Abstract
Magmatic activity is crucial for identification of the tectonic framework of the ancient oceanic crust. In this study, systematic investigation, including a field survey, zircon LA-ICP-MS U-Pb dating, and whole-rock geochemical analysis, has been carried out on the intrusive quartz- and granodiorites within the Meso-Tethyan Shiquanhe Ophiolitic Mélange (SQM), Tibet. Zircon U-Pb dating yields the weighted mean ages of 174.7 ± 1.4 Ma (quartz diorite) and 178.9 ± 1.2 Ma (granodiorite), respectively, demonstrating the Early Jurassic formation age. The quartz diorite samples are metaluminous (A/NKC = 0.77–0.95) (molar/Al2O3/(CaO + Na2O + K2O)), while the granodiorite samples are weakly peraluminous (A/NKC = 0.95–1.21), and both of them exhibit tholeiitic to calc-alkaline geochemical characteristics and can be classified as I-type granites. The right-dipping rare-earth element (REE) patterns, enrichment in large ion lithophile elements (LILEs: Rb, Ba, Th), and depletion in high-field-strength elements (HFSEs: Nb, Ta, Ti), as well as relatively high (La/Yb)N ratios, are features compatible with an island arc setting. Combined with previous works, we suggest that the Shiquanhe ophiolitic mélange not only preserves records of mid-late Jurassic island arc magmatic activity but also contains evidence of island arc magmatism from the late Early Jurassic.