Comprehensive Weighted Newton Inequalities for Broad Function Classes via Generalized Proportional Fractional Operators
Abstract
:1. Introduction
- i.
- Simpson’s quadrature formula:
- ii.
- The Newton–Cotes quadrature formula:
2. A Key Integral Equality
3. Fractional Newton-Based Inequalities for Distinct Function Families
3.1. Fractional Weighted Newton-Type Results for Differentiable Convex Functions
3.2. Weighted Newton-Type Inequalities for Functions with Bounded Derivatives
3.3. Fractional Fractional Newton-Based Inequalities for Lipschitz Functions
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ali, M.A.; Goodrich, C.S.; Budak, H. Some new parameterized Newton-type inequalities for differentiable functions via fractional integrals. J. Inequalities Appl. 2023, 2023, 49. [Google Scholar]
- Özcan, S. Hermite-Hadamard type inequalities for multiplicatively p-convex functions. J. Inequalities Appl. 2023, 2023, 121. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Ozdemir, M.E. On new inequalities of Simpson’s type for $s$-convex functions. Comput. Math. Appl. 2010, 60, 2191–2199. [Google Scholar]
- Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications; Springer International Publishing AG: Cham, Switzerland, 2018. [Google Scholar]
- Hyder, A.; Barakat, M.A.; Fathallah, A. Enlarged integral inequalities through recent fractional generalized operators. J. Inequalities Appl. 2022, 2022, 95. [Google Scholar]
- Meftah, B.; Boulares, H.; Shafqat, R.; Ben Makhlouf, A.; Benaicha, R. Some New Fractional Weighted Simpson Type Inequalities for Functions Whose First Derivatives Are Convex. Math. Probl. Eng. 2023, 2023, 9945588. [Google Scholar] [CrossRef]
- Saleh, W.; Lakhdari, A.; Abdeljawad, T.; Meftah, B. On fractional biparameterized Newton-type inequalities. J. Inequalities Appl. 2023, 2023, 122. [Google Scholar] [CrossRef]
- Almoneef, A.A.; Hyder, A.; Hezenci, F.; Budak, H. Simpson–type inequalities by means of tempered fractional integrals. AIMS Math. 2023, 8, 29411–29423. [Google Scholar]
- Pečarić, J.E.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings and Statistical Applications; Academic Press: Boston, MA, USA, 1992. [Google Scholar]
- Erden, S.; Iftikhar, S.; Kumam, P.; Thounthong, P. On error estimations of Simpson’s second type quadrature formula. Math. Methods Appl. Sci. 2020, 47, 11232–11244. [Google Scholar]
- Gao, S.; Shi, W. On new inequalities of Newton’s type for functions whose second derivatives absolute values are convex. Int. J. Pure Appl. Math. 2012, 74, 33–41. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Iftikhar, S. Some Newton’s type inequalities for harmonic convex functions. J. Adv. Math. Stud. 2016, 9, 07–16. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Iftikhar, S. Newton inequalities for p-harmonic convex functions. Honam Math. J. 2018, 40, 239–250. [Google Scholar]
- Luangboon, W.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K. Simpson- and Newton-Type Inequalities for Convex Functions via (p,q)-Calculus. Mathematics 2021, 9, 1338. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Zhang, Z. A new extension of quantum Simpson’s and quantum Newton’s type inequalities for quantum differentiable convex functions. Math. Methods Appl. Sci. 2022, 45, 1845–1863. [Google Scholar] [CrossRef]
- Iftikhar, S.; Erden, S.; Ali, M.A.; Baili, J.; Ahmad, H. Simpson’s second-type inequalities for co-ordinated convex functions and applications for cubature formulas. Fractal Fract. 2022, 6, 33. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some Newton’s type inequalities for geometrically relative convex functions. Malasian J. Math. Sci. 2015, 9, 491–502. [Google Scholar]
- Dragomir, S.S. On Simpson’s quadrature formula for mappings of bounded variation and applications. Tamkang J. Math. 1999, 30, 53–58. [Google Scholar] [CrossRef]
- Katkova, O.; Shapiro, B.; Vishnyakova, A. In search of Newton-type inequalities. J. Math. Anal. Appl. 2024, 538, 128349. [Google Scholar]
- Jarad, F.; Abdeljawad, T.; Alzabut, J. Generalized fractional derivatives generated by a class of local proportional derivatives. Eur. Phys. J. Spec. Top. 2017, 226, 3457–3471. [Google Scholar] [CrossRef]
- Sitthiwirattham, T.; Nonlaopon, K.; Ali, M.A.; Budak, H. Riemann-Liouville fractional Newton’s type inequalities for differentiable convex functions. Fractal Fract. 2022, 6, 175. [Google Scholar] [CrossRef]
- Erden, S.; Iftikhar, S.; Kumam, P.; Awan, M.U. Some Newton’s like inequalities with applications. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2020, 114, 195. [Google Scholar]
- Iftikhar, S.; Kumam, P.; Erden, S. Newton’s-type integral inequalities via local fractional integrals. Fractals 2020, 28, 2050037. [Google Scholar] [CrossRef]
- Iftikhar, S.; Erden, S.; Kumam, P.; Awan, M.U. Local fractional Newton’s inequalities involving generalized harmonic convex functions. Adv. Differ. Equ. 2020, 2020, 185. [Google Scholar] [CrossRef]
- Hezenci, F.; Budak, H. Some Perturbed Newton type inequalities for Riemann-Liouville fractional integrals. Rocky Mt. J. Math. 2023, 53, 1117–1127. [Google Scholar] [CrossRef]
- Unal, C.; Hezenci, F.; Budak, H. Conformable fractional Newton-type inequalities with respect to differentiable convex functions. J. Inequalities Appl. 2023, 2023, 85. [Google Scholar] [CrossRef]
- Budak, H.; Ünal, C.; Hezenci, F. A study on error bounds for Newton-type inequalities in conformable fractional integrals. Math. Slovaca 2024, 74, 313–330. [Google Scholar] [CrossRef]
- Awan, M.U.; Noor, M.A.; Du, T.S.; Noor, K.I. New refinements of fractional Hermite-Hadamard inequality. Rev. Acad. Cienc. Exactas Fasicas Nat. Ser. A Mat. 2019, 113, 21–29. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Li, Y.J.; Du, T.S. A generalization of Simpson type inequality via differentiable functions using (s, m)-convex functions. Ital. J. Pure Appl. Math. 2015, 35, 327–338. [Google Scholar]
- Hyder, A.; Barakat, M.A. Novel improved fractional operators and their scientific applications. Adv. Differ. Equ. 2021, 2021, 389. [Google Scholar] [CrossRef]
- Jarad, F.; Uğurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 2017, 247. [Google Scholar] [CrossRef]
- Almoneef, A.A.; Hyder, A.; Budak, H. Deriving weighted Newton-type inequalities for diverse function classes through Riemann–Liouville fractional integrals. Chaos Solitons Fractals 2024, 186, 115205. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barakat, M.A. Comprehensive Weighted Newton Inequalities for Broad Function Classes via Generalized Proportional Fractional Operators. Axioms 2025, 14, 234. https://doi.org/10.3390/axioms14040234
Barakat MA. Comprehensive Weighted Newton Inequalities for Broad Function Classes via Generalized Proportional Fractional Operators. Axioms. 2025; 14(4):234. https://doi.org/10.3390/axioms14040234
Chicago/Turabian StyleBarakat, Mohamed A. 2025. "Comprehensive Weighted Newton Inequalities for Broad Function Classes via Generalized Proportional Fractional Operators" Axioms 14, no. 4: 234. https://doi.org/10.3390/axioms14040234
APA StyleBarakat, M. A. (2025). Comprehensive Weighted Newton Inequalities for Broad Function Classes via Generalized Proportional Fractional Operators. Axioms, 14(4), 234. https://doi.org/10.3390/axioms14040234