Mechanism of Iron Powder to Enhance Solid-State Reduction of Chromite Ore
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Experimental Methods
2.2.1. Briquetting
2.2.2. Reduction Roasting
2.2.3. Analysis and Characterization
3. Results and Discussion
3.1. Thermodynamics of Chromite Solid-State Reduction
3.2. Solid-State Reduction Characteristics of Natural Chromite Ore
3.2.1. Carbon Dosage
3.2.2. Reduction Temperature
3.2.3. Reduction Duration
3.3. Effect of Iron Powder Dosage on the Solid-State Reduction of Natural Chromite
3.4. Mechanism of the Enhanced Solid-State Reduction of Chromite by Iron Powder Addition
3.4.1. Microstructure Observation
3.4.2. Mineral-Phase Evolution
3.4.3. Reduction Process Analysis
4. Conclusions
- (1)
- The optimal iron metallization rate of 97.15% was achieved under the following optimized parameters: 20 wt% carbon dosage, reduction temperature maintained at 1175 °C, and a duration of 2 h.
- (2)
- The addition of iron powder can enhance the solid-state reduction of chromite ore, and the enhance effect first increases and then decreases with the increase in the iron powder dosage. The iron metallization rate increases from 91.31% to 96.33 with the increase in the iron powder dosage from 0% to 30% under the conditions of reducing at 1175 °C for 1.5 h.
- (3)
- The multi-step reduction reaction gradually transforms into a single-step reduction reaction with the increase in the dosage of iron powder. Iron powder promotes the formation of a low-melting-point iron–carbon alloy liquid phase, which reduces the activity of nascent metallic iron and accelerates the speed of the solid-state reduction reaction of chromite ore and the disintegration of chromite spinel particles. However, excessive iron powder addition (>30%) shifts the most multi-step reduction reaction of chromite ore to a single-step reduction reaction, which diminishes the fragmentation degree of chromium spinel particles and weakens the enhancement effect of iron powder on the solid-state reduction of chromite ore.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, D.; Yang, C.; Pan, J.; Lu, L.; Guo, Z.; Liu, X. An integrated approach for production of stainless steel master alloy from a low grade chromite concentrate. Powder Technol. 2018, 335, 103–113. [Google Scholar] [CrossRef]
- Murthy, Y.R.; Tripathy, S.K.; Kumar, C.R. Chrome ore beneficiation challenges & opportunities—A review. Miner. Eng. 2011, 24, 375–380. [Google Scholar] [CrossRef]
- Tang, W.; Yang, S.; Xue, X. Effect of Cr2O3 addition on oxidation induration and reduction swelling behavior of chromium-bearing vanadium titanomagnetite pellets with simulated coke oven gas. Int. J. Min. Met. Mater. 2019, 26, 963–972. [Google Scholar] [CrossRef]
- Jin, P.; Jiang, Z.; Bao, C.; Hao, S.; Zhang, X. The energy consumption and carbon emission of the integrated steel mill with oxygen blast furnace. Resour. Conserv. Recycl. 2017, 117, 58–65. [Google Scholar] [CrossRef]
- Yu, Y.; Li, B.; Fang, Z.; Wang, C. Energy and exergy analyses of pellet smelting systems of cleaner ferrochrome alloy with multi-energy supply. J. Clean. Prod. 2021, 285, 124893. [Google Scholar] [CrossRef]
- Chakraborty, D.; Ranganathan, S.; Sinha, S.N. Investigations on the carbothermic reduction of chromite ores. Metall. Mater. Trans. B 2005, 36, 437–444. [Google Scholar] [CrossRef]
- Shaik, S.; Chen, Z.; Sahoo, P.P.; Borra, C.R. Kinetics of solid-state reduction of chromite overburden. Int. J. Miner. Metall. Mater. 2023, 30, 2347–2355. [Google Scholar] [CrossRef]
- Neizel, B.W.; Beukes, J.P.; van Zyl, P.G.; Dawson, N.F. Why is CaCO3 not used as an additive in the pelletised chromite pre-reduction process? Miner. Eng. 2013, 45, 115–120. [Google Scholar] [CrossRef]
- Niayesh, M.J.F.G. In An assessment of smelting reduction processes in the production of Fe-Cr-C alloys. In Proceedings of the 4th International Ferroalloys Congress, Sao Paulo, Brazil, 31 August–3 September 1986; pp. 115–123. [Google Scholar]
- Kleynhans, E.L.J.; Neizel, B.W.; Beukes, J.P.; van Zyl, P.G. Utilisation of pre-oxidised ore in the pelletised chromite pre-reduction process. Miner. Eng. 2016, 92, 114–124. [Google Scholar] [CrossRef]
- Pan, J.; Yang, C.; Zhu, D. Solid State Reduction of Preoxidized Chromite-iron Ore Pellets by Coal. ISIJ Int. 2015, 55, 727–735. [Google Scholar] [CrossRef]
- Apaydin, F.; Atasoy, A.; Yildiz, K. Effect of mechanical activation on carbothermal reduction of chromite with graphite. Can. Metall. Quart. 2013, 50, 113–118. [Google Scholar] [CrossRef]
- Duong, H.V.; Johnston, R.F. Kinetics of solid state silica fluxed reduction of chromite with coal. Ironmak. Steelmak. 2000, 27, 202–206. [Google Scholar] [CrossRef]
- Weber, P.; Eric, R.H. The reduction of chromite in the presence of silica flux. Miner. Eng. 2006, 19, 318–324. [Google Scholar] [CrossRef]
- Atasoy, A.; Sale, F.R. An Investigation on the Solid State Reduction of Chromite Concentrate. Solid. State Phenom. 2009, 147–149, 752–757. [Google Scholar] [CrossRef]
- Katayama, H.G. The Mechanism of Reduction of Chromic Oxide by Carbon. J. Jpn. Inst. Met. 1976, 40, 993–999. [Google Scholar] [CrossRef]
- Deventer, J.S.J.V. The effect of additives on the reduction of chromite by graphite: An isothermal kinetic study. Thermochim. Acta 1988, 127, 25–35. [Google Scholar] [CrossRef]
- Ding, Y.L.; Warner, N.A. Catalytic reduction of carbon-chromite composite pellets by lime. Thermochim. Acta 1997, 292, 85–94. [Google Scholar] [CrossRef]
- Yu, D.; Paktunc, D. Kinetics and mechanisms of the carbothermic reduction of chromite in the presence of nickel. J. Therm. Anal. Calorim. 2018, 132, 143–154. [Google Scholar] [CrossRef]
- Hu, X.; Wang, H.; Teng, L.; Seetharaman, S. Direct chromium alloying by chromite ore with the presence of metallic iron. J. Min. Metall. B 2013, 49, 207–215. [Google Scholar] [CrossRef]
- Hu, X.; Yang, Q.; Sundqvist Ökvist, L.; Björkman, B. Thermal Analysis Study on the Carbothermic Reduction of Chromite Ore with the Addition of Mill Scale. Steel Res. Int. 2016, 87, 562–570. [Google Scholar] [CrossRef]
- Xue, Y.; Zhu, D.; Pan, J.; Lv, X. Reduction of Carbon Footprint Through Hybrid Sintering of Low-Grade Limonitic Nickel Laterite and Chromite Ore. J. Sustain. Metall. 2023, 9, 648–664. [Google Scholar] [CrossRef]
- Hu, X.; Teng, L.; Wang, H.; Ökvist, L.S.; Yang, Q.; Björkman, B.; Seetharaman, S. Carbothermic Reduction of Synthetic Chromite with/without the Addition of Iron Powder. ISIJ Int. 2016, 56, 2147–2155. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Yu, J.; Chou, C.K. Kinetics of carbothermic reduction of synthetic chromite. J. Min. Metall. B 2014, 50, 15–21. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Y.; Li, H.; Zhang, S.; Kasai, E.; Wang, C. Hydrogen-based pre-reduction of chromite: Reduction and consolidation mechanisms. Int. J. Hydrogen Energ. 2023, 50, 397–410. [Google Scholar] [CrossRef]
- du Preez, S.P.; van Kaam, T.P.M.; Ringdalen, E.; Tangstad, M.; Morita, K.; Bessarabov, D.G.; van Zyl, P.G.; Beukes, J.P. An Overview of Currently Applied Ferrochrome Production Processes and Their Waste Management Practices. Minerals 2023, 13, 809. [Google Scholar] [CrossRef]
- Lekatou, A.; Walker, R.D. Solid state reduction of chromite concentrate: Melting of prereduced chromite. Ironmak. Steelmak. 1995, 22, 378. [Google Scholar] [CrossRef]
- Li, S.; Gu, H.; Huang, A.; Zou, Y.; Yang, S.; Fu, L. Thermodynamic analysis and experimental verification of the direct reduction of iron ores with hydrogen at elevated temperature. J. Mater. Sci. 2022, 57, 20419–20434. [Google Scholar] [CrossRef]
- Ye, L.; Peng, Z.; Tian, R.; Tang, H.; Anzulevich, A.; Rao, M.; Li, G. Efficient pre-reduction of chromite ore with biochar under microwave irradiation. Sustain. Mater. Technol. 2023, 37, e00644. [Google Scholar] [CrossRef]
- Kleynhans, E.L.J.; Beukes, J.P.; Van Zyl, P.G.; Bunt, J.R.; Nkosi, N.S.B.; Venter, M. The Effect of Carbonaceous Reductant Selection on Chromite Pre-reduction. Metall. Mater. Trans. B 2017, 48, 827–840. [Google Scholar] [CrossRef]
- Preez, S.P.D.; Beukes, J.P.; Paktunc, D.; Zyl, P.G.V.; Jordaan, A. Recycling pre-oxidized chromite fines in the oxidative sintered pellet production process. J. South. Afr. Inst. Min. Metall. 2019, 119, 207–215. [Google Scholar] [CrossRef]
- Zhao, B.H.P.C. In Effects of oxidation on the microstructure and reduction of chromite pellets. In Proceedings of the Twelfth International Ferroalloys Congress (INFACON XII), Helsinki, Finland, 6–9 June 2010; pp. 263–273. [Google Scholar]
- Chakraborty, D.; Ranganathan, S.; Sinha, S.N. Carbothermic Reduction of Chromite Ore Under Different Flow Rates of Inert Gas. Metall. Mater. Trans. B 2010, 41, 10–18. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, C.J.; Jiang, M.F.; Qi, J.; Zhang, Q. Influencing factors of the solid carbothermal reduction process of chromite. Sci. Technol. Bull. 2013, 31, 40–43. [Google Scholar]
- Xiao, Y.Y.; Wang, L.J.; Liu, S.Y.; He, X.-B.; Chou, K.C. Kinetic mechanism of FeCr2O4 reduction in carbon-containing iron melt. J. Min. Metall. B 2023, 59, 113–123. [Google Scholar] [CrossRef]
- Ding, Y.L.; Warner, N.A. Kinetics and mechanism of reduction of carbon-chromite composite pellets. Ironmak. Steelmak. 1997, 24, 224–229. [Google Scholar]
- Kekkonen, M. Kinetic Study on Solid State and Smelting Reduction of Chromite Ore. Ph.D. Thesis, Helsinki University of Technology, Espoo, Finland, 2000. [Google Scholar]
- Turkdogan, E.T.; Vinters, J.V. Gaseous reduction of iron oxides: Part III. Reduction-oxidation of porous and dense iron oxides and iron. Metall. Trans. 1972, 3, 1561–1574. [Google Scholar] [CrossRef]
- Turkdogan, E.T.; Vinters, J.V. Reducibility of iron ore pellets and effect of additions. Can. Metall. Q. 1973, 12, 9–21. [Google Scholar] [CrossRef]
Raw Materials | TFe | FeO | Cr2O3 | SiO2 | CaO | Al2O3 | MgO | S | P |
---|---|---|---|---|---|---|---|---|---|
Chromite concentrate | 21.68 | 20.81 | 41.32 | 3.16 | 0.27 | 14.56 | 8.98 | 0.081 | 0.005 |
Raw Materials | 0.074–0.15 mm | 0.045–0.074 mm | −0.045 mm |
---|---|---|---|
Chromite concentrate | 9.43 | 36.80 | 53.77 |
Fixed Carbon | Ash | Volatile Matter | Falling Intensity | Sulfur | Abrasion |
---|---|---|---|---|---|
87.3 | 10.51 | 0.92 | 98.3 | 0.51 | 7.6 |
Num. | Temperature/°C | Time/h | Carbon Dosage/% | Iron Powder Dosage/% |
---|---|---|---|---|
1 | 1150 | 2 | 5 | 0 |
2 | 10 | |||
3 | 15 | |||
4 | 20 | |||
5 | 25 | |||
6 | 1100 | 2 | 20 | 0 |
7 | 1125 | |||
8 | 1150 | |||
9 | 1175 | |||
10 | 1200 | |||
11 | 1175 | 0.5 | 20 | 0 |
12 | 1 | |||
13 | 1.5 | |||
14 | 2 | |||
15 | 2.5 | |||
16 | 1175 | 1.5 | 20 | 10 |
17 | 20 | |||
18 | 30 | |||
19 | 40 | |||
20 | 50 | |||
21 | 60 |
Powder Dosage/% | Area No. | Elemental Compositions/Mass pct. | Mineral Phase | |||||||
---|---|---|---|---|---|---|---|---|---|---|
C | O | Mg | Al | Si | Ca | Cr | Fe | |||
0%Fe | 1 | 10.26 | 0.58 | 0.12 | 0.01 | 0.06 | 0 | 9.24 | 79.75 | (Fe, Cr)7C3 |
2 | 0.37 | 35.69 | 0.23 | 13.77 | 0 | 0.07 | 49.53 | 0.34 | Sesquioxide | |
3 | 0.26 | 35.82 | 11.68 | 9.69 | 0 | 0.03 | 39.48 | 3.30 | Cr-rich spinel | |
4 | 6.14 | 0.45 | 0 | 0.04 | 0.11 | 0.06 | 9.37 | 83.82 | Fe-C-Cr alloy | |
30%Fe | 5 | 5.91 | 0.22 | 0.03 | 0.02 | 0.10 | 0.03 | 9.16 | 84.55 | Fe-C-Cr alloy |
6 | 0.36 | 34.97 | 0.16 | 13.77 | 0.04 | 0.08 | 49.97 | 0.66 | Sesquioxide | |
7 | 0.41 | 33.94 | 10.53 | 10.98 | 0 | 0.01 | 40.82 | 3.04 | Cr-rich spinel | |
60%Fe | 8 | 5.73 | 0.34 | 0 | 0.05 | 0.03 | 0 | 7.95 | 85.9 | Fe-C-Cr alloy |
9 | 3.8 | 30.27 | 0.07 | 12.16 | 0 | 0 | 53.06 | 0.64 | Sesquioxide | |
10 | 3.94 | 30.56 | 8.21 | 11.34 | 0.06 | 0.01 | 41.13 | 4.75 | Cr-rich spinel |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Zhang, F.; Cen, Y.; Lei, Z. Mechanism of Iron Powder to Enhance Solid-State Reduction of Chromite Ore. Minerals 2025, 15, 652. https://doi.org/10.3390/min15060652
Jiang X, Zhang F, Cen Y, Lei Z. Mechanism of Iron Powder to Enhance Solid-State Reduction of Chromite Ore. Minerals. 2025; 15(6):652. https://doi.org/10.3390/min15060652
Chicago/Turabian StyleJiang, Xianghong, Feng Zhang, Yulong Cen, and Zhuowei Lei. 2025. "Mechanism of Iron Powder to Enhance Solid-State Reduction of Chromite Ore" Minerals 15, no. 6: 652. https://doi.org/10.3390/min15060652
APA StyleJiang, X., Zhang, F., Cen, Y., & Lei, Z. (2025). Mechanism of Iron Powder to Enhance Solid-State Reduction of Chromite Ore. Minerals, 15(6), 652. https://doi.org/10.3390/min15060652