Next Article in Journal
Granitoids of the Ergelyakh Intrusion-Related Gold–Bismuth Deposit (Kular-Nera Slate Belt, Northeast Russia): Petrology, Physicochemical Parameters of Formation, and Ore Potential
Previous Article in Journal
Extraction of Potassium from Microcline by Chlorination
Article Menu

Export Article

Open AccessArticle

The System K2CO3–CaCO3–MgCO3 at 3 GPa: Implications for Carbonatite Melt Compositions in the Shallow Continental Lithosphere

1
Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Science, Novosibirsk 630090, Russia
2
Department of Geology and Geophysics, Novosibirsk State University, Novosibirsk 630090, Russia
*
Author to whom correspondence should be addressed.
Minerals 2019, 9(5), 296; https://doi.org/10.3390/min9050296
Received: 26 April 2019 / Revised: 13 May 2019 / Accepted: 14 May 2019 / Published: 15 May 2019
  |  
PDF [6149 KB, uploaded 15 May 2019]
  |  

Abstract

Potassic dolomitic melts are believed to be responsible for the metasomatic alteration of the shallow continental lithosphere. However, the temperature stability and range of compositions of these melts are poorly understood. In this regard, we performed experiments on phase relationships in the system K2CO3–CaCO3–MgCO3 at 3 GPa and at 750–1100 °C. At 750 and 800 °C, the system has five intermediate compounds: Dolomite, Ca0.8Mg0.2CO3 Ca-dolomite, K2(Ca≥0.84Mg≤0.16)2(CO3)3, K2(Ca≥0.70Mg≤0.30)(CO3)2 bütschliite, and K2(Mg≥0.78Ca≤0.22)(CO3)2. At 850 °C, an additional intermediate compound, K2(Ca≥0.96Mg≤0.04)3CO3)4, appears. The K2Mg(CO3)2 compound disappears near 900 °C via incongruent melting, to produce magnesite and a liquid. K2Ca(CO3)2 bütschliite melts incongruently at 1000 °C to produce K2Ca2(CO3)3 and a liquid. K2Ca2(CO3)3 and K2Ca3(CO3)4 remain stable in the whole studied temperature range. The liquidus projection of the studied ternary system is divided into nine regions representing equilibrium between the liquid and one of the primary solid phases, including magnesite, dolomite, Ca-dolomite, calcite-dolomite solid solutions, K2Ca3(CO3)4, K2Ca2(CO3)3, K2Ca(CO3)2 bütschliite, K2Mg(CO3)2, and K2CO3 solid solutions containing up to 24 mol % CaCO3 and less than 2 mol % MgCO3. The system has six ternary peritectic reaction points and one minimum on the liquidus at 825 ± 25 °C and 53K2CO3∙47Ca0.4Mg0.6CO3. The minimum point resembles a eutectic controlled by a four-phase reaction, by which, on cooling, the liquid transforms into three solid phases: K2(Mg0.78Ca0.22)(CO3)2, K2(Ca0.70Mg0.30)(CO3)2 bütschliite, and a K1.70Ca0.23Mg0.07CO3 solid solution. Since, at 3 GPa, the system has a single eutectic, there is no thermal barrier for liquid fractionation from alkali-poor toward K-rich dolomitic compositions, more alkaline than bütschliite. Based on the present results we suggest that the K–Ca–Mg carbonate melt containing ~45 mol % K2CO3 with a ratio Ca/(Ca + Mg) = 0.3–0.4 is thermodynamically stable at thermal conditions of the continental lithosphere (~850 °C), and at a depth of 100 km. View Full-Text
Keywords: K–Ca carbonates; bütschliite; carbonatite; high-pressure experiments; continental lithosphere; shallow mantle K–Ca carbonates; bütschliite; carbonatite; high-pressure experiments; continental lithosphere; shallow mantle
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Arefiev, A.V.; Shatskiy, A.; Podborodnikov, I.V.; Bekhtenova, A.; Litasov, K.D. The System K2CO3–CaCO3–MgCO3 at 3 GPa: Implications for Carbonatite Melt Compositions in the Shallow Continental Lithosphere. Minerals 2019, 9, 296.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Minerals EISSN 2075-163X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top