Optimal Minimax Rate of Smoothing Parameter in Distributed Nonparametric Specification Test
Abstract
:1. Introduction
2. The Divide-And-Conquer-Based Test Statistics
3. The Unique Rate of the Smoothing Parameter Ensuring Rate-Optimality in the DZH Test
4. Simulation Studies
- M1:
- M2:
5. Proofs
Some Lemmas
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zaremba, W.; Gretton, A.; Blaschko, M. B-test: A Non-parametric, Low Variance Kernel Two-sample Test. Adv. Neural Inf. Process. Syst. 2013, 26, 755–763. [Google Scholar]
- Chen, X.Y.; Xie, M.G. A split-and-conquer approach for analysis of extraordinarily large data. Stat. Sin. 2014, 24, 1655–1684. [Google Scholar]
- Battey, H.; Fan, J.; Liu, H.; Lu, J.; Zhu, Z. Distributed Estimation and Inference with Statistical Guarantees. arXiv 2015, arXiv:1509.05457. [Google Scholar]
- Fan, J.; Han, F.; Liu, H. Challenges of Big Data analysis. Natl. Sci. Rev. 2014, 1, 293–314. [Google Scholar] [CrossRef] [PubMed]
- Hardle, W.; Mammen, E. Comparing nonparametric versus parametric regression fits. Ann. Statist. 1993, 21, 1926–1947. [Google Scholar] [CrossRef]
- Neumeyer, N.; Van Keilegom, I. Estimating the error distribution in nonparametric multiple regression with applications to model testing. J. Multivar. Anal. 2010, 101, 1067–1078. [Google Scholar] [CrossRef]
- González-Manteiga, W.; Crujeiras, R.M. An updated review of Goodness-of-Fit tests for regression models. Test 2013, 22, 361–411. [Google Scholar] [CrossRef] [PubMed]
- Delgado, M. Testing the equality of nonparametric regression curves. Stat. Probab. Lett. 1993, 17, 199–204. [Google Scholar] [CrossRef]
- Bierens, H.J. A consistent conditional moment test of functional form. Econometrica 1990, 58, 1443–1458. [Google Scholar] [CrossRef]
- Hart, J.D. Nonparametric Smoothing and Lack-of-Fit Tests, 1st ed.; Springer: New York, NY, USA, 1997. [Google Scholar]
- Ingster, Y.I. Minimax nonparametric detection of signals in white Gaussian noise. Probl. Inf. Transm. 1982, 18, 130–140. [Google Scholar]
- Ingster, Y.I. Asymptotically minimax hypothesis testing for nonparametric alternatives I, II, III. Math. Methods Stat. 1993, 2, 85–114. [Google Scholar]
- Guerre, E.; Lavergne, P. Optimal minimax rates for nonparametric specification testing in regression models. Econom. Theory 2002, 18, 1139–1171. [Google Scholar] [CrossRef]
- Cai, L.; Guo, X.; Zhong, W. Test and Measure for Partial Mean Dependence Based on Machine Learning Methods. J. Am. Stat. Assoc. 2024, 1–13. [Google Scholar] [CrossRef]
- Tan, F.; Zhu, L. Adaptive-to-model checking for regressions with diverging number of predictors. Ann. Stat. 2019, 47, 1960–1994. [Google Scholar] [CrossRef]
- Han, Y.; Ma, P.; Ren, H.; Wang, Z. Model checking in large-scale data set via structure-adaptive-sampling. Stat. Sin. 2023, 33, 303–329. [Google Scholar]
- Zheng, J.X. A consistent test of functional form via nonparametric estimation techniques. J. Econom. 1996, 75, 263–289. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, C.; Wang, Z. A scalable nonparametric specification testing for massive data. J. Stat. Plan. Inference 2019, 200, 161–175. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, C.; Wang, Z. An adaptive lack of fit test for big data. Stat. Theory Relat. Fields 2017, 1, 59–68. [Google Scholar] [CrossRef]
- Ibragimov, I.A.; Khasminski, R.Z. Statistical Estimation: Asymptotic Theory, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Horowitz, J.; Spokoiny, V. An adaptive, rate-optimal test of parametric mean-regression model against a nonparametric alternative. Econometrica 2001, 69, 599–631. [Google Scholar] [CrossRef]
- Guerre, E.; Lavergne, P. Data-driven rate-optimal specification testing in regression models. Ann. Stat. 2005, 33, 840–870. [Google Scholar] [CrossRef]
MD | DZH | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
∖ | 10 | 20 | 40 | 10 | 20 | 40 | 10 | 20 | 40 | 10 | 20 | 40 | |
1% | 1.3 | 1.3 | 1.1 | 0.8 | 1.0 | 1.0 | 0.7 | 0.7 | 0.6 | 0.6 | 0.9 | 0.8 | |
2000 | 5% | 5.1 | 5.8 | 5.3 | 4.4 | 5.3 | 4.8 | 5.3 | 4.3 | 4.4 | 4.6 | 5.8 | 5.5 |
10% | 11.1 | 10.1 | 11.3 | 9.9 | 9.7 | 10.0 | 10.3 | 10.0 | 10.7 | 11.6 | 12.1 | 11.6 | |
1% | 1.3 | 1.2 | 1.1 | 1.0 | 1.0 | 0.9 | 1.0 | 0.8 | 0.7 | 0.9 | 0.5 | 0.6 | |
4000 | 5% | 5.4 | 5.7 | 4.8 | 4.7 | 5.1 | 4.2 | 4.9 | 4.6 | 4.6 | 5.6 | 4.9 | 4.3 |
10% | 9.7 | 10.4 | 9.8 | 9.2 | 9.9 | 8.9 | 9.2 | 8.8 | 9.8 | 10.1 | 9.2 | 8.8 | |
1% | 0.5 | 1.0 | 0.5 | 0.4 | 0.7 | 0.4 | 0.4 | 0.8 | 0.5 | 1.0 | 1.0 | 0.6 | |
8000 | 5% | 5.2 | 5.1 | 4.1 | 4.2 | 4.5 | 3.4 | 5.0 | 4.9 | 4.3 | 5.2 | 5.5 | 4.3 |
10% | 10.8 | 10.7 | 10.2 | 10.1 | 9.5 | 9.3 | 9.9 | 9.4 | 9.3 | 10.9 | 10.4 | 8.7 |
MD | DZH | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
∖ | 10 | 20 | 40 | 10 | 20 | 40 | 10 | 20 | 40 | 10 | 20 | 40 | |
1% | 1.7 | 2.2 | 1.6 | 1.5 | 1.9 | 1.5 | 0.7 | 0.8 | 1.5 | 1.1 | 0.7 | 1.1 | |
2000 | 5% | 5.7 | 5.5 | 5.5 | 5.2 | 5.1 | 5.0 | 5.8 | 4.9 | 4.9 | 6.2 | 5.1 | 5.1 |
10% | 10.6 | 10.8 | 9.9 | 10.0 | 9.9 | 9.6 | 12.1 | 10.5 | 9.7 | 11.5 | 11.0 | 9.8 | |
1% | 1.3 | 0.8 | 0.7 | 1.2 | 0.5 | 0.7 | 1.0 | 0.5 | 1.2 | 1.2 | 0.6 | 0.6 | |
4000 | 5% | 5.8 | 5.2 | 4.8 | 4.9 | 4.6 | 4.3 | 5.1 | 4.9 | 4.6 | 4.8 | 4.9 | 3.8 |
10% | 11.3 | 9.7 | 10.4 | 10.3 | 9.0 | 9.8 | 8.9 | 9.4 | 9.3 | 8.9 | 9.8 | 8.6 | |
1% | 1.0 | 1.1 | 1.0 | 0.9 | 1.0 | 0.8 | 1.4 | 1.2 | 0.5 | 1.1 | 1.3 | 0.6 | |
8000 | 5% | 4.9 | 5.5 | 3.4 | 4.3 | 4.5 | 2.9 | 4.5 | 4.6 | 2.9 | 4.7 | 5.4 | 4.1 |
10% | 10.1 | 10.3 | 8.1 | 9.3 | 9.5 | 7.4 | 8.3 | 9.4 | 8.3 | 9.0 | 9.3 | 9.8 |
MD | DZH | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
∖ | 10 | 20 | 40 | 10 | 20 | 40 | 10 | 20 | 40 | 10 | 20 | 40 | |
1% | 1.1 | 0.7 | 1.1 | 1.1 | 0.6 | 0.7 | 0.6 | 0.6 | 0.4 | 0.7 | 0.6 | 0.6 | |
2000 | 5% | 4.8 | 4.7 | 4.7 | 4.3 | 4.2 | 4.4 | 4.0 | 4.0 | 4.9 | 4.3 | 3.8 | 4.8 |
10% | 9.9 | 9.8 | 10.4 | 9.2 | 9.1 | 9.2 | 8.0 | 8.6 | 10.1 | 10.4 | 8.8 | 9.0 | |
1% | 1.2 | 1.6 | 1.5 | 1.1 | 1.1 | 1.2 | 1.0 | 1.3 | 1.1 | 0.8 | 1.1 | 0.6 | |
4000 | 5% | 5.3 | 5.6 | 5.8 | 4.9 | 5.1 | 5.2 | 5.0 | 5.5 | 5.5 | 5.2 | 5.4 | 5.2 |
10% | 10.0 | 10.4 | 10.5 | 9.0 | 9.5 | 9.5 | 10.2 | 10.4 | 9.1 | 11.6 | 9.3 | 9.0 | |
1% | 1.2 | 1.0 | 1.5 | 1.0 | 0.9 | 1.2 | 0.5 | 0.5 | 1.3 | 0.6 | 0.9 | 1.1 | |
8000 | 5% | 5.2 | 3.7 | 5.2 | 4.5 | 3.2 | 4.5 | 3.4 | 3.4 | 4.8 | 4.7 | 4.4 | 5.0 |
10% | 9.1 | 8.8 | 9.9 | 8.3 | 7.9 | 9.1 | 8.5 | 8.6 | 10.1 | 9.9 | 10.1 | 11.4 |
MD | DZH | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
∖ | 10 | 20 | 40 | 10 | 20 | 40 | 10 | 20 | 40 | 10 | 20 | 40 | |
1% | 1.2 | 1.3 | 1.7 | 0.9 | 1.1 | 1.6 | 1.5 | 0.8 | 1.1 | 1.0 | 1.1 | 1.1 | |
2000 | 5% | 6.0 | 6.6 | 6.0 | 5.6 | 6.1 | 5.3 | 5.0 | 5.8 | 5.9 | 5.3 | 5.9 | 5.7 |
10% | 10.9 | 10.8 | 11.5 | 10.0 | 10.3 | 10.5 | 10.2 | 10.4 | 10.2 | 10.9 | 10.9 | 11.0 | |
1% | 0.9 | 0.5 | 1.1 | 0.7 | 0.5 | 0.8 | 0.9 | 1.0 | 1.4 | 1.2 | 1.3 | 1.1 | |
4000 | 5% | 5.7 | 4.9 | 4.9 | 4.9 | 4.3 | 4.6 | 4.8 | 4.2 | 4.5 | 5.4 | 5.4 | 5.3 |
10% | 11.3 | 10.4 | 9.9 | 9.6 | 9.8 | 8.6 | 10.1 | 9.2 | 9.6 | 10.8 | 9.8 | 10.1 | |
1% | 0.9 | 1.8 | 0.5 | 0.8 | 1.2 | 0.3 | 0.7 | 1.1 | 1.1 | 0.8 | 1.0 | 0.6 | |
8000 | 5% | 4.6 | 5.6 | 4.6 | 4.0 | 4.7 | 4.3 | 3.9 | 5.9 | 4.3 | 4.3 | 4.2 | 5.5 |
10% | 9.8 | 11.7 | 9.4 | 9.1 | 11.1 | 8.8 | 9.1 | 10.8 | 8.7 | 8.8 | 9.4 | 10.5 |
MD | DZH | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
b∖ | 10 | 20 | 40 | 10 | 20 | 40 | 10 | 20 | 40 | 10 | 20 | 40 | |
2000 | 1 | 83.4 | 60.9 | 36.8 | 81.9 | 59 | 35.5 | 45.1 | 25.9 | 14.5 | 17.3 | 10.9 | 7.4 |
10 | 100 | 100 | 100 | 18.2 | 12.4 | 8.4 | 100 | 100 | 100 | 100 | 100 | 100 | |
4000 | 1 | 100 | 99 | 88.9 | 100 | 98.9 | 88.3 | 94.3 | 74.4 | 46.5 | 48.5 | 27 | 15.7 |
10 | 100 | 100 | 100 | 62.8 | 36.6 | 20 | 100 | 100 | 100 | 100 | 100 | 100 | |
8000 | 1 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 99.9 | 94.9 | 96.3 | 75.9 | 48.4 |
10 | 100 | 100 | 100 | 100 | 93.5 | 67.1 | 100 | 100 | 100 | 100 | 100 | 100 |
MD | DZH | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
b∖ | 10 | 20 | 40 | 10 | 20 | 40 | 10 | 20 | 40 | 10 | 20 | 40 | |
2000 | 1 | 82.7 | 61.2 | 38.2 | 82.4 | 59.9 | 36.7 | 44.4 | 26.5 | 16.1 | 15.8 | 9.6 | 5.6 |
10 | 100 | 100 | 100 | 19.1 | 11.8 | 7.5 | 100 | 100 | 99.9 | 100 | 100 | 100 | |
4000 | 1 | 99.8 | 98.5 | 89.7 | 99.8 | 98.4 | 88.9 | 94.9 | 72 | 44.1 | 46.9 | 25.2 | 13.3 |
10 | 100 | 100 | 100 | 66.3 | 34.2 | 19.1 | 100 | 100 | 100 | 100 | 100 | 100 | |
8000 | 1 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 99.7 | 96.1 | 97 | 78.8 | 50.6 |
10 | 100 | 100 | 100 | 99.8 | 94.1 | 66.4 | 100 | 100 | 100 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Zhao, Y.; Xu, L.; Wang, T. Optimal Minimax Rate of Smoothing Parameter in Distributed Nonparametric Specification Test. Axioms 2025, 14, 228. https://doi.org/10.3390/axioms14030228
Liu P, Zhao Y, Xu L, Wang T. Optimal Minimax Rate of Smoothing Parameter in Distributed Nonparametric Specification Test. Axioms. 2025; 14(3):228. https://doi.org/10.3390/axioms14030228
Chicago/Turabian StyleLiu, Peili, Yanyan Zhao, Libai Xu, and Tao Wang. 2025. "Optimal Minimax Rate of Smoothing Parameter in Distributed Nonparametric Specification Test" Axioms 14, no. 3: 228. https://doi.org/10.3390/axioms14030228
APA StyleLiu, P., Zhao, Y., Xu, L., & Wang, T. (2025). Optimal Minimax Rate of Smoothing Parameter in Distributed Nonparametric Specification Test. Axioms, 14(3), 228. https://doi.org/10.3390/axioms14030228