Small-Scale Porphyry Cu (Au) Systems in Collisional Orogens: A Case Study of the Xifanping Deposit with Implications for Mineralization Potential in Western Yangtze Craton, SW China
Abstract
1. Introduction
2. Geological Background
2.1. Regional Geology
2.2. Deposit Geology
3. Sampling and Analytical Methods
3.1. Sampling
3.2. Analytical Methods
4. Results
4.1. Petrography
4.2. Zircon U-Pb Geochronology
4.3. Whole-Rock Geochemistry
4.4. Zircon Lu–Hf Isotopes
4.5. Magma Redox State
5. Discussion
5.1. Timing of Magmatism and Mineralization
5.2. Sources of Ore-Bearing and Barren Magma
5.3. Implications for the Porphyry Mineralization
5.4. Genetic Mechanisms of Xifanping Deposit
6. Conclusions
- (1)
- Timing of emplacement: Ore-bearing biotite quartz monzonite porphyries were emplaced at 32.15 ± 0.43 Ma and 32.49 ± 0.57 Ma, slightly later than the barren quartz monzonite porphyry (33.15 ± 0.51 Ma), indicating formation during the early Oligocene in a post-collisional extensional setting.
- (2)
- Geochemical distinctions: Ore-bearing porphyries display higher zircon Ce4+/Ce3+ ratios, lower Sr/Y ratios, and greater hydrous mineral content (amphibole + biotite) than barren porphyries, reflecting more oxidized, water-rich parental magmas. However, the lack of adakitic signatures and a moderate oxidation state (relative to globally large-scale porphyry Cu–Au systems) constrained mineralization scale at Xifanping.
- (3)
- Genetic model: At ~33.2 Ma, melting dominated by metasomatized ancient lower crust produced barren porphyries; at ~32 Ma, further evolution and differentiation of this lower crust magma led to the extraction and enrichment of ore-forming materials from the thickened lower crust, producing hydrated, oxidized, ore-bearing magmas that intruded at shallow levels to form mineralization.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richards, J.-P.; Spell, T.; Rameh, E.; Razique, A.; Fletcher, T. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: Examples from the Tethyan arcs of central and eastern Iran and western Pakistan. Econ. Geol. 2012, 107, 295–332. [Google Scholar] [CrossRef]
- Zheng, Y.; Ding, Z.; Cawood, A.; Yue, S. Geology, geochronology and isotopic geochemistry of the Xiaoliugou W-Mo ore field in the Qilian Orogen, NW China: Case study of a skarn system formed during continental collision. Ore Geol. Rev. 2017, 81, 575–586. [Google Scholar] [CrossRef]
- Wang, T.; Wang, X.; Li, S.; Tong, Y.; Huang, H.; Zhang, L.; Zhang, J. Deep-crustal compositions and architecture from accretion to collision: Examples from the Central Asian Orogenic Belt and Qinling-Dabie orogen. Acta Geol. Sin. (Engl. Ed.) 2019, 93, 59–60. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Y.; Dong, Y.; Cawood, A.; Fan, W. Early Cretaceous subductionmodified lithosphere beneath the eastern Qinling Orogen revealed from the Daying volcanic sequence in central China. J. Asian Earth Sci. 2019, 176, 209–228. [Google Scholar] [CrossRef]
- Sun, X.; Lu, Y.-J.; McCuaig, T.-C.; Zheng, Y.-Y.; Chang, H.-F.; Guo, F.; Xu, L.-J. Miocene ultrapotassic, high-Mg dioritic, and adakite-like rocks from Zhunuo in Southern Tibet: Implications for mantle metasomatism and porphyry copper mineralization in collisional orogens. J. Petrol. 2018, 59, 341–386. [Google Scholar] [CrossRef]
- Hou, Z.-Q.; Wang, R. Fingerprinting metal transfer from mantle. Nat. Commun. 2019, 10, 3510. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, H.-F.; Harris, N.; Luo, B.-J.; Zhang, W.; Xu, W.-C. Tectonic erosion and crustal relamination during the India-Asian continental collision: Insights from Eocene magmatism in the southeastern Gangdese belt. Lithos 2019, 346–347, 105161. [Google Scholar] [CrossRef]
- Haschke, M.; Ahmadian, J.; Murata, M.; McDonald, I. Copper mineralization prevented by arc-root delamination during Alpine-Himalayan collision in central Iran. Econ. Geol. 2010, 105, 855–865. [Google Scholar] [CrossRef]
- Holwell, D.-A.; Fiorentini, M.; McDonald, I.; Lu, Y.; Giuliani, A.; Smith, D.-J.; Keith, M.; Locmelis, M. A metasomatized lithospheric mantle control on the metallogenic signature of post-subduction magmatism. Nat. Commun. 2019, 10, 3511. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.-F.; Li, G.-J.; Santosh, M. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Sci. Rev. 2014, 138, 268–299. [Google Scholar] [CrossRef]
- Hou, Z.-Q.; Zeng, P.-S.; Gao, Y.-F.; Du, A.-D.; Fu, D.-M. Himalayan Cu–Mo–Au mineralization in the eastern Indo–Asian collision zone: Constraints from Re–Os dating of molybdenite. Miner. Depos. 2006, 41, 33–45. [Google Scholar] [CrossRef]
- Cooke, D.-R.; Hollings, P.; Walshe, J.-L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Econ. Geol. 2005, 100, 801–818. [Google Scholar] [CrossRef]
- Hou, Z.-Q.; Zhang, H.-R.; Pan, X.-F.; Yang, Z.-M. Porphyry Cu (–Mo–Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain. Ore Geol. Rev. 2011, 39, 21–45. [Google Scholar] [CrossRef]
- Chung, S.-L.; Chu, M.-F.; Zhang, Y.-Q.; Xie, Y.-W.; Lo, C.-H.; Lee, T.-Y.; Lan, C.-Y.; Li, X.-H.; Zhang, Q.; Wang, Y.-Z. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Sci. Rev. 2005, 68, 173–196. [Google Scholar] [CrossRef]
- Sun, W.-H.; Zhou, M.-F.; Gao, J.-F.; Yang, Y.-H.; Zhao, X.-F.; Zhao, J.-H. Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China. Precambrian Res. 2009, 172, 99–126. [Google Scholar] [CrossRef]
- Zhou, M.-F.; Ma, Y.-X.; Yan, D.-P.; Xia, X.-P.; Zhao, J.-H.; Sun, M. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block. Precambrian Res. 2006, 144, 19–38. [Google Scholar] [CrossRef]
- Hou, Z.-Q.; Zhou, Y.; Wang, R.; Zheng, Y.-C.; He, W.-Y.; Zhao, M.; Evans, N.-J.; Weinberg, R.-F. Recycling of metal–fertilized lower continental crust: Origin of non–arc Au–rich porphyry deposits at cratonic edges. Geology 2017, 45, 563–566. [Google Scholar] [CrossRef]
- Zhou, Y.; Hou, Z.-Q.; Wang, R.; Zheng, Y.-C.; He, W.-Y.; Xu, B. Petrogenesis of Cenozoic high–Sr/Y shoshonites and associated mafic microgranular enclaves in an intracontinental setting: Implications for porphyry Cu-Au mineralization in western Yunnan, China. Lithos 2018, 324–325, 39–54. [Google Scholar] [CrossRef]
- Wang, X.-F.; Metcalfe, I.; Jian, P.; He, L.-Q.; Wang, C.-S. The Jinshajiang- Ailaoshan Suture zone, China: Tectonostratigraphy, age and evolution. J. Asian Earth Sci. 2000, 18, 675–690. [Google Scholar] [CrossRef]
- Lu, Y.-J.; McCuaig, T.-C.; Li, Z.-X.; Jourdan, F.; Hart, C.-J.-R.; Hou, Z.-Q.; Tang, S.-H. Paleogene post-collisional lamprophyres in western Yunnan, western Yangtze Craton: Mantle source and tectonic implications. Lithos 2015, 233, 139–161. [Google Scholar] [CrossRef]
- Xu, L.-L.; Bi, X.-W.; Hu, R.-Z.; Zhang, X.-C.; Su, W.-C.; Qu, W.-J.; Hu, Z.-C.; Tang, Y.-Y. Relationships between porphyry Cu–Mo mineralization in the Jinshajiang–Red River metallogenic belt and tectonic activity: Constraints from zircon U–Pb and molybdenite Re–Os geochronology. Ore Geol. Rev. 2012, 48, 460–473. [Google Scholar] [CrossRef]
- Lu, Y.-J.; Kerrich, R.; Kemp, A.-I.-S.; McCuaig, T.-C.; Hou, Z.-Q.; Hart, C.-J.-R.; Li, Z.-X.; Cawood, P.-A.; Bagas, L.; Yang, Z.-M.; et al. Intracontinental Eocene-Oligocene porphyry Cu mineral systems of Yunnan, Western Yangtze Craton, China: Compositional characteristics, sources, and implications for continental collision metallogeny. Econ. Geol. 2013, 108, 1541–1576. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, J.-B.; Luo, C.-H.; Zhou, Q.-S.; Xia, W.-J.; Zhao, Y. Control of Deep Processes and Material Structure on Cu-REE Metallogenic System in Continental Collision Belt: A Case Study of Gangdise and Sanjiang Collision Belt; Tongfang Knowledge Network (Beijing) Technology Co., Ltd.: Beijing, China, 2023; (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- He, W.-Y.; Mo, X.-X.; Yang, L.-Q.; Xing, Y.-L.; Dong, G.-C.; Yang, Z.; Gao, X.; Bao, X.-S. Origin of the Eocene porphyries and mafic microgranular enclaves from the Beiya porphyry Au polymetallic deposit, western Yunnan, China: Implications for magma mixing/mingling and mineralization. Gondwana Res. 2016, 40, 230–248. [Google Scholar] [CrossRef]
- Metcalfe, I. Paleozoic and Mesozoic tectonic evolution and paleogeography of East Asian crustal fragments: The Korean Peninsula in context. Gondwana Res. 2006, 9, 24–46. [Google Scholar] [CrossRef]
- Xu, S.-J.; Shen, W.-Z.; Wang, R.-C.; Lu, J.-J.; Lin, Y.-P.; Ni, P.; Luo, Y.-N.; Li, L.-Z. Characteristics and genesis of Xifanping porphyry copper deposit in Yanyuan, Sichuan Province. Acta Mineral. Sin. 1997, 1, 56–62. [Google Scholar]
- Black, L.-P.; Kamo, S.-L.; Allen, C.-M.; Aleinikoff, J.-N.; Davis, D.-W.; Korsch, R.-J.; Foudoulis, C. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chem. Geol. 2003, 200, 155–170. [Google Scholar] [CrossRef]
- Liu, Y.-S.; Hu, Z.-C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.-G.; Chen, H.-H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Liu, Y.-S.; Gao, S.; Hu, Z.-C.; Gao, C.-G.; Zong, K.-Q.; Wang, D.-B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Ludwig, K.-R. User’s Manual for a Geochronology Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2003. [Google Scholar]
- Ballard, J.-R.; Palin, M.-J.; Campbell, I.-H. Relative oxidation states of magmas inferred from Ce (IV)/Ce (III) in zircon: Application to porphyry copper deposits of northern Chile. Contrib. Mineral. Petrol. 2002, 144, 347–364. [Google Scholar] [CrossRef]
- Ferry, J.-M.; Watson, E.-B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol. 2007, 154, 429–437. [Google Scholar] [CrossRef]
- Trail, D.; Watson, E.-B.; Tailby, N.-D. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 2011, 480, 79–82. [Google Scholar] [CrossRef]
- Trail, D.; Watson, E.-B.; Tailby, N.-D. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim. Cosmochim. Acta 2012, 97, 70–87. [Google Scholar] [CrossRef]
- Gao, J.-F.; Lu, J.-J.; Lin, Y.-P.; Pu, W. Analysis of trace elements in rock samples using HR-ICPMS. J. Nanjing Univ. (Nat. Sci.) 2003, 39, 844–850, (In Chinese with English Abstract). [Google Scholar]
- Qi, L.; Hu, J.; Gregoire, D.-C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 2000, 51, 507–513. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, Y.; Gao, S.; Liu, W.; Zhang, W.; Tong, X.; Lin, L.; Zong, K.; Li, M.; Chen, H.; et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. J. Anal. At. Spectrom. 2012, 27, 1391–1399. [Google Scholar] [CrossRef]
- Middlemost, E.-A.-K. Naming Materials in the Magma/igneous Rock System. Earth Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Collins, W.-J.; Scams, S.-D.; White, A.-J.-R. Nature and Origin of A–Type Uranitcs with Particular Reference to Southeastern Australia. Contrib. Mineral. Petrol. 1982, 80, 189–200. [Google Scholar] [CrossRef]
- Maniar, P.-D.; Piccole, I.-P.-M. Tectonic Discrimination of Granitoids. Geol. Soc. Am. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Huang, J.-H. Comparative Study on the Petrogenesis of the Ore-Bearing and Barren Porphyries from the Xifanping Copper Deposit in Yanyuan. Master’s Thesis, China University of Geosciences, Beijing, China, 2019. (In Chinese with English Abstract). [Google Scholar]
- Wang, Q.; Xu, J.-F.; Jian, P.; Bao, Z.-W.; Zhao, Z.-H.; Li, C.-F.; Xiong, X.-L.; Ma, J.-L. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization. J. Petrol. 2006, 47, 119–144. [Google Scholar] [CrossRef]
- Sun, S.-S.; McDonough, W.-F. Chemical and isotopic systematics of oceanic basalts, implications for mantle composition and processes. In Magmatism in the Ocean Basin; Geological Society Special Publication: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Defant, M.-J.; Drummond, M.-S. Derivation of some morden arc magmas by of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Drummond, M.-S.; Defant, M.-J. A Model for Trondhjemite-tonalite-dacite Genesis and Crustal Growth Via Slab Melting: Archean to Modern Comparisons. J. Geophys. Res. 1990, 95, 21503–21521. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, L.-Q.; He, W.-Y.; Gao, X.; Liu, X.-D.; Bao, X.-S.; Lu, Y.-G. Control of magmatic oxidation state in intracontinental porphyry mineralization: A case from Cu (Mo–Au) deposits in the Jinshajiang-Red River metallogenic belt, SW China. Ore Geol. Rev. 2017, 90, 827–846. [Google Scholar] [CrossRef]
- Yang, M.-M.; Zhao, F.-F.; Liu, X.-F.; Qing, H.-R.; Chi, G.-X.; Li, X.-Y.; Lai, C.-K. Contribution of magma mixing to the formation of porphyry-skarn mineralization in a post-collisional setting: The Machangqing Cu-Mo-(Au) deposit, Sanjiang tectonic belt, SW China. Ore Geol. Rev. 2020, 122, 103518. [Google Scholar] [CrossRef]
- Yang, M.-M.; Zhao, F.-F.; Liu, X.-F.; Qing, H.-R.; Raharimahefa, T.; Duan, W.-J. Petrogenesis and geodynamic setting of granitoids at Machangqing Cu–Mo (Au) deposit, western Yangtze craton, southwestern China: Constraints from zircon U–Pb and molybdenite Re–Os geochronology, Lu–Hf isotopes, and geochemistry. Can. J. Earth Sci. 2020, 57, 1066–1088. [Google Scholar] [CrossRef]
- Baker, E.-T.; Massoth, G.-J.; Feely, R.-A.; Embley, R.W.; Thomson, R.E.; Burd, B.J. Hydrothermal event plumes from the CoAxial seafloor eruption site, Juan de Fuca Ridge. Geophys. Res. Lett. 1995, 22, 147–150. [Google Scholar] [CrossRef]
- Shu, Q.; Chang, Z.; Lai, Y.; Hu, X.; Wu, H.; Zhang, Y.; Wang, P.; Zhai, D.; Zhang, C. Zircon trace elements and magma fertility: Insights from porphyry (-skarn) Mo deposits in NE China. Miner. Depos. 2019, 54, 645–656. [Google Scholar] [CrossRef]
- Shu, Q.; Deng, J. The composition of magmatic-hydrothermal fluids and their related metal mineralization. Sci. China Earth Sci. 2025, 68, 208–225. [Google Scholar] [CrossRef]
- Zhang, H.; Ling, M.-X.; Liu, Y.-L.; Tu, X.-L.; Wang, F.-Y.; Li, C.-Y.; Liang, H.-Y.; Yang, X.-Y.; Arndt, N.-T.; Sun, W.-D. High oxygen fugacity and slab melting linked to Cu mineralization: Evidence from Dexing porphyry copper deposits, southeastern China. J. Geol. 2013, 121, 289–305. [Google Scholar] [CrossRef]
- Oyarzun, R.; Marquez, A.; Lillo, J.; López, I.; Rivera, S. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism. Miner. Depos. 2001, 36, 794–798. [Google Scholar] [CrossRef]
- Oyarzun, R.; Marquez, A.; Lillo, J.; López, I.; Rivera, S. Reply to discussion on “Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism” by Oyarzun R, Márquez A, Lillo J, López I, Rivera S (Mineralium Deposita 36: 794–798, 2001). Miner. Depos. 2002, 37, 795–799. [Google Scholar] [CrossRef]
- Mungall, J.-E. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 2002, 30, 915–918. [Google Scholar] [CrossRef]
- Reich, M.; Parada, M.A.; Palacios, C.; Dietrich, A.; Schultz, F.; Lehmann, B. Adakite-like signature of Late Miocene intrusions at the Los Pelambres giant porphyry copper deposit in the Andes of central Chile: Metallogenic implications. Miner. Depos. 2003, 38, 876–885. [Google Scholar] [CrossRef]
- Jiang, Y.-H.; Jiang, S.-Y.; Dai, B.-Z.; Liao, S.-Y.; Zhao, K.-D.; Ling, H.-F. Middle to Late Jurassic felsic and mafic magmatism in southern Hunan Province, Southeast China: Implications for a continental arc to rifting. Lithos 2009, 107, 185–204. [Google Scholar] [CrossRef]
- Chiaradia, M.; Vallance, J.; Fontboté, L.; Stein, H.; Schaltegger, U.; Coder, J.; Richards, J.; Villeneuve, M.; Gendall, I. U-Pb, Re-Os, and 40Ar/39Ar geochronology of the Nambija Au-skarn and Pangui porphyry Cu deposits, Ecuador: Implications for the Jurassic metallogenic belt of the Northern Andes. Miner. Depos. 2009, 44, 371–387. [Google Scholar] [CrossRef]
- Shu, Q.; Deng, J.; Chang, Z.; Wang, Q.; Niu, X.; Xing, K.; Sun, X.; Zhang, Z.; Zeng, Q.; Zhao, H.; et al. Skarn zonation of the giant Jiama Cu-Mo-Au deposit in southern Tibet, SW China. Econ. Geol. 2024, 119, 1–22. [Google Scholar] [CrossRef]
- Zou, F.-H.; Wu, C.-L.; Gao, D.; Deng, L.-H.; Gao, Y.-H. Triassic granites in theWest Qinling Orogen, China: Implications for the Early Mesozoic tectonic evolution of the Paleo-Tethys ocean. Int. Geol. Rev. 2022, 65, 1923–1955. [Google Scholar] [CrossRef]
- Hou, Z.; Wang, R.; Zhang, H.; Zheng, Y.; Jin, S.; Thybo, H.; Weinberg, R.F.; Xu, B.; Yang, Z.; Hao, A.-W.; et al. Formation of giant copper deposits in Tibet driven by tearing of the subducted Indian plate. Earth-Sci. Rev. 2023, 243, 104482. [Google Scholar] [CrossRef]
- Yang, M.; Li, X.; Chi, G.; Song, H.; Xu, Z.; Zhao, F. Petrogenesis and Geodynamic Mechanisms of Porphyry Copper Deposits in a Collisional Setting: A Case from an Oligocene Porphyry Cu (Au) Deposit in Western Yangtze Craton, SW China. Minerals 2024, 14, 874. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Yang, M.; Li, X.; Chi, G.; Zhao, F. Small-Scale Porphyry Cu (Au) Systems in Collisional Orogens: A Case Study of the Xifanping Deposit with Implications for Mineralization Potential in Western Yangtze Craton, SW China. Minerals 2025, 15, 1001. https://doi.org/10.3390/min15091001
Hu Y, Yang M, Li X, Chi G, Zhao F. Small-Scale Porphyry Cu (Au) Systems in Collisional Orogens: A Case Study of the Xifanping Deposit with Implications for Mineralization Potential in Western Yangtze Craton, SW China. Minerals. 2025; 15(9):1001. https://doi.org/10.3390/min15091001
Chicago/Turabian StyleHu, Yunhai, Mimi Yang, Xingyuan Li, Guoxiang Chi, and Fufeng Zhao. 2025. "Small-Scale Porphyry Cu (Au) Systems in Collisional Orogens: A Case Study of the Xifanping Deposit with Implications for Mineralization Potential in Western Yangtze Craton, SW China" Minerals 15, no. 9: 1001. https://doi.org/10.3390/min15091001
APA StyleHu, Y., Yang, M., Li, X., Chi, G., & Zhao, F. (2025). Small-Scale Porphyry Cu (Au) Systems in Collisional Orogens: A Case Study of the Xifanping Deposit with Implications for Mineralization Potential in Western Yangtze Craton, SW China. Minerals, 15(9), 1001. https://doi.org/10.3390/min15091001