Inequalities for the Windowed Linear Canonical Transform of Complex Functions
Abstract
1. Introduction
2. Preliminary
3. Inequalities Associated with the WLCT
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Osipenko, K.Y. Inequalities for derivatives with the Fourier transform. Appl. Comput. Harmonic. Anal. 2021, 53, 132–150. [Google Scholar] [CrossRef]
- Grunbaum, F.A. The Heisenberg inequality for the discrete Fourier transform. Appl. Comput. Harmonic. Anal. 2003, 15, 163–167. [Google Scholar] [CrossRef]
- Lian, P. Sharp Hausdorff-Young inequalities for the quaternion Fourier transforms. Proc. Am. Math. Soc. 2020, 148, 697–703. [Google Scholar] [CrossRef]
- De Carli, L.; Gorbachev, D.; Tikhonov, S. Pitt inequalities and restriction theorems for the Fourier transform. Rev. Mat. Iberoam. 2017, 33, 789–808. [Google Scholar] [CrossRef]
- Nicola, F.; Tilli, P. The Faber-Krahn inequality for the short-time Fourier transform. Invent. Math. 2022, 230, 1–30. [Google Scholar] [CrossRef]
- Johansen, T.R. Weighted inequalities and uncertainty principles for the (k, a)-generalized Fourier transform. Int. J. Math. 2016, 27, 1650019. [Google Scholar] [CrossRef]
- Hardin, D.P.; Northington V, M.C.; Powell, A.M. A sharp balian-low uncertainty principle for shift-invariant spaces. Appl. Comput. Harmonic. Anal. 2018, 44, 294–311. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Han, Y.P.; Sun, Y.; Wu, A.Y.; Shi, X.Y.; Qiang, S.Z.; Jiang, X.; Wang, G.; Liu, L.B. Heisenberg’s uncertainty principle for n-dimensional fractional fourier transform of complex-valued functions. Optik 2021, 242, 167052. [Google Scholar] [CrossRef]
- Kou, K.I.; Xu, R.H. Windowed linear canonical transform and its applications. Signal Process. 2012, 92, 179–188. [Google Scholar] [CrossRef]
- Wei, D.Y.; Hu, H.M. Theory and applications of short-time linear canonical transform. Digit Signal Process. 2021, 118, 103239. [Google Scholar] [CrossRef]
- Gao, W.B.; Li, B.Z. Uncertainty principles for the short-time linear canonical transform of complex signals. Digital Signal Process. 2021, 111, 102953. [Google Scholar] [CrossRef]
- Atanasova, S.; Maksimovic, S.; Pilipovic, S. Characterization of wave fronts of Ultradistributions using directional short-time Fourier transform. Axioms 2022, 10, 240. [Google Scholar] [CrossRef]
- Tao, R.; Deng, B.; Wang, Y. Fractional Fourier Transform and Its Applications; Tsinghua University Press: Beijing, China, 2009. [Google Scholar]
- Bahri, M.; Ashino, R. Some properties of windowed linear canonical transform and its logarithmic uncertainty principle. Int. J. Wavelets Multiresolut. Inf. Process. 2016, 14, 1650015. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, K.; Chai, Y.; Xu, S.Q. Computation of the short-time linear canonical transform with dual window. Math. Probl. Eng. 2017, 2017, 4127875. [Google Scholar] [CrossRef]
- Kou, K.I.; Xu, R.H.; Zhang, Y.H. Paley-Wiener theorems and uncertainty principles for the windowed linear canonical transform. Math. Methods Appl. Sci. 2012, 35, 2122–2132. [Google Scholar] [CrossRef]
- Gao, W.B.; Li, B.Z. Quaternion windowed linear canonical transform of two-dimensional signals. Adv. Appl. Clifford Algebras 2020, 30, 16. [Google Scholar] [CrossRef]
- Kumar, M.; Pradhan, T. A framework of linear canonical transform on pseudo-differential operators and its application. Math. Methods Appl. Sci. 2021, 44, 11425–11443. [Google Scholar] [CrossRef]
- Xu, T.Z.; Li, B.Z. Linear Canonical Transform and Its Applications; Science Press: Beijing, China, 2013. [Google Scholar]
- Wolf, K.R. Integral Transforms in Science and Engineering; Plenum Press: New York, NY, USA, 1979. [Google Scholar]
- Dang, P.; Deng, G.T.; Qian, T. A tighter uncertainty principle for linear canonical transform in terms of phase derivative. IEEE Trans. Signal Process. 2013, 61, 5153–5164. [Google Scholar] [CrossRef]
- Gao, W.B.; Li, B.Z. Convolution theorem involving n-dimensional windowed fractional Fourier transform. Sci. China Inf. Sci. 2021, 64, 169302:1–169302:3. [Google Scholar] [CrossRef]
- Gao, W.B.; Li, B.Z. Octonion short-time Fourier transform for time-frequency representation and its applications. IEEE Trans. Signal Process. 2021, 69, 6386–6398. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.-W.; Gao, W.-B. Inequalities for the Windowed Linear Canonical Transform of Complex Functions. Axioms 2023, 12, 554. https://doi.org/10.3390/axioms12060554
Li Z-W, Gao W-B. Inequalities for the Windowed Linear Canonical Transform of Complex Functions. Axioms. 2023; 12(6):554. https://doi.org/10.3390/axioms12060554
Chicago/Turabian StyleLi, Zhen-Wei, and Wen-Biao Gao. 2023. "Inequalities for the Windowed Linear Canonical Transform of Complex Functions" Axioms 12, no. 6: 554. https://doi.org/10.3390/axioms12060554
APA StyleLi, Z.-W., & Gao, W.-B. (2023). Inequalities for the Windowed Linear Canonical Transform of Complex Functions. Axioms, 12(6), 554. https://doi.org/10.3390/axioms12060554