Quantization of the Rank Two Heisenberg–Virasoro Algebra
Abstract
:1. Introduction
2. Preliminaries
- (1)
- is an invertible element of with .
- (2)
- the algebra is a new Hopf algebra, that is referred to as the twisting of by the Drinfel’d twist , if we remains the counit unchanged (i.e., ) and define , by
3. The Main Results
4. Proof of the Main Results
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Drinfel’d, V.G. Hopf algebras and the quantum Yang–Baxter equation. Soviet Math. Dokl. 1985, 32, 254–258. [Google Scholar]
- Drinfel’d, V.G. Quantum Groups. In Proceeding of the International Congress of Mathematicians, Berkeley, CA, USA, 3–11 August 1986; American Mathematical Society: Providence, RI, USA, 1987; Volume 1–2, pp. 798–820. [Google Scholar]
- Jimbo, M. Aq-difference analogue of U(g) and the Yang–Baxter equation. Lett. Math. Phys. 1985, 10, 63–69. [Google Scholar] [CrossRef]
- Etingof, P.; Schiffmann, O. Lectures on Quantum Groups, 2nd ed.; International Press: Somerville, MA, USA, 2002. [Google Scholar]
- Grunspan, C. Quantizations of the Witt algebra and of simple Lie algebras in characteristic p. J. Algebra 2004, 280, 145–161. [Google Scholar] [CrossRef]
- Giaquinto, A.; Zhang, J. Bialgebra action, twists and universal deformation formulas. J. Pure Appl. Algebra 1998, 128, 133–151. [Google Scholar] [CrossRef]
- Hu, N.; Wang, X. Quantizations of generalized-Witt algebra and of Jacobson-Witt algebra in the modular case. J. Algebra 2007, 312, 902–929. [Google Scholar] [CrossRef]
- Song, G.; Su, Y. Lie bialgebras of generalized Witt type. Sci. China Ser. A 2006, 49, 533–544. [Google Scholar] [CrossRef]
- Etingof, P.; Kazhdan, D. Quantization of Lie bialgebras I. Selecta Math. New Ser. 1996, 2, 1–41. [Google Scholar] [CrossRef]
- Etingof, P.; Kazhdan, D. Quantization of Lie bialgebras, part VI: Quantization of generalized Kac–Moody Algebras. Transform. Groups 2008, 13, 527–539. [Google Scholar] [CrossRef]
- Song, G.; Su, Y.; Wu, Y. Quantization of generalized Virasoro-like algebras. Linear Algebra Appl. 2008, 428, 2888–2899. [Google Scholar] [CrossRef]
- Cheng, Y.; Su, Y. Quantization of Lie algebras of Block type. Acta Math. Sci. 2010, 30B, 1134–1142. [Google Scholar]
- Li, J.; Su, Y. Quantizations of the W-Algebra W (2, 2). Acta Math. Sin. Engl. Ser. 2011, 27, 647–656. [Google Scholar] [CrossRef]
- Su, Y.; Yuan, L. Quantization of Schrödinger-Virasoro Lie algebra. Front. Math. China 2010, 5, 701–715. [Google Scholar] [CrossRef]
- Wu, Y.; Song, G.; Su, Y. Lie bialgebras of generalized Virasoro-like type. Acta Math. Sin. Engl. Ser. 2006, 22, 1915–1922. [Google Scholar] [CrossRef]
- Cheng, Y.; Song, G.; Xin, B. Lie bialgebra structures on Lie algebras of Block type. Algebra Colloq. 2009, 16, 677–690. [Google Scholar] [CrossRef]
- Li, J.; Su, Y. Lie bialgebra structures on the W-algebra W (2, 2). Algebra Colloq. 2010, 17, 181–190. [Google Scholar] [CrossRef]
- Han, J.; Li, J.; Su, Y. Lie bialgebra structures on the Schrödinger-Virasoro Lie algebra. J. Math. Phys. 2009, 50, 083504. [Google Scholar] [CrossRef]
- Yue, X.; Jiang, Q.; Xin, B. Quantization of Lie algebras of generalized Weyl type. Algebra Colloq. 2009, 16, 437–448. [Google Scholar] [CrossRef]
- Chen, H.; Shen, R.; Zhang, J. Quantization on generalized Heisenberg-Virasoro algebra. Acta Math. Sin. Chin. Ser. 2014, 57, 109–116. [Google Scholar]
- Yuan, L.; He, C. Lie super-bialgebra and quantization of the super Virasoro algebra. J. Math. Phys. 2016, 57, 053508. [Google Scholar] [CrossRef]
- Su, Y.; Yue, X.; Zhu, X. Quantization of the Lie superalgebra of Witt type. J. Geom. Phys. 2021, 160, 103987. [Google Scholar] [CrossRef]
- Su, Y.; Chen, X. Lie Bialgebras on the Rank Two Heisenberg–Virasoro Algebra. Mathematics 2023, 11, 1030. [Google Scholar] [CrossRef]
- Xue, M.; Lin, W.; Tan, S. Central extension, derivations and automorphism group for Lie algebras arising from 2-dimensional torus. J. Lie Theory 2006, 16, 139–153. [Google Scholar]
- Tan, S.; Wang, Q.; Xu, C. On Whittaker modules for a Lie algebra arising from the 2-dimensional torus. Pac. J. Math. 2015, 273, 147–167. [Google Scholar] [CrossRef]
- Li, Z.; Tan, S. Verma module for rank two Heisenberg-Virasoro algebra. Sci. China Math. 2020, 63, 1259–1270. [Google Scholar] [CrossRef]
- Chari, V.; Pressley, A. A Guide to Quantum Groups; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Di Francesco, P.; Mathieu, P.; Sénéchal, D. Quantum Field Theory. In Conformal Field Theory. Graduate Texts in Contemporary Physics; Springer: New York, NY, USA, 1997. [Google Scholar]
- Blondeau-Fournier, O.; Mathieu, P.; Welsh, T.A. A quartet of fermionic expressions for M(k, 2k±1) Virasoro characters via half-lattice paths. Nucl. Phys. B 2017, 924, 643–683. [Google Scholar] [CrossRef]
- Mathieu, P.; Blondeau-Fournier, O.; Wood, S.; Ridout, D. The super-Virasoro singular vectors and jack superpolynomials relationship revisited. Nucl. Phys. B 2016, 913, 34–63. [Google Scholar]
- Blondeau-Fournier, O.; Mathieu, P.; Welsh, T.A. A Bijection Between Paths for the M(p, 2p + 1) Minimal Model Virasoro Characters. Ann. Henri Poincaré 2010, 11, 101–125. [Google Scholar] [CrossRef]
- Oh, C.H.; Singh, K. Realizations of the q-Heisenberg and q-Virasoro algebras. J. Phys. A 1994, 27, 3439–3444. [Google Scholar] [CrossRef]
- Adamović, D.; Radobolja, G. Free field realization of the twisted Heisenberg-Virasoro algebra at level zero and its applications. J. Pure Appl. Algebra 2015, 219, 4322–4342. [Google Scholar] [CrossRef]
- Aizawa, N.; Sato, H. q-Deformation of the Virasoro algebra with central extension. Phys. Lett. B 1991, 256, 185–190. [Google Scholar] [CrossRef]
- Frenkel, E.; Reshetikhin, N. Quantum affine algebras and deformations of the Virasoro and W-algebras. Commun. Math. Phys. 1996, 178, 237–264. [Google Scholar] [CrossRef]
- Guo, H.; Wang, Q. Twisted Heisenberg-Virasoro vertex operator algebra. Glas. Mat. 2019, 54, 369–407. [Google Scholar] [CrossRef]
- Wang, W. Rationality of Virasoro vertex operator algebras. Int. Math. Res. Not. 1993, 7, 197–211. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X. Quantization of the Rank Two Heisenberg–Virasoro Algebra. Axioms 2024, 13, 446. https://doi.org/10.3390/axioms13070446
Chen X. Quantization of the Rank Two Heisenberg–Virasoro Algebra. Axioms. 2024; 13(7):446. https://doi.org/10.3390/axioms13070446
Chicago/Turabian StyleChen, Xue. 2024. "Quantization of the Rank Two Heisenberg–Virasoro Algebra" Axioms 13, no. 7: 446. https://doi.org/10.3390/axioms13070446
APA StyleChen, X. (2024). Quantization of the Rank Two Heisenberg–Virasoro Algebra. Axioms, 13(7), 446. https://doi.org/10.3390/axioms13070446