Abstract
Ceramic balls, as an emerging grinding medium, require a systematic method for optimizing their size distribution in wet ball mills. This study proposes an innovative approach that integrates Duan’s semi-theoretical ball diameter formula with breakage statistical mechanics to determine the optimal ceramic ball size distribution. The ideal ball diameters for grinding 2.36–3.0 mm, 1.18–2.36 mm, 0.60–1.18 mm, and 0.30–0.60 mm tungsten ore were identified as 55 mm, 50 mm, 35 mm, and 20 mm, respectively. Subsequently, the optimal ball size distribution was formulated as CB3: Ø55 mm:Ø50 mm:Ø35 mm:Ø20 mm = 30%:40%:20%:10%. Comparative sieve analysis and discrete element method (DEM) simulations confirmed that the CB3 distribution yields the highest proportion of qualified particles, the most favorable collision frequency, and the greatest kinetic energy among all tested configurations. The proposed method demonstrates both accuracy and practicality, providing a theoretical foundation for the industrial application of ceramic ball grinding systems.