Carbonaceous Materials in the Fault Zone of the Longmenshan Fault Belt: 1. Signatures within the Deep Wenchuan Earthquake Fault Zone and Their Implications
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Buseck, P.R.; Beyssac, O. From organic matter to graphite: Graphitization. Elements 2014, 10, 421–426. [Google Scholar] [CrossRef]
- Rouzaud, J.-N.; Oberlin, A. Structure, microtexture, and optical properties of anthracene and saccharose-based carbons. Carbon 1989, 27, 517–529. [Google Scholar] [CrossRef]
- Ross, J.V.; Bustin, R.M. The role of strain energy in creep graphitization of anthracite. Nature 1990, 343, 58–60. [Google Scholar] [CrossRef]
- Bustin, R.M.; Ross, J.V.; Rouzaud, J.-N. Mechanisms of graphite formation from kerogen: Experimental evidence. Int. J. Coal Geol. 1995, 28, 1–36. [Google Scholar] [CrossRef]
- Beyssac, O.; Rouzaud, J.N.; Goffé, B.; Brunet, F.; Chopin, C. Graphitization in a high-pressure, low-temperature metamorphic gradient: A Raman microspectroscopy and HRTEM study. Contrib. Mineral. Petrol. 2002, 143, 19–31. [Google Scholar] [CrossRef]
- Beyssac, O.; Goffé, B.; Petitet, J.P.; Froigneux, E.; Moreau, M.; Rouzaud, J.N. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectroc. Acta Part A 2003, 59, 2267–2276. [Google Scholar] [CrossRef]
- Thomas, P.; Delbe, K.; Himmel, D.; Mansot, J.L.; Cadore, F.; Guerin, K. Tribological properties of low-temperature graphite fluorides. Influence of the structure on the lubricating performances. J. Phys. Chem. Solids 2006, 67, 1095–1099. [Google Scholar] [CrossRef]
- Barker, C.E.; Goldstein, R.H. Fluid-inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer. Geology 1990, 18, 1003–1006. [Google Scholar] [CrossRef]
- Oohashi, K.; Hirose, T.; Kobayashi, K.; Shimamoto, T. The occurrence of graphite-bearing fault rocks in the Atotsugawa fault system, Japan: Origins and implications for fault creep. J. Struct. Geol. 2012, 38, 39–50. [Google Scholar] [CrossRef]
- Xu, X.; Wen, W.; Yu, G.; Klinger, Y.; Hubbard, J.; Shaw, J. Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw7.9 Wenchuan earthquake, China. Geology 2009, 37, 515–518. [Google Scholar] [CrossRef]
- Li, H.; Wang, H.; Xu, Z.; Si, J.; Pei, J.; Li, T.; Huang, Y.; Song, S.-R.; Kuo, L.-W.; Sun, Z.; et al. Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan earthquake Fault Scientific Drilling Hole-1 (WFSD-1). Tectonophysics 2013, 584, 23–42. [Google Scholar] [CrossRef]
- Si, J.; Li, H.; Kuo, L.-W.; Pei, J.; Song, S.-R.; Wang, H. Clay mineral anomalies in the Yingxiu-Beichuan fault zone from the WFSD-1 drilling core and its implication for the faulting mechanism during the 2008 Wenchuan earthquake (Mw 7.9). Tectonophysics 2014, 619–620, 171–178. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Si, J.; Sun, Z.; Huan, Y. Internal structures of the Wenchuan earthquake fault zone, revealed by surface outcrop and WFSD-1 drilling core investigation. Tectonophysics 2014, 619–620, 101–114. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, S.; Shimamoto, T.; Yao, L.; Chen, J.; Yang, X.; He, H.; Dang, J.; Hou, L.; Togo, T. Internal structures and high-velocity frictional properties of Longmenshan fault zone at Shenxigou activated during the 2008 Wenchuan earthquake. Earth Sci. 2014, 27, 499–528. [Google Scholar] [CrossRef]
- Kouketsu, Y.; Shimizu, I.; Wang, Y.; Yao, L.; Ma, S.; Shimamoto, T. Raman spectra of carbonaceous materials in a fault zone in the Longmenshan thrust belt, China; comparisonswith those of sedimentary and metamorphic rocks. Tectonophysics 2017, 699, 129–145. [Google Scholar] [CrossRef]
- Kuo, L.-W.; Li, H.; Smith, S.A.F.; Di Toro, G.; Suppe, J.; Song, S.-R.; Nielsen, S.; Sheu, H.-S.; Si, J. Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake. Geology 2014, 42, 47–50. [Google Scholar] [CrossRef]
- Kuo, L.-W.; Di Felice, F.; Spagnuolo, E.; Di Toro, G.; Song, S.-R.; Aretusini, S.; Li, H.; Suppe, J.; Si, J.; Wen, C.-Y. Fault gouge graphitization as evidence of past seismic slip. Geology 2017, 45, 979–982. [Google Scholar] [CrossRef]
- Li, H.; Xu, Z.; Niu, Y.; Kong, G.; Huang, Y.; Wang, H.; Si, J.; Sun, Z.; Pei, Z.; Gong, Z.; et al. Structural and physical property characterization in the Wenchuan earthquake Fault Scientific Drilling project-hole 1 (WFSD-1). Tectonophysics 2014, 619–620, 86–100. [Google Scholar] [CrossRef]
- Xue, L.; Li, H.; Brodsky, E.E.; Xu, Z.; Kano, Y.; Wang, H.; Mori, J.J.; Si, J.; Pei, J.; Zhang, W.; et al. Continuous permeability measurements record healing inside the Wenchuan earthquake fault zone. Science 2013, 340, 1555–1559. [Google Scholar] [CrossRef] [PubMed]
- Salver-Disma, F.; Tarascon, J.M.; Clinard, C.; Rouzaud, J.N. Transmission electron microscopy studies on carbon materials prepared by mechanical milling. Carbon 1995, 37, 1941–1959. [Google Scholar] [CrossRef]
- Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Poschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742. [Google Scholar] [CrossRef]
- Furuichi, H.; Ujiie, K.; Kouketsu, Y.; Saito, T.; Tsutsumi, A.; Wallis, S. Vitrinite reflectance and Raman spectra of carbonaceous material as indicators of frictional heating on faults: Constraints from friction experiments. Earth Planet. Sci. Lett. 2015, 424, 191–200. [Google Scholar] [CrossRef]
- Lunsdorf, N.K.; Dunkl, I.; Schmidt, B.; Rantitsch, G.; von Eynatten, H. Towards a higher comparability of geothermometric data obtained by Raman spectroscopy of carbonaceous material. Part 1: Evaluation of biasing factors. Geostand. Geoanal. Res. 2014, 38, 73–94. [Google Scholar] [CrossRef]
- Lunsdorf, N.K.; Dunkl, I.; Schmidt, B.; Rantitsch, G.; von Eynatten, H. Towards a higher comparability of geothermometric data obtained by Raman spectroscopy of carbonaceous material. Part 2: A revised geothermometer. Geostand. Geoanal. Res. 2017, 41, 593–612. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B: Condens. Matter Mater. Phys. 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Pastewka, L.; Moser, S.; Gumbsch, P.; Moseler, M. Anisotropic mechanical amorphization drives wear in diamond. Nat. Mater. 2011, 10, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Niemeijer, A.; Yao, L.; Ma, S. Water vaporization promotes coseismic fluid pressurization and buffers temperature rise. Geophys. Res. Lett. 2017, 44, 2177–2185. [Google Scholar] [CrossRef]
- Heermance, R.; Shipton, Z.K.; Evans, J.P. Fault structure control on fault slip and ground motion during the 1999 rupture of the Chelungpu Fault, Taiwan. Seismol. Soc. 2003, 93, 1034–1050. [Google Scholar] [CrossRef]
- Isaacs, A.J.; Evans, J.P.; Song, S.-R.; Kolesar, P.T. Structural, mineralogical, and geochemical characterization of the Chelungpu Thrust Fault, Taiwan. Terr. Atmos. Ocean. Sci. 2007, 18, 183–221. [Google Scholar] [CrossRef]
- Hirono, T.; Ikehara, M.; Otsuki, K.; Mishima, T.; Sakaguchi, M.; Soh, W.; Omori, M.; Lin, W.; Yeh, E.-C.; Tanikawa, W.; et al. Evidence of frictional melting within disk-shaped black materials discovered from the Taiwan Chelungpu fault system. Geophys. Res. Lett. 2006, 33, L19311. [Google Scholar] [CrossRef]
- Kano, Y.; Mori, J.; Fujio, R.; Ito, H.; Yanagidani, T.; Nakao, S.; Ma, K.F. Heat signature on the Chelungpu fault associated with the 1999 Chi-Chi, Taiwan earthquake. Geophys. Res. Lett. 2006, 33, L14306. [Google Scholar] [CrossRef]
- Kuo, L.-W.; Song, S.-R.; Yeh, E.-C.; Chen, H.-F. Clay mineral anomalies in the fault zone of the Chelungpu Fault, Taiwan, and their implications. Geophys. Res. Lett. 2009, 36, L18306. [Google Scholar] [CrossRef]
- Kuo, L.-W.; Song, Y.F.; Yang, C.M.; Song, S.-R.; Wang, C.C.; Dong, J.J.; Suppe, J.; Shimamoto, T. Ultrafine spherical quartz formation during seismic fault slip: Natural and experimental evidence and its implications. Tectonophysics 2015, 664, 98–108. [Google Scholar] [CrossRef]
- Chou, Y.-M.; Song, S.-R.; Aubourg, C.; Lee, T.-Q.; Boullier, A.-M.; Song, Y.-F.; Yeh, E.C.; Kuo, L.-W.; Wang, C.-Y. An earthquake slip zone is a magnetic recorder. Geology 2012, 40, 551–554. [Google Scholar] [CrossRef]
- Rumble, D. Hydrothermal graphitic carbon. Element 2014, 10, 427–433. [Google Scholar] [CrossRef]
- Kirilova, M.; Toy, V.; Rooney, J.S.; Giorgetti, C.; Gordon, K.C.; Collettini, C.; Takeshita, T. Structural disorder of graphite and implications for graphite thermometry. Solid Earth 2017, 9, 223–231. [Google Scholar] [CrossRef]
- Sibson, R.H. Thickness of the seismic slip zone. Seismol. Soc. 2003, 93, 1169–1178. [Google Scholar] [CrossRef]
- Di Toro, G.; Han, R.; Hirose, T.; De Paola, N.; Nielsen, S.; Mizoguchi, K.; Ferri, F.; Cocco, M.; Shimamoto, T. Fault lubrication during earthquakes. Nature 2011, 471, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Dash, S.; Tyagi, A.K.; Raj, B. Super low to high friction of turbostratic graphite under various atmospheric test conditions. Tribol. Int. 2011, 22, 1969–1978. [Google Scholar] [CrossRef]
- Oohashi, K.; Hirose, T.; Shimamoto, T. Graphite as a lubricating agent in fault zones: An insight from low- to high-velocity friction experiments on a mixed graphite-quartz gouge. J. Geophys. Res. 2013, 118, 2067–2084. [Google Scholar] [CrossRef]
- Ma, T.-B.; Wang, L.-F.; Hu, Y.-Z.; Li, X.; Wang, H. A shear localization mechanism for lubricity of amorphous carbon materials. Sci. Rep. 2014, 4, 3662. [Google Scholar] [CrossRef] [PubMed]
- Ikari, M.J. Principle slip zone: Precursors but not recorders of earthquake slip. Geology 2015, 43, 955–958. [Google Scholar] [CrossRef]
Type | Depth (m) | D1/G intensity (Error Estimate ±0.06) | D1/G Width Ratio (Error Estimate ±0.09) | Peak Position (cm−1) | Gouge or Breccia/ Average Breccia | ||
---|---|---|---|---|---|---|---|
D1 | G | D1 | G | ||||
Breccia | 588.66 | 0.92 | 1.48 | 1336 | 1578 | 1.1 | 1.1 |
Breccia | 588.67 | 0.91 | 1.41 | 1335 | 1580 | 1.0 | 1.0 |
Breccia | 588.68 | 0.95 | 1.28 | 1335 | 1582 | 0.9 | 1.0 |
Breccia | 588.70 | 0.89 | 1.49 | 1337 | 1581 | 1.0 | 1.0 |
Breccia | 588.71 | 0.89 | 1.37 | 1336 | 1579 | 1.0 | 1.0 |
Breccia | 588.72 | 0.91 | 1.39 | 1336 | 1579 | 1.0 | 1.0 |
Breccia | 588.73 | 0.87 | 1.39 | 1335 | 1580 | 0.9 | 1.0 |
Breccia | 588.74 | 0.91 | 1.54 | 1335 | 1580 | 1.1 | 1.0 |
Breccia | 588.75 | 0.87 | 1.55 | 1336 | 1581 | 1.1 | 1.0 |
Breccia | 588.76 | 0.87 | 1.39 | 1334 | 1579 | 1.0 | 1.0 |
Breccia | 588.77 | 0.94 | 1.44 | 1335 | 1579 | 1.0 | 1.0 |
Breccia | 588.79 | 0.90 | 1.46 | 1336 | 1581 | 1.0 | 1.0 |
Breccia | 588.80 | 0.94 | 1.44 | 1336 | 1578 | 1.0 | 1.0 |
Breccia | 588.81 | 0.89 | 1.36 | 1334 | 1576 | 1.0 | 1.0 |
Gouge | 588.83 | 0.83 | 1.59 | 1334 | 1590 | 0.95 | 0.85 |
Gouge | 588.84 | 0.85 | 1.48 | 1333 | 1590 | 0.85 | 0.82 |
Gouge | 588.85 | 0.92 | 1.5 | 1334 | 1588 | 0.94 | 0.89 |
Gouge | 588.86 | 0.81 | 1.7 | 1331 | 1590 | 0.92 | 0.77 |
Gouge | 588.87 | 0.80 | 1.63 | 1333 | 1591 | 0.89 | 0.79 |
Gouge | 588.89 | 0.74 | 1.5 | 1332 | 1591 | 0.83 | 0.79 |
Gouge | 588.90 | 0.79 | 1.52 | 1333 | 1590 | 0.87 | 0.82 |
Gouge | 588.91 | 0.77 | 1.69 | 1333 | 1593 | 0.91 | 0.77 |
Gouge | 588.92 | 0.81 | 1.62 | 1333 | 1590 | 0.93 | 0.82 |
Gouge | 588.93 | 0.81 | 1.72 | 1331 | 1591 | 0.91 | 0.76 |
Gouge | 588.94 | 0.74 | 1.55 | 1332 | 1591 | 0.85 | 0.79 |
Gouge | 588.95 | 0.81 | 1.64 | 1333 | 1590 | 0.93 | 0.81 |
Gouge | 588.96 | 0.86 | 1.61 | 1334 | 1589 | 0.92 | 0.82 |
Gouge | 588.97 | 0.97 | 1.56 | 1336 | 1587 | 1.00 | 0.91 |
Gouge | 588.99 | 0.81 | 1.42 | 1333 | 1589 | 0.84 | 0.85 |
Gouge | 589.00 | 0.80 | 1.72 | 1334 | 1594 | 0.91 | 0.76 |
Gouge | 589.01 | 0.81 | 1.74 | 1332 | 1590 | 0.93 | 0.77 |
Gouge | 589.02 | 0.79 | 1.56 | 1333 | 1590 | 0.90 | 0.82 |
Gouge | 589.03 | 0.77 | 1.57 | 1332 | 1590 | 0.88 | 0.80 |
Gouge | 589.04 | 0.89 | 1.6 | 1333 | 1591 | 0.90 | 0.80 |
Gouge | 589.06 | 0.90 | 1.65 | 1335 | 1590 | 0.96 | 0.83 |
Gouge | 589.07 | 0.88 | 1.53 | 1335 | 1587 | 0.97 | 0.91 |
Gouge | 589.08 | 0.92 | 1.53 | 1334 | 1585 | 1.00 | 0.93 |
Gouge | 589.09 | 0.89 | 1.46 | 1334 | 1586 | 0.91 | 0.90 |
Gouge | 589.10 | 0.98 | 1.61 | 1334 | 1586 | 1.04 | 0.92 |
Gouge | 589.11 | 0.85 | 1.55 | 1333 | 1588 | 0.93 | 0.85 |
Gouge | 589.13 | 0.75 | 1.48 | 1333 | 1589 | 0.86 | 0.84 |
Gouge | 589.14 | 0.82 | 1.59 | 1332 | 1587 | 0.95 | 0.86 |
Gouge | 589.15 | 0.81 | 1.55 | 1332 | 1591 | 0.84 | 0.78 |
Gouge | 589.16 | 0.87 | 1.4 | 1333 | 1581 | 0.96 | 0.98 |
Gouge | 589.17 | 0.87 | 1.49 | 1334 | 1585 | 0.96 | 0.92 |
Gouge | 589.18 | 0.80 | 1.55 | 1334 | 1589 | 0.93 | 0.86 |
Gouge | 589.20 | 0.76 | 1.53 | 1333 | 1588 | 0.90 | 0.84 |
Gouge | 589.21 | 0.76 | 1.41 | 1334 | 1588 | 0.86 | 0.88 |
Gouge | 589.23 | 0.89 | 1.71 | 1334 | 1589 | 1.00 | 0.84 |
Gouge | 589.24 | 0.91 | 1.58 | 1335 | 1588 | 0.97 | 0.88 |
Breccia | 589.26 | 0.92 | 1.59 | 1334 | 1584 | 1.06 | 1.0 |
Breccia | 589.27 | 0.86 | 1.47 | 1335 | 1580 | 1.03 | 1.0 |
Breccia | 589.28 | 0.94 | 1.45 | 1334 | 1579 | 1.01 | 1.0 |
Breccia | 589.29 | 0.90 | 1.53 | 1336 | 1582 | 1.05 | 1.0 |
Breccia | 589.30 | 0.93 | 1.58 | 1334 | 1585 | 1.02 | 0.9 |
Breccia | 589.31 | 0.86 | 1.48 | 1334 | 1579 | 1.02 | 1.0 |
Breccia | 589.33 | 0.88 | 1.43 | 1335 | 1578 | 1.01 | 1.0 |
Breccia | 589.34 | 0.87 | 1.41 | 1334 | 1578 | 0.99 | 1.0 |
Breccia | 589.35 | 0.89 | 1.41 | 1334 | 1578 | 0.99 | 1.0 |
Breccia | 589.36 | 0.87 | 1.38 | 1335 | 1577 | 0.99 | 1.0 |
Breccia | 589.37 | 0.89 | 1.39 | 1335 | 1577 | 1.02 | 1.0 |
Breccia | 589.38 | 0.90 | 1.35 | 1333 | 1575 | 1.00 | 1.1 |
Breccia | 589.39 | 0.89 | 1.41 | 1333 | 1575 | 1.02 | 1.0 |
Breccia | 589.40 | 0.90 | 1.41 | 1334 | 1576 | 1.02 | 1.0 |
Breccia | 589.41 | 0.90 | 1.48 | 1336 | 1579 | 1.07 | 1.0 |
Breccia | 589.43 | 0.85 | 1.41 | 1334 | 1576 | 1.01 | 1.0 |
Breccia | 589.44 | 0.86 | 1.38 | 1333 | 1574 | 1.01 | 1.0 |
Breccia | 589.45 | 0.85 | 1.39 | 1333 | 1576 | 0.99 | 1.0 |
Breccia | 589.46 | 0.89 | 1.45 | 1334 | 1577 | 1.05 | 1.0 |
Breccia | 589.47 | 0.89 | 1.44 | 1334 | 1577 | 1.03 | 1.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, L.-W.; Huang, J.-R.; Fang, J.-N.; Si, J.; Li, H.; Song, S.-R. Carbonaceous Materials in the Fault Zone of the Longmenshan Fault Belt: 1. Signatures within the Deep Wenchuan Earthquake Fault Zone and Their Implications. Minerals 2018, 8, 385. https://doi.org/10.3390/min8090385
Kuo L-W, Huang J-R, Fang J-N, Si J, Li H, Song S-R. Carbonaceous Materials in the Fault Zone of the Longmenshan Fault Belt: 1. Signatures within the Deep Wenchuan Earthquake Fault Zone and Their Implications. Minerals. 2018; 8(9):385. https://doi.org/10.3390/min8090385
Chicago/Turabian StyleKuo, Li-Wei, Jyh-Rou Huang, Jiann-Neng Fang, Jialiang Si, Haibing Li, and Sheng-Rong Song. 2018. "Carbonaceous Materials in the Fault Zone of the Longmenshan Fault Belt: 1. Signatures within the Deep Wenchuan Earthquake Fault Zone and Their Implications" Minerals 8, no. 9: 385. https://doi.org/10.3390/min8090385
APA StyleKuo, L.-W., Huang, J.-R., Fang, J.-N., Si, J., Li, H., & Song, S.-R. (2018). Carbonaceous Materials in the Fault Zone of the Longmenshan Fault Belt: 1. Signatures within the Deep Wenchuan Earthquake Fault Zone and Their Implications. Minerals, 8(9), 385. https://doi.org/10.3390/min8090385