On Cohomology of Simple Modules for Modular Classical Lie Algebras
Abstract
:1. Introduction
- examine the cohomology of simple modules for
- examine the cohomology of simple modules for
- determine the connections between the cohomology of simple modules for , and
2. Preliminaries and Calculation Method
2.1. Preliminaries
2.2. Calculation Algorithm of the Cohomology with Coefficients in Simple Modules
- The connection between the cohomology and where is a restricted -module (or -module) introduced by Friedlander, Parshall and Farnsteiner [18,19] as the spectral sequenceWe use the following special cases of the spectral sequence (1) (see, Theorem 3.1 in [36]):(1) If is a restricted -module, then we have for every(2) If then
- Andersen-Janzen Formula on cohomology of with coefficients in see [37]: let , and then:
3. Results
3.1. Formulation of Results
- and for
- and
- for all and for all
- for each pair with there exists a positive root such that, for all as element of
- 5.
- 6.
- 7.
- and
- 8.
- for all and for all
- 9.
- for there exists a positive root such that
- 10.
- for
3.2. Proof of the Results
4. Discussion
- If for all and for all
- If for all j and for all
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Cartan, É. Sur les invariants intégraux de certains espaces homogènes clos. Ann. Soc. Pol. Math. 1929, 8, 181–225. [Google Scholar]
- Chevalley, C.; Eilenberg, S. Cohomology theory of Lie groups and Lie algebras. Trans. Am. Math. Soc. 1948, 63, 85–124. [Google Scholar] [CrossRef]
- Hochschild, G. Cohomology of restricted Lie algebras. Am. J. Math. 1954, 76, 555–580. [Google Scholar] [CrossRef]
- Greub, W.; Halperin, S.; Vanstone, R. Connections, Curvature and Cohomology. Cohomology of Principal Bundles and Homogeneous Spaces; 3; Academic Press: Cambridge, MA, USA, 1975. [Google Scholar]
- Weyl, H. The Theory of Groups and Quantum Mechanics; Dover Publications: New York, NY, USA, 1931; pp. 175–180, 210–217. [Google Scholar]
- Howe, R. On the role of the Heisenberg group in harmonic analysis. Bull. Am. Math. Soc. 1980, 3, 821–844. [Google Scholar] [CrossRef] [Green Version]
- Belavin, A.A.; Polyakov, A.M.; Zamolodchikov, A.B. Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 1984, 241, 333–380. [Google Scholar] [CrossRef] [Green Version]
- Andrzejewski, T.; Figueroa-O’Farrill, J.M. Kinematical Lie algebras in 2+1 dimensions. J. Math. Phys. 2018, 59, 061703. [Google Scholar] [CrossRef] [Green Version]
- Figueroa-O’Farrill, J.M. Kinematical Lie algebras via deformation theory. J. Math. Phys. 2018, 59, 061701. [Google Scholar] [CrossRef] [Green Version]
- Truini, P.; Marrani, A.; Rios, M.; Irwin, K. Space, Matter and Interactions in a Quantum Early Universe Part I: Kac–Moody and Borcherds Algebras. Symmetry 2021, 13, 2342. [Google Scholar] [CrossRef]
- Magazev, A.A.; Boldyreva, M.N. Schrödinger Equations in Electromagnetic Fields: Symmetries and Noncommutative Integration. Symmetry 2021, 13, 1527. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, Z. Cohomologies of n-Lie Algebras with Derivations. Mathematics 2021, 9, 2452. [Google Scholar] [CrossRef]
- Alvarez, M.A.; Rosales-Gómez, J. Cohomology of Lie Superalgebras. Symmetry 2020, 12, 833. [Google Scholar] [CrossRef]
- Ludkowski, S.V. Cohomology Theory of Nonassociative Algebras with Metagroup Relations. Axioms 2019, 8, 78. [Google Scholar] [CrossRef] [Green Version]
- Ludkowski, S.V. Separability of Nonassociative Algebras with Metagroup Relations. Axioms 2019, 8, 139. [Google Scholar] [CrossRef] [Green Version]
- Ludkowski, S.V. Homotopism of Homological Complexes over Nonassociative Algebras with Metagroup Relations. Mathematics 2021, 9, 734. [Google Scholar] [CrossRef]
- Ludkowski, S.V. Torsion for Homological Complexes of Nonassociative Algebras with Metagroup Relations. Axioms 2021, 10, 319. [Google Scholar] [CrossRef]
- Friedlander, E.M.; Parshall, B.J. Modular representation theory of Lie algebras. Am. J. Math. 1988, 110, 1055–1093. [Google Scholar] [CrossRef]
- Farnsteiner, F. Cohomology groups of restricted enveloping algebras. Math. Z. 1991, 206, 103–117. [Google Scholar] [CrossRef]
- Jantzen, J.C. First cohomology groups for classical Lie algebras. Prog. Math. 1991, 95, 291–315. [Google Scholar]
- Dzhumadil’daev, A.S. On the cohomology of modular Lie algebras. Math. USSR-Sb. 1984, 47, 127–143. [Google Scholar] [CrossRef] [Green Version]
- Dzhumadil’daev, A.S.; Ibraev, S.S. Nonsplit extensions of modular Lie algebras of rank 2. Homol. Homotopy Appl. 2002, 4, 141–163. [Google Scholar] [CrossRef]
- Ibraev, S.S. Cohomology of and with coefficients in simple modules and Weyl modules in positive characteristics. Symmetry Integr. Geom. Methods Appl. 2021, in press. [Google Scholar]
- Ibraev, S.S.; Turbayev, B.E. Cohomology for the Lie algebra of type A2 over a field of characteristic 2. Sib. Èlectron. Mat. Izv. 2021, 18, 729–739. [Google Scholar] [CrossRef]
- Ibrayeva, A.A.; Ibraev, S.S.; Yeshmurat, G.K. Cohomology of simple modules for in characteristic 3. Bull. Karaganda Univ. Math. Ser. 2021, 3, 36–43. Available online: https://mathematics-vestnik.ksu.kz/apart/2021-103-3/4.pdf (accessed on 1 December 2021). [CrossRef]
- Rudakov, A.N. Deformations of simple Lie algebras. Math. USSR-Izv. 1971, 5, 1120–1126. [Google Scholar] [CrossRef]
- Kuznetsov, M.I.; Chebochko, N.G. Deformations of classical Lie algebras. Sb. Math. 2000, 191, 1171–1190. Available online: https://ui.adsabs.harvard.edu/link_gateway/2000SbMat.191.1171K/doi:10.1070/SM2000v191n08ABEH000499 (accessed on 1 December 2021). [CrossRef]
- Chebochko, N.G. Deformations of classical Lie algebras with homogeneous root system in characteristic two. I. Sb. Math. 2005, 196, 1371–1402. [Google Scholar] [CrossRef]
- O’Halloran, J. Weyl modules and the cohomology of Chevalley groups. Am. J. Math. 1981, 103, 399–410. [Google Scholar] [CrossRef]
- Ibraev, S.S. Some Weyl modules and cohomology for algebraic groups. Commun. Algebra 2020, 48, 3859–3873. [Google Scholar] [CrossRef]
- Ibraev, S.S. On the first cohomology of an algebraic group and its Lie algebra in positive characteristic. Math. Notes 2014, 96, 491–498. [Google Scholar] [CrossRef]
- Ibraev, S.S. On the second cohomology of an algebraic group and of its Lie algebra in a positive characteristic. Math. Notes 2017, 101, 841–849. [Google Scholar] [CrossRef]
- Chiu, S.; Shen, G. Cohomology of Cartan type Lie algebras of characteristic p. Abh. Math. Sem. Univ. Humburg 1986, 57, 139–156. [Google Scholar]
- Feigin, B.L.; Fuchs, D.B. Cohomologies of Lie groups and Lie algebras. Itogi Nauli i Tekh. Ser. Sovrem. Probl. Mat. Fundam. Napravleniya 1988, 21, 121–209. [Google Scholar]
- Jantzen, J.C. Representations of Algebraic Groups, 2nd ed.; Mathematical Surveys and Monographs; American Mathematical Society: Providence, RI, USA, 2003; Volume 107. [Google Scholar]
- Feldvoss, J. Homological topics in the representation theories of restricted Lie algebras. Contemp. Math. 1996, 194, 69–120. [Google Scholar]
- Andersen, H.H.; Jantzen, J.C. Cohomology of induced representations for algebraic groups. Math. Ann. 1984, 269, 487–524. Available online: http://eudml.org/doc/163945 (accessed on 1 December 2021). [CrossRef]
- Ibraev, S.S.; Kainbaeva, L.S.; Menlikozhayeva, S.K. Cohomology of simple modules for algebraic groups. Bull. Karaganda Univ. Math. Ser. 2020, 1, 37–43. Available online: https://mathematics-vestnik.ksu.kz/apart/2020-97-1/4.pdf (accessed on 1 December 2021). [CrossRef]
Root System | Highest Weights |
---|---|
Root System | |||
---|---|---|---|
Root System | |||
---|---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibraev, S.S.; Kainbaeva, L.S.; Menlikozhaeva, S.K. On Cohomology of Simple Modules for Modular Classical Lie Algebras. Axioms 2022, 11, 78. https://doi.org/10.3390/axioms11020078
Ibraev SS, Kainbaeva LS, Menlikozhaeva SK. On Cohomology of Simple Modules for Modular Classical Lie Algebras. Axioms. 2022; 11(2):78. https://doi.org/10.3390/axioms11020078
Chicago/Turabian StyleIbraev, Sherali S., Larissa S. Kainbaeva, and Saulesh K. Menlikozhaeva. 2022. "On Cohomology of Simple Modules for Modular Classical Lie Algebras" Axioms 11, no. 2: 78. https://doi.org/10.3390/axioms11020078
APA StyleIbraev, S. S., Kainbaeva, L. S., & Menlikozhaeva, S. K. (2022). On Cohomology of Simple Modules for Modular Classical Lie Algebras. Axioms, 11(2), 78. https://doi.org/10.3390/axioms11020078