On the Degree-Based Topological Indices of the Tickysim SpiNNaker Model
Abstract
:1. Introduction
2. Applications of Topological Indices
3. Materials and Methods
4. Main Results
- 1.
- ,
- 2.
- ,
- 3.
- ,where α is a real number.
- 1.
- 2.
- 3.
- 4.
- 5.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- PoLap, D.; Woźniak, M.; Wei, W.; Damaševičius, R. Multi-threaded learning control mechanism for neural networks. Future Gener. Comput. Syst. 2018, 87, 16–34. [Google Scholar] [CrossRef]
- Woźniak, M.; PoLap, D. Hybrid neuro-heuristic methodology for simulation and control of dynamic systems over time interval. Neural Netw. 2017, 93, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Ando, K.; Takamaeda-Yamazaki, S.; Ikebe, M.; Asai, T.; Motomura, M. Multithreaded CGRA for Convolutional Neural Network Processing. Circuits Syst. 2017, 8, 1–22. [Google Scholar] [CrossRef]
- Harris, J.M.; Hirst, J.L.; Mossinghoff, M.J. Combinatorics and Graph Theory; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Rosen, K.H. Discrete Mathematics and Its Applications, 7th ed.; The McGraw-Hill Companies, Inc.: New York, NY, USA, 2012. [Google Scholar]
- Randić, M. On characterization of molecular branching. J. Am. Chem. Soc. 1975, 97, 6609–6615. [Google Scholar] [CrossRef]
- Gutman, I.; Ruščić, B.; Trinajstić, N.; Wilcox, C.F. Graph Theory and Molecular Orbitals. XII. Acyclic Polyenes. J. Chem. Phys. 1975, 62, 3399–3405. [Google Scholar] [CrossRef]
- Bozkurt, B.; Güngör, A.D.; Gutman, I.; Çevik, A.S. Randić matrix and Randić energy. MATCH Commun. Math. Comput. Chem. 2010, 64, 239–250. [Google Scholar]
- Cavers, M.; Fallat, S.; Kirkland, S. On the normalized Laplacian energy and general Randić index R-1 of graphs. Linear Algebra Appl. 2010, 433, 172–190. [Google Scholar] [CrossRef]
- Gutman, I.; Furtula, B.; Bozkurt, S.B. On Randić energy. Linear Algebra Appl. 2014, 442, 50–57. [Google Scholar] [CrossRef]
- Zhou, B.; Trinajstic, N. On general sum-connectivity index. J. Math. Chem. 2010, 47, 210–218. [Google Scholar] [CrossRef]
- Shirdel, G.H.; Pour, H.R.; Sayadi, A.M. The Hyper-Zagreb index of graph operations. Iran. J. Math. Chem. 2013, 4, 213–220. [Google Scholar]
- Li, X.; Zhao, H. Trees with the first three smallest and largest generalized topological indice. MATCH Commun. Math. Comput. Chem. 2004, 50, 57–62. [Google Scholar]
- Estrada, E.; Torres, L.; Rodriguez, L.; Gutman, I. An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes. Indian J. Chem. 1998, 37A, 849–855. [Google Scholar]
- Estrada, E. Atom–bond connectivity and the energetic of branched alkanes. Chem. Phys. Lett. 2008, 463, 422–425. [Google Scholar] [CrossRef]
- Gutman, I.; Tošović, J.; Radenković, S.; Marković, S. On atom-bond connectivity index. and its chemical applicability. Indian J. Chem. 2012, 51A, 690–694. [Google Scholar]
- Ghorbani, M.; Hosseinzadeh, M.A. Computing ABC4 index of nanostar dendrimers. Optoelectron. Adv. Mater. Rapid Commun. 2010, 4, 1419–1422. [Google Scholar]
- Du, Z.; Zhou, B.; Trinajstić, N. On Geometric-Arithmetic Indices of (Molecular) Trees, Unicyclic Graphs and Bicyclic Graphs. MATCH Commun. Math. Comput. Chem. 2011, 66, 681–697. [Google Scholar]
- Gravovac, A.; Ghorbani, M.; Hosseinzadeh, M.A. Computing fifth geometric-arithmetic index for nanostar dendrimers. J. Math. Nano. 2011, 1, 33–42. [Google Scholar]
- Ghorbani, M.; Azimi, N. Note on multiple Zagreb indices. Iran. J. Math. Chem. 2012, 3, 137–143. [Google Scholar]
- Liu, J.B.; Siddiqui, M.K.; Zahid, M.A.; Naeem, M.; Baig, A.Q. Topological Properties of Crystallographic Structure of Molecules. Symmetry 2018, 10, 265. [Google Scholar] [CrossRef]
- Shao, Z.; Siddiqui, M.K.; Muhammad, M.H. Computing Zagreb Indices and Zagreb Polynomials for Symmetrical Nanotubes. Symmetry 2018, 10, 244. [Google Scholar] [CrossRef]
- Siddiqui, M.K.; Imran, M.; Ahmad, A. On Zagreb indices, Zagreb polynomials of some nanostar dendrimers. Appl. Math. Comput. 2016, 280, 132–139. [Google Scholar] [CrossRef]
- Gao, W.; Siddiqui, M.K.; Naeem, M.; Rehman, N.A. Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures. Molecules 2017, 22, 1496. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Siddiqui, M.K.; Imran, M.; Jamil, M.K.; Farahani, M.R. Forgotten Topological Index of Chemical Structure in Drugs. Saudi Pharm. J. 2016, 24, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Dobrynin, A.A.; Entringer, R.; Gutman, I. Wiener index of trees: Theory and applications. Acta Appl. Math. 2001, 66, 211–249. [Google Scholar] [CrossRef]
- Imran, M.; Siddiqui, M.K.; Naeem, M.; Iqbal, M.A. On Topological Properties of Symmetric Chemical Structures. Symmetry 2018, 10, 173. [Google Scholar] [CrossRef]
- Siddiqui, M.K.; Gharibi, W. On Zagreb Indices, Zagreb Polynomials of Mesh Derived Networks. J. Comput. Theor. Nanosci. 2016, 13, 8683–8688. [Google Scholar] [CrossRef]
- Ahmad, A. On the degree based topological indices of benzene ring embedded in P-type-surface in 2D network. Hacet. J. Math. Stat. 2018, 47, 9–18. [Google Scholar] [CrossRef]
- Siddiqui, M.K.; Naeem, M.; Rahman, N.A.; Imran, M. Computing topological indicesof certain networks. J. Optoelectron. Adv. Mater. 2016, 18, 884–892. [Google Scholar]
- Hayat, S.; Imran, M. Computation of certain topological indices of nanotubes. J. Comput. Theor. Nanosci. 2015, 12, 70–76. [Google Scholar] [CrossRef]
- Gao, W.; Siddiqui, M.K. Molecular Descriptors of Nanotube, Oxide, Silicate, and Triangulene Networks. J. Chem. 2017, 2017, 6540754. [Google Scholar] [CrossRef]
- Hayat, S.; Imran, M. Computation of certain topological indices of nanotubes covered by C5 and C7. Comput. Theor. Nanosci. 2015, 12, 533–541. [Google Scholar] [CrossRef]
- Gao, W.; Imran, M.; Siddiqui, M.K.; Naeeme, M.; Jamil, F. Molecular Description of Copper (I) Oxide and Copper (II) Oxide. Quimica. Nova. 2018, 41, 874–879. [Google Scholar]
- Riaz, M.; Gao, W.; Baig, A.Q. M-polynomials and degree-based topological indices of some families of convex polytopes. Open J. Math. Sci. 2018, 2, 18–28. [Google Scholar] [CrossRef]
- Basavanagoud, B.; Gao, W.; Patil, S.; Desai, V.R.; Mirajkar, K.G.; Pooja, B. Computing First Zagreb index and F-index of New C-products of Graphs. Appl. Math. Nonlinear Sci. 2017, 2, 285–298. [Google Scholar] [CrossRef]
- Bača, M.; Horvràthovà, J.; Mokrišovà, M.; Suhànyiovà, A. On topological indices of fullerenes. Appl. Math. Comput. 2015, 251, 154–161. [Google Scholar]
- Stojmenovic, I. Honeycomb Networks: Topological Properties and Communication Algorithms. IEEE Trans. Parallel Distrib. Syst. 1997, 8, 1036–1042. [Google Scholar] [CrossRef]
Degree of Vertex | Number of Vertices |
---|---|
2 | 2 |
3 | 2 |
4 | |
6 | |
Total |
, where | Number of Edges |
---|---|
4 | |
4 | |
2 | |
Total |
, where | Number of Edges |
---|---|
4 | |
4 | |
2 | |
2 | |
4 | |
4 | |
4 | |
4 | |
4 | |
4 | |
4 | |
4 | |
2 | |
Total |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imran, M.; Siddiqui, M.K.; Ahmad, A.; Ali, U.; Hanif, N. On the Degree-Based Topological Indices of the Tickysim SpiNNaker Model. Axioms 2018, 7, 73. https://doi.org/10.3390/axioms7040073
Imran M, Siddiqui MK, Ahmad A, Ali U, Hanif N. On the Degree-Based Topological Indices of the Tickysim SpiNNaker Model. Axioms. 2018; 7(4):73. https://doi.org/10.3390/axioms7040073
Chicago/Turabian StyleImran, Muhammad, Muhammad Kamran Siddiqui, Ali Ahmad, Usman Ali, and Nazia Hanif. 2018. "On the Degree-Based Topological Indices of the Tickysim SpiNNaker Model" Axioms 7, no. 4: 73. https://doi.org/10.3390/axioms7040073
APA StyleImran, M., Siddiqui, M. K., Ahmad, A., Ali, U., & Hanif, N. (2018). On the Degree-Based Topological Indices of the Tickysim SpiNNaker Model. Axioms, 7(4), 73. https://doi.org/10.3390/axioms7040073