New Necessary Conditions for the Well-Posedness of Steady Bioconvective Flows and Their Small Perturbations
Abstract
:1. Introduction
2. Preliminaries
2.1. Functional Framework
2.2. Some Classical Inequalities
- (i)
- The Young and Cauchy inequalities. Let us consider such that , then:
- (ii)
- The Poincaré inequality. Let be a connected, bounded Lipschitz domain, then the estimate:
- (iii)
- The Gagliardo–Nirenberg inequality. Let be a bounded Lipschitz domain, then there exists a positive constant depending only on q and such that:
2.3. The Stokes Operator and the Friedrichs Extension
2.4. The Trilinear Forms and
3. The Stationary Problem
4. The Evolution Problem
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kan-on, Y.; Narukawa, K.; Teramoto, Y. On the equations of bioconvective flow. J. Math. Kyoto Univ. 1992, 32, 135–153. [Google Scholar] [CrossRef]
- Moribe, Y. On the Bioconvection of Tetrahymena pyriformis. Master’s Thesis, Osaka University, Osaka, Japan, 1973. (In Japanese). [Google Scholar]
- Levandowsky, M.; Hunter, W.S.; Spiegel, E.A. A mathematical model of pattern formation by swimming microorganisms. J. Protozool. 1975, 22, 296–306. [Google Scholar] [CrossRef] [PubMed]
- de Aguiar, R.; Climent-Ezquerra, B.; Rojas-Medar, M.A.; Rojas-Medar, M.D. On the convergence of Galerkin spectral methods for a bioconvective flow. J. Math. Fluid Mech. 2017, 19, 91–104. [Google Scholar] [CrossRef]
- Loayza, M.; Rojas-Medar, M.D.; Rojas-Medar, M.A. A weak-Prodi-Serrin type regularity criterion for a bioconvective flow. Appl. Anal. 2019, 98, 2192–2200. [Google Scholar] [CrossRef]
- Boldrini, J.L.; Rojas-Medar, M.A.; Rojas-Medar, M.D. Existence and uniqueness of stationary solutions to bioconvective flow equations. Electron. J. Differ. Equ. 2013, 2013, 1–15. [Google Scholar]
- Rojas-Medar, M.D. Some Results on a Generalization of a Biconvective Flow Equations. Ph.D. Thesis, IMECC-UNICAMP, Campinas, Brazil, 1998. (In Portuguese). [Google Scholar]
- Tuval, I.; Cisneros, L.; Dombrowski, C.W.; Wolgemuth, C.W.; Kessler, J.O.; Goldstein, R.E. Bacterial swimming and oxygen transport near contact lines. Proc. Nalt. Acad. Sci. USA 2005, 102, 2277–2282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coronel, A.; Friz, L.; Tello, A. A result on the existence and uniqueness of stationary solutions for a bioconvective flow model. J. Funct. Spaces 2018, 2018, 4051812. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.G.; Kim, J. Numerical investigation of falling bacterial plumes caused by bioconvection in a three-dimensional chamber. Eur. J. Mech.-B/Fluids 2015, 52, 120–130. [Google Scholar] [CrossRef]
- Liu, J.G.; Lorz, A. A coupled chemotaxis-fluid model: Global existence. Ann. Inst. Henri Poincaré Anal. Non Linéaire 2011, 28, 643–652. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, S.; van Wyk, H.-W. Well-posedness and finite element approximation of time dependent generalized bioconvective flow. Numer. Methods Partial. Differ. Equ. 2020, 36, 709–733. [Google Scholar] [CrossRef]
- Adams, R.A. Sobolev Spaces; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Boyer, F.; Fabrie, P. Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models; Applied Mathematical Sciences; Springer: New York, NY, USA, 2013; Volume 183. [Google Scholar]
- Evans, L.C. Partial Differential Equations; Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 2010. [Google Scholar]
- Brezis, H.; Mironescu, P. Gagliardo–Nirenberg inequalities and non-inequalities: The full story. Ann. Inst. H. Poincaré Anal. Non Linéaire 2018, 35, 1355–1376. [Google Scholar] [CrossRef] [Green Version]
- Temam, R. Navier–Stokes Equations. Theory and Numerical Analysis; Studies in Mathematics and Its Applications; North-Holland Publishing Co.: Amsterdam, The Netherlands, 1977; Volume 2. [Google Scholar]
- Lions, J.L. Quelques Méthodes de Résolutions des Problèmes aux Limits Non Linéares; Dunford: Paris, France, 1969. [Google Scholar]
- Simon, J. Compact sets in the space Lp(0,T;B). Annali di Matematica Pura ed Applicata 1986, 146, 65–96. [Google Scholar] [CrossRef]
- Brezis, H. Analyse Fonctionelle-Theory et Applications; Masson: Paris, France, 1983. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coronel, A.; Huancas, F.; Tello, A.; Rojas-Medar, M. New Necessary Conditions for the Well-Posedness of Steady Bioconvective Flows and Their Small Perturbations. Axioms 2021, 10, 205. https://doi.org/10.3390/axioms10030205
Coronel A, Huancas F, Tello A, Rojas-Medar M. New Necessary Conditions for the Well-Posedness of Steady Bioconvective Flows and Their Small Perturbations. Axioms. 2021; 10(3):205. https://doi.org/10.3390/axioms10030205
Chicago/Turabian StyleCoronel, Aníbal, Fernando Huancas, Alex Tello, and Marko Rojas-Medar. 2021. "New Necessary Conditions for the Well-Posedness of Steady Bioconvective Flows and Their Small Perturbations" Axioms 10, no. 3: 205. https://doi.org/10.3390/axioms10030205
APA StyleCoronel, A., Huancas, F., Tello, A., & Rojas-Medar, M. (2021). New Necessary Conditions for the Well-Posedness of Steady Bioconvective Flows and Their Small Perturbations. Axioms, 10(3), 205. https://doi.org/10.3390/axioms10030205