage and subarachnoid hemorrhage. Clin. Lab. 2016, 62, 2387–2393. [Google Scholar] [CrossRef]
- Fung, C.; De Marchis, G.M.; Katan, M.; Seiler, M.; Arnold, M.; Gralla, J.; Raabe, A.; Beck, J. Copeptin as a marker for severity and prognosis of aneurysmal subarachnoid hemorrhage. PLoS ONE 2013, 8, e53191. [Google Scholar] [CrossRef]
- Zhu, X.D.; Chen, J.S.; Zhou, F.; Liu, Q.C.; Chen, G.; Zhang, J.M. Detection of copeptin in peripheral blood of patients with aneurysmal subarachnoid hemorrhage. Crit. Care 2011, 15, R288. [Google Scholar] [CrossRef]
- Zheng, Y.K.; Dong, X.Q.; Du, Q.; Wang, H.; Yang, D.B.; Zhu, Q.; Che, Z.H.; Shen, Y.F.; Jiang, L.; Hu, W.; et al. Comparison of plasma copeptin and multiple biomarkers for assessing prognosis of patients with aneurysmal subarachnoid hemorrhage. Clin. Chim. Acta 2017, 475, 64–69. [Google Scholar] [CrossRef]
- Marston, N.A.; Shah, K.S.; Mueller, C.; Neath, S.X.; Christenson, R.H.; McCord, J.; Nowak, R.M.; Daniels, L.B.; Hollander, J.E.; Apple, F.; et al. Serial sampling of copeptin levels improves diagnosis and risk stratification in patients presenting with chest pain: Results from the chopin trial. Emerg. Med. J. 2016, 33, 23–29. [Google Scholar] [CrossRef]
- Zissimopoulos, A.; Vogiatzaki, T.; Babatsikou, F.; Velissaratou, M.; Baloka, L.; Karathanos, E.; Pistola, A.; Christofis, X.; Iatrou, X. The role of copeptin in patients with subarachnoid haemorrage. Hell. J. Nucl. Med. 2015, 18 (Suppl. 1), 150. [Google Scholar] [PubMed]
- Kim, H.C.; Rhim, J.K.; Ahn, J.H.; Park, J.J.; Moon, J.U.; Hong, E.P.; Kim, M.R.; Kim, S.G.; Lee, S.H.; Jeong, J.H.; et al. Machine learning application for rupture risk assessment in small-sized intracranial aneurysm. J. Clin. Med. 2019, 8, 683. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.D.; Kim, S.E.; Lim, J.W.; Choi, H.J.; Cho, Y.J.; Jeon, J.P. Protected versus unprotected carotid artery stenting: Meta-analysis of the current literature. J. Korean Neurosurg. Soc. 2018, 61, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Jeon, J.P.; Kim, S.E.; Choi, H.J.; Cho, Y.J. Endovascular treatment with intravenous thrombolysis versus endovascular treatment alone for acute anterior circulation stroke: A meta-analysis of observational studies. J. Korean Neurosurg. Soc. 2018, 61, 467–473. [Google Scholar] [CrossRef]
- Bosel, J. What do we mean by poor-grade aneurysmal subarachnoid hemorrhage and what can we do? Neurocrit. Care 2016, 25, 335–337. [Google Scholar] [CrossRef]
- Hurth, H.; Birkenhauer, U.; Steiner, J.; Schlak, D.; Hennersdorf, F.; Ebner, F.H. Delayed cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage-serum d-dimer and c-reactive protein as early markers. J. Stroke Cerebrovasc. Dis. 2020, 29, 104558. [Google Scholar] [CrossRef]
- Jeon, J.S.; Sheen, S.H.; Hwang, G.; Kang, S.H.; Heo, D.H.; Cho, Y.J. Intravenous magnesium infusion for the prevention of symptomatic cerebral vasospasm after aneurysmal subarachnoid hemorrhage. J. Korean Neurosurg. Soc. 2012, 52, 75–79. [Google Scholar] [CrossRef]
- Park, J.J.; Kim, C.; Jeon, J.P. Monitoring of delayed cerebral ischemia in patients with subarachnoid hemorrhage via near-infrared spectroscopy. J. Clin. Med. 2020, 9, 1595. [Google Scholar] [CrossRef]
- Okazaki, T.; Kuroda, Y. Aneurysmal subarachnoid hemorrhage: Intensive care for improving neurological outcome. J. Intensive Care 2018, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.S.; Sheen, S.H.; Hwang, G.J.; Kim, H.C.; Kwon, B.J. Feasibility of intravenous flat panel detector ct angiography for intracranial arterial stenosis. AJNR Am. J. Neuroradiol. 2013, 34, 129–134. [Google Scholar] [CrossRef]
- Kim, B.J.; Kim, Y.; Kim, S.E.; Jeon, J.P. Study of correlation between hp alpha1 expression of haptoglobin 2-1 and clinical course in aneurysmal subarachnoid hemorrhage. World Neurosurg. 2018, 117, e221–e227. [Google Scholar] [CrossRef] [PubMed]
- Vergouwen, M.D.; Vermeulen, M.; van Gijn, J.; Rinkel, G.J.; Wijdicks, E.F.; Muizelaar, J.P.; Mendelow, A.D.; Juvela, S.; Yonas, H.; Terbrugge, K.G.; et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: Proposal of a multidisciplinary research group. Stroke 2010, 41, 2391–2395. [Google Scholar] [CrossRef] [PubMed]
- Vora, Y.Y.; Suarez-Almazor, M.; Steinke, D.E.; Martin, M.L.; Findlay, J.M. Role of transcranial doppler monitoring in the diagnosis of cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery 1999, 44, 1237–1247. [Google Scholar]
- Samagh, N.; Bhagat, H.; Jangra, K. Monitoring cerebral vasospasm: How much can we rely on transcranial doppler. J. Anaesthesiol. Clin. Pharmacol. 2019, 35, 12–18. [Google Scholar] [PubMed]
- Weir, B.; Grace, M.; Hansen, J.; Rothberg, C. Time course of vasospasm in man. J. Neurosurg. 1978, 48, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Romero, F.R.; Cataneo, D.C.; Cataneo, A.J. C-reactive protein and vasospasm after aneurysmal subarachnoid hemorrhage. Acta Cir. Bras. 2014, 29, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Cebral, J.R.; Mut, F.; Weir, J.; Putman, C.M. Association of hemodynamic characteristics and cerebral aneurysm rupture. AJNR Am. J. Neuroradiol. 2011, 32, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.S.; Kim, J.E.; Chung, Y.S.; Oh, S.; Ahn, J.H.; Cho, W.S.; Son, Y.J.; Bang, J.S.; Kang, H.S.; Sohn, C.H.; et al. A risk factor analysis of prospective symptomatic haemorrhage in adult patients with cerebral cavernous malformation. J. Neurol. Neurosurg. Psychiatry 2014, 85, 1366–1370. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.H.; Lan, J.; Esposito, E.; Ning, M.; Balaj, L.; Ji, X.; Lo, E.H.; Hayakawa, K. Extracellular mitochondria in cerebrospinal fluid and neurological recovery after subarachnoid hemorrhage. Stroke 2017, 48, 2231–2237. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.P.; Kim, C.; Oh, B.D.; Kim, S.J.; Kim, Y.S. Prediction of persistent hemodynamic depression after carotid angioplasty and stenting using artificial neural network model. Clin. Neurol. Neurosurg. 2018, 164, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Dobsa, L.; Edozien, K.C. Copeptin and its potential role in diagnosis and prognosis of various diseases. Biochem. Med. 2013, 23, 172–190. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, S.J.; Barakat, I.; Ziogas, J.; Frugier, T.; Stylli, S.S.; Laidlaw, J.D.; Kaye, A.H.; Adamides, A.A. Association of copeptin, a surrogate marker of arginine vasopressin, with cerebral vasospasm and delayed ischemic neurologic deficit after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2018, 130, 1446–1452. [Google Scholar] [CrossRef]
- Delgado, T.J.; Arbab, M.A.; Warberg, J.; Svendgaard, N.A. The role of vasopressin in acute cerebral vasospasm. Effect on spasm of a vasopressin antagonist or vasopressin antiserum. J. Neurosurg. 1988, 68, 266–273. [Google Scholar] [CrossRef]
- Kagawa, M.; Nagao, S.; Bemana, I. Arginine vasopressin receptor antagonists for treatment of vasogenic brain edema: An experimental study. J. Neurotrauma 1996, 13, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Vespa, P. Participants in the International Multi-Disciplinary Consensus Conference on the Critical Care Management of Subarachnoid H. Sah pituitary adrenal dysfunction. Neurocrit. Care. 2011, 15, 365–368. [Google Scholar] [CrossRef]
- Dorhout Mees, S.M.; Kerr, R.S.; Rinkel, G.J.; Algra, A.; Molyneux, A.J. Occurrence and impact of delayed cerebral ischemia after coiling and after clipping in the international subarachnoid aneurysm trial (isat). J. Neurol. 2012, 259, 679–683. [Google Scholar] [CrossRef]
Variables | Non-DCI (n = 50) | DCI (n = 36) | p-Value |
---|---|---|---|
Clinical characteristics | |||
Female | 22 (44.0%) | 19 (52.8%) | 0.421 |
Age, years | 63.1 ± 8.7 | 59.3 ± 11.8 | 0.086 |
Hypertension | 16 (32.0%) | 10 (27.8%) | 0.674 |
Diabetes mellitus | 8 (16.0%) | 6 (16.7%) | 0.934 |
Hyperlipidemia | 11 (22.0%) | 7 (19.4%) | 0.774 |
Smoking | 11 (22.0%) | 7 (19.4%) | 0.774 |
Radiological findings | |||
Anterior location | 43 (86.0%) | 30 (83.3%) | 0.733 |
Size (mm) | 5.3 ± 1.2 | 5.6 ± 1.5 | 0.372 |
Modified Fisher scale IV | 10 (20.0%) | 16 (44.4%) | 0.015 |
Laboratory results | |||
Hemoglobin (g/dL) | 11.1 ± 1.1 | 11.2 ± 1.4 | 0.760 |
SaO2 (%) | 94.7 ± 1.6 | 94.2 ± 2.6 | 0.330 |
Copeptin (pg/mL) | 263.0 ± 37.1 | 295.4 ± 39.4 | <0.001 |
C-reactive protein (mg/L) * | 25.7 ± 8.3 | 29.4 ± 11.2 | 0.085 |
Treatment | |||
Simple coiling | 37 (74.0%) | 29 (80.6%) | 0.478 |
Extraventricular drainage | 13 (26.0%) | 13 (36.1%) | 0.314 |
Craniotomy and hematoma removal | 1 (2.0%) | 3 (8.3%) | 0.169 |
Variables | Odds Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
Age | 0.979 | 0.932–1.028 | 0.388 |
Modified Fisher scale IV | 2.841 | 0.998–8.084 | 0.050 |
Copeptin | 1.022 | 1.008–1.037 | 0.002 |
C-reactive protein | 1.027 | 0.972–1.085 | 0.347 |
Craniotomy and hematoma removal | 1.943 | 0.117–32.367 | 0.643 |
Study, Year | Sample Size | Blood Collection | Detection Method | Number of Blood Collection | Relevance to Copeptin |
---|---|---|---|---|---|
Zhu 2011 [11] | 303 | <24 h | ELISA | Single | Outcome and cerebral vasospasm |
Fung 2013 [10] | 18 | Admission | Immunoassay | Single | Severity and prognosis |
Zissimopoulos 2015 [14] | 32 | - | Immunoassay | Several | Severity |
Aksu 2016 [9] | 29 | Admission | ELISA | Single | Comparison with other brain diseases * |
Zheng 2017 [12] | 105 | <24 h | ELISA | Single | Outcome and symptomatic vasospasm |
Zuo 2019 [8] | 243 | Admission | ELISA | Single | Outcome |
Present 2020 | 86 ** | Once every two days | ELISA | 7 | Prediction of DCI in poor-grade SAH |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rhim, J.K.; Youn, D.H.; Kim, B.J.; Kim, Y.; Kim, S.; Kim, H.C.; Jeon, J.P. The Role of Consecutive Plasma Copeptin Levels in the Screening of Delayed Cerebral Ischemia in Poor-Grade Subarachnoid Hemorrhage. Life 2021, 11, 274. https://doi.org/10.3390/life11040274
Rhim JK, Youn DH, Kim BJ, Kim Y, Kim S, Kim HC, Jeon JP. The Role of Consecutive Plasma Copeptin Levels in the Screening of Delayed Cerebral Ischemia in Poor-Grade Subarachnoid Hemorrhage. Life. 2021; 11(4):274. https://doi.org/10.3390/life11040274
Chicago/Turabian StyleRhim, Jong Kook, Dong Hyuk Youn, Bong Jun Kim, Youngmi Kim, Sungeun Kim, Heung Cheol Kim, and Jin Pyeong Jeon. 2021. "The Role of Consecutive Plasma Copeptin Levels in the Screening of Delayed Cerebral Ischemia in Poor-Grade Subarachnoid Hemorrhage" Life 11, no. 4: 274. https://doi.org/10.3390/life11040274
APA StyleRhim, J. K., Youn, D. H., Kim, B. J., Kim, Y., Kim, S., Kim, H. C., & Jeon, J. P. (2021). The Role of Consecutive Plasma Copeptin Levels in the Screening of Delayed Cerebral Ischemia in Poor-Grade Subarachnoid Hemorrhage. Life, 11(4), 274. https://doi.org/10.3390/life11040274