# “Computational Mathematics and Mathematical Physics”—Editorial I (2021–2023)

^{1}

^{2}

^{*}

- 1.
- Contribution 1

- 2.
- Contribution 2

- 3.
- Contribution 3

- 4.
- Contribution 4

- 5.
- Contribution 5

- 6.
- Contribution 6

- 7.
- Contribution 7

- 8.
- Contribution 8

- 9.
- Contribution 9

- 10.
- Contribution 10

- 11.
- Contribution 11

- 12.
- Contribution 12

## List of Contributions

- Klauder, J.R. A Valid Quantization of a Half-Harmonic Oscillator Field Theory. Axioms
**2022**, 11, 360. https://doi.org/10.3390/axioms11080360. - Zhou, Q.; Chen, F.; Lin, S. Complex Dynamics Analysis of a Discrete Amensalism System with a Cover for the First Species. Axioms
**2022**, 11, 365. https://doi.org/10.3390/axioms11080365. - Matevossian, H.A.; Korovina, M.V.; Vestyak, V.A. Asymptotic Behavior of Solutions of the Cauchy Problem for a Hyperbolic Equation with Periodic Coefficients II. Axioms
**2022**, 11, 473. https://doi.org/10.3390/axioms11090473. - Benchiha, S.; Al-Omari, A.I.; Alomani, G. Goodness-of-Fit Tests for Weighted Generalized Quasi-Lindley Distribution Using SRS and RSS with Applications to Real Data. Axioms
**2022**, 11, 490. https://doi.org/10.3390/axioms11100490. - Klauder, J.R. A Valid Quantization of the Particle in a Box Field Theory, and Well Beyond. Axioms
**2022**, 11, 567. https://doi.org/10.3390/axioms11100567. - Rahman, S.u.; Palencia, J.L.D.; Tariq, N.; Salgado Sánchez, P.; Gonzalez, J.R. Global Existence of Bounded Solutions for Eyring–Powell Flow in a Semi-Infinite Rectangular Conduct. Axioms
**2022**, 11, 625. https://doi.org/10.3390/axioms11110625. - Popov, N.; Matveev, I. Six-Dimensional Space with Symmetric Signature and Some Properties of Elementary Particles. Axioms
**2022**, 11, 650. https://doi.org/10.3390/axioms11110650. - van der Toorn, R. Tandem Recurrence Relations for Coefficients of Logarithmic Frobenius Series Solutions about Regular Singular Points. Axioms
**2023**, 12, 32. https://doi.org/10.3390/axioms12010032. - Khan, M.A.; Ali, F.; Fatima, N.; El-Moneam, M.A. Particles Dynamics in Schwarzschild like Black Hole with Time Contracting Horizon. Axioms
**2023**, 12, 34. https://doi.org/10.3390/axioms12010034. - Alanazi, M.M.; Hendi, A.A.; Raza, Q.; Rehman, M.A.; Qureshi, M.Z.A.; Ali, B.; Shah, N.A. Numerical Computation of Hybrid Morphologies of Nanoparticles on the Dynamic of Nanofluid: The Case of Blood-Based Fluid. Axioms
**2023**, 12, 163. https://doi.org/10.3390/axioms12020163. - Karek, M.; Otmani, S.; Bouhali, K.; Zennir, K.; Elkhair, H.M.; Hassan, E.I.; Alfedeel, A.H.A.; Alarfaj, A. Existence and Qualitative Properties of Solution for a Class of Nonlinear Wave Equations with Delay Term and Variable-Exponents Nonlinearities. Axioms
**2023**, 12, 444. https://doi.org/10.3390/axioms12050444. - Popov, N.; Matveev, I. Noninertial Proper Motions of the Minkowski Metric, the Sagnac Effect, and the Twin Paradox. Axioms
**2023**, 12, 537. https://doi.org/10.3390/axioms12060537.

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Ambarzumian, V. Über eine Frage der Eigenwerttheorie. Z. Phys.
**1929**, 53, 690–695. [Google Scholar] [CrossRef] - Hochstadt, H. On the Determination of a Hill’s Equation from its Spectrum. Arch. Ration. Mech. Anal.
**1965**, 19, 353–362. [Google Scholar] - Matevossian, H.A.; Korovina, M.V.; Vestyak, V.A. Asymptotic Behavior of Solutions of the Cauchy Problem for a Hyperbolic Equation with Periodic Coefficients (Case: H
_{0}>0). Mathematics**2022**, 10, 2963. [Google Scholar] [CrossRef] - Matevossian, H.A.; Smirnov, V.Y. Behavior as t→∞ of Solutions of a Mixed Problem for a Hyperbolic Equation with Periodic Coefficients on the Semi-Axis. Symmetry
**2023**, 15, 777. [Google Scholar] [CrossRef] - Matevossian, H.A.; Nordo, G. Asymptotic Behavior of Solutions of the Initial Boundary Value Problem for a Hyperbolic Equation with Periodic Coefficients on the Semi-Axis. Lobachevskii J. Math.
**2023**, 44, 2398–2412. [Google Scholar] - Duff, M.J. Thirty years of Erice on the brane. arXiv
**2019**, arXiv:1812.11658. [Google Scholar] - Bars, I.; Deliduman, C.; Andreev, O. Gauged Duality, Conformal Symmetry and Spacetime with Two Times. Phys. Rev. D
**1998**, 58, 066004. [Google Scholar] - Popov, N.; Matveev, I. Six-Dimensional Manifold with Symmetric Signature in a Unified Theory of Gravity and Electromagnetism. Symmetry
**2022**, 14, 1163. [Google Scholar]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Matevossian, H.A.; dell’Isola, F.
“Computational Mathematics and Mathematical Physics”—Editorial I (2021–2023). *Axioms* **2023**, *12*, 824.
https://doi.org/10.3390/axioms12090824

**AMA Style**

Matevossian HA, dell’Isola F.
“Computational Mathematics and Mathematical Physics”—Editorial I (2021–2023). *Axioms*. 2023; 12(9):824.
https://doi.org/10.3390/axioms12090824

**Chicago/Turabian Style**

Matevossian, Hovik A., and Francesco dell’Isola.
2023. "“Computational Mathematics and Mathematical Physics”—Editorial I (2021–2023)" *Axioms* 12, no. 9: 824.
https://doi.org/10.3390/axioms12090824