Mechanism of Iron Powder to Enhance Solid-State Reduction of Chromite Ore
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Experimental Methods
2.2.1. Briquetting
2.2.2. Reduction Roasting
2.2.3. Analysis and Characterization
3. Results and Discussion
3.1. Thermodynamics of Chromite Solid-State Reduction
3.2. Solid-State Reduction Characteristics of Natural Chromite Ore
3.2.1. Carbon Dosage
3.2.2. Reduction Temperature
3.2.3. Reduction Duration
3.3. Effect of Iron Powder Dosage on the Solid-State Reduction of Natural Chromite
3.4. Mechanism of the Enhanced Solid-State Reduction of Chromite by Iron Powder Addition
3.4.1. Microstructure Observation
3.4.2. Mineral-Phase Evolution
3.4.3. Reduction Process Analysis
4. Conclusions
- (1)
- The optimal iron metallization rate of 97.15% was achieved under the following optimized parameters: 20 wt% carbon dosage, reduction temperature maintained at 1175 °C, and a duration of 2 h.
- (2)
- The addition of iron powder can enhance the solid-state reduction of chromite ore, and the enhance effect first increases and then decreases with the increase in the iron powder dosage. The iron metallization rate increases from 91.31% to 96.33 with the increase in the iron powder dosage from 0% to 30% under the conditions of reducing at 1175 °C for 1.5 h.
- (3)
- The multi-step reduction reaction gradually transforms into a single-step reduction reaction with the increase in the dosage of iron powder. Iron powder promotes the formation of a low-melting-point iron–carbon alloy liquid phase, which reduces the activity of nascent metallic iron and accelerates the speed of the solid-state reduction reaction of chromite ore and the disintegration of chromite spinel particles. However, excessive iron powder addition (>30%) shifts the most multi-step reduction reaction of chromite ore to a single-step reduction reaction, which diminishes the fragmentation degree of chromium spinel particles and weakens the enhancement effect of iron powder on the solid-state reduction of chromite ore.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, D.; Yang, C.; Pan, J.; Lu, L.; Guo, Z.; Liu, X. An integrated approach for production of stainless steel master alloy from a low grade chromite concentrate. Powder Technol. 2018, 335, 103–113. [Google Scholar] [CrossRef]
- Murthy, Y.R.; Tripathy, S.K.; Kumar, C.R. Chrome ore beneficiation challenges & opportunities—A review. Miner. Eng. 2011, 24, 375–380. [Google Scholar] [CrossRef]
- Tang, W.; Yang, S.; Xue, X. Effect of Cr2O3 addition on oxidation induration and reduction swelling behavior of chromium-bearing vanadium titanomagnetite pellets with simulated coke oven gas. Int. J. Min. Met. Mater. 2019, 26, 963–972. [Google Scholar] [CrossRef]
- Jin, P.; Jiang, Z.; Bao, C.; Hao, S.; Zhang, X. The energy consumption and carbon emission of the integrated steel mill with oxygen blast furnace. Resour. Conserv. Recycl. 2017, 117, 58–65. [Google Scholar] [CrossRef]
- Yu, Y.; Li, B.; Fang, Z.; Wang, C. Energy and exergy analyses of pellet smelting systems of cleaner ferrochrome alloy with multi-energy supply. J. Clean. Prod. 2021, 285, 124893. [Google Scholar] [CrossRef]
- Chakraborty, D.; Ranganathan, S.; Sinha, S.N. Investigations on the carbothermic reduction of chromite ores. Metall. Mater. Trans. B 2005, 36, 437–444. [Google Scholar] [CrossRef]
- Shaik, S.; Chen, Z.; Sahoo, P.P.; Borra, C.R. Kinetics of solid-state reduction of chromite overburden. Int. J. Miner. Metall. Mater. 2023, 30, 2347–2355. [Google Scholar] [CrossRef]
- Neizel, B.W.; Beukes, J.P.; van Zyl, P.G.; Dawson, N.F. Why is CaCO3 not used as an additive in the pelletised chromite pre-reduction process? Miner. Eng. 2013, 45, 115–120. [Google Scholar] [CrossRef]
- Niayesh, M.J.F.G. In An assessment of smelting reduction processes in the production of Fe-Cr-C alloys. In Proceedings of the 4th International Ferroalloys Congress, Sao Paulo, Brazil, 31 August–3 September 1986; pp. 115–123. [Google Scholar]
- Kleynhans, E.L.J.; Neizel, B.W.; Beukes, J.P.; van Zyl, P.G. Utilisation of pre-oxidised ore in the pelletised chromite pre-reduction process. Miner. Eng. 2016, 92, 114–124. [Google Scholar] [CrossRef]
- Pan, J.; Yang, C.; Zhu, D. Solid State Reduction of Preoxidized Chromite-iron Ore Pellets by Coal. ISIJ Int. 2015, 55, 727–735. [Google Scholar] [CrossRef]
- Apaydin, F.; Atasoy, A.; Yildiz, K. Effect of mechanical activation on carbothermal reduction of chromite with graphite. Can. Metall. Quart. 2013, 50, 113–118. [Google Scholar] [CrossRef]
- Duong, H.V.; Johnston, R.F. Kinetics of solid state silica fluxed reduction of chromite with coal. Ironmak. Steelmak. 2000, 27, 202–206. [Google Scholar] [CrossRef]
- Weber, P.; Eric, R.H. The reduction of chromite in the presence of silica flux. Miner. Eng. 2006, 19, 318–324. [Google Scholar] [CrossRef]
- Atasoy, A.; Sale, F.R. An Investigation on the Solid State Reduction of Chromite Concentrate. Solid. State Phenom. 2009, 147–149, 752–757. [Google Scholar] [CrossRef]
- Katayama, H.G. The Mechanism of Reduction of Chromic Oxide by Carbon. J. Jpn. Inst. Met. 1976, 40, 993–999. [Google Scholar] [CrossRef]
- Deventer, J.S.J.V. The effect of additives on the reduction of chromite by graphite: An isothermal kinetic study. Thermochim. Acta 1988, 127, 25–35. [Google Scholar] [CrossRef]
- Ding, Y.L.; Warner, N.A. Catalytic reduction of carbon-chromite composite pellets by lime. Thermochim. Acta 1997, 292, 85–94. [Google Scholar] [CrossRef]
- Yu, D.; Paktunc, D. Kinetics and mechanisms of the carbothermic reduction of chromite in the presence of nickel. J. Therm. Anal. Calorim. 2018, 132, 143–154. [Google Scholar] [CrossRef]
- Hu, X.; Wang, H.; Teng, L.; Seetharaman, S. Direct chromium alloying by chromite ore with the presence of metallic iron. J. Min. Metall. B 2013, 49, 207–215. [Google Scholar] [CrossRef]
- Hu, X.; Yang, Q.; Sundqvist Ökvist, L.; Björkman, B. Thermal Analysis Study on the Carbothermic Reduction of Chromite Ore with the Addition of Mill Scale. Steel Res. Int. 2016, 87, 562–570. [Google Scholar] [CrossRef]
- Xue, Y.; Zhu, D.; Pan, J.; Lv, X. Reduction of Carbon Footprint Through Hybrid Sintering of Low-Grade Limonitic Nickel Laterite and Chromite Ore. J. Sustain. Metall. 2023, 9, 648–664. [Google Scholar] [CrossRef]
- Hu, X.; Teng, L.; Wang, H.; Ökvist, L.S.; Yang, Q.; Björkman, B.; Seetharaman, S. Carbothermic Reduction of Synthetic Chromite with/without the Addition of Iron Powder. ISIJ Int. 2016, 56, 2147–2155. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Yu, J.; Chou, C.K. Kinetics of carbothermic reduction of synthetic chromite. J. Min. Metall. B 2014, 50, 15–21. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Y.; Li, H.; Zhang, S.; Kasai, E.; Wang, C. Hydrogen-based pre-reduction of chromite: Reduction and consolidation mechanisms. Int. J. Hydrogen Energ. 2023, 50, 397–410. [Google Scholar] [CrossRef]
- du Preez, S.P.; van Kaam, T.P.M.; Ringdalen, E.; Tangstad, M.; Morita, K.; Bessarabov, D.G.; van Zyl, P.G.; Beukes, J.P. An Overview of Currently Applied Ferrochrome Production Processes and Their Waste Management Practices. Minerals 2023, 13, 809. [Google Scholar] [CrossRef]
- Lekatou, A.; Walker, R.D. Solid state reduction of chromite concentrate: Melting of prereduced chromite. Ironmak. Steelmak. 1995, 22, 378. [Google Scholar] [CrossRef]
- Li, S.; Gu, H.; Huang, A.; Zou, Y.; Yang, S.; Fu, L. Thermodynamic analysis and experimental verification of the direct reduction of iron ores with hydrogen at elevated temperature. J. Mater. Sci. 2022, 57, 20419–20434. [Google Scholar] [CrossRef]
- Ye, L.; Peng, Z.; Tian, R.; Tang, H.; Anzulevich, A.; Rao, M.; Li, G. Efficient pre-reduction of chromite ore with biochar under microwave irradiation. Sustain. Mater. Technol. 2023, 37, e00644. [Google Scholar] [CrossRef]
- Kleynhans, E.L.J.; Beukes, J.P.; Van Zyl, P.G.; Bunt, J.R.; Nkosi, N.S.B.; Venter, M. The Effect of Carbonaceous Reductant Selection on Chromite Pre-reduction. Metall. Mater. Trans. B 2017, 48, 827–840. [Google Scholar] [CrossRef]
- Preez, S.P.D.; Beukes, J.P.; Paktunc, D.; Zyl, P.G.V.; Jordaan, A. Recycling pre-oxidized chromite fines in the oxidative sintered pellet production process. J. South. Afr. Inst. Min. Metall. 2019, 119, 207–215. [Google Scholar] [CrossRef]
- Zhao, B.H.P.C. In Effects of oxidation on the microstructure and reduction of chromite pellets. In Proceedings of the Twelfth International Ferroalloys Congress (INFACON XII), Helsinki, Finland, 6–9 June 2010; pp. 263–273. [Google Scholar]
- Chakraborty, D.; Ranganathan, S.; Sinha, S.N. Carbothermic Reduction of Chromite Ore Under Different Flow Rates of Inert Gas. Metall. Mater. Trans. B 2010, 41, 10–18. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, C.J.; Jiang, M.F.; Qi, J.; Zhang, Q. Influencing factors of the solid carbothermal reduction process of chromite. Sci. Technol. Bull. 2013, 31, 40–43. [Google Scholar]
- Xiao, Y.Y.; Wang, L.J.; Liu, S.Y.; He, X.-B.; Chou, K.C. Kinetic mechanism of FeCr2O4 reduction in carbon-containing iron melt. J. Min. Metall. B 2023, 59, 113–123. [Google Scholar] [CrossRef]
- Ding, Y.L.; Warner, N.A. Kinetics and mechanism of reduction of carbon-chromite composite pellets. Ironmak. Steelmak. 1997, 24, 224–229. [Google Scholar]
- Kekkonen, M. Kinetic Study on Solid State and Smelting Reduction of Chromite Ore. Ph.D. Thesis, Helsinki University of Technology, Espoo, Finland, 2000. [Google Scholar]
- Turkdogan, E.T.; Vinters, J.V. Gaseous reduction of iron oxides: Part III. Reduction-oxidation of porous and dense iron oxides and iron. Metall. Trans. 1972, 3, 1561–1574. [Google Scholar] [CrossRef]
- Turkdogan, E.T.; Vinters, J.V. Reducibility of iron ore pellets and effect of additions. Can. Metall. Q. 1973, 12, 9–21. [Google Scholar] [CrossRef]
Raw Materials | TFe | FeO | Cr2O3 | SiO2 | CaO | Al2O3 | MgO | S | P |
---|---|---|---|---|---|---|---|---|---|
Chromite concentrate | 21.68 | 20.81 | 41.32 | 3.16 | 0.27 | 14.56 | 8.98 | 0.081 | 0.005 |
Raw Materials | 0.074–0.15 mm | 0.045–0.074 mm | −0.045 mm |
---|---|---|---|
Chromite concentrate | 9.43 | 36.80 | 53.77 |
Fixed Carbon | Ash | Volatile Matter | Falling Intensity | Sulfur | Abrasion |
---|---|---|---|---|---|
87.3 | 10.51 | 0.92 | 98.3 | 0.51 | 7.6 |
Num. | Temperature/°C | Time/h | Carbon Dosage/% | Iron Powder Dosage/% |
---|---|---|---|---|
1 | 1150 | 2 | 5 | 0 |
2 | 10 | |||
3 | 15 | |||
4 | 20 | |||
5 | 25 | |||
6 | 1100 | 2 | 20 | 0 |
7 | 1125 | |||
8 | 1150 | |||
9 | 1175 | |||
10 | 1200 | |||
11 | 1175 | 0.5 | 20 | 0 |
12 | 1 | |||
13 | 1.5 | |||
14 | 2 | |||
15 | 2.5 | |||
16 | 1175 | 1.5 | 20 | 10 |
17 | 20 | |||
18 | 30 | |||
19 | 40 | |||
20 | 50 | |||
21 | 60 |
Powder Dosage/% | Area No. | Elemental Compositions/Mass pct. | Mineral Phase | |||||||
---|---|---|---|---|---|---|---|---|---|---|
C | O | Mg | Al | Si | Ca | Cr | Fe | |||
0%Fe | 1 | 10.26 | 0.58 | 0.12 | 0.01 | 0.06 | 0 | 9.24 | 79.75 | (Fe, Cr)7C3 |
2 | 0.37 | 35.69 | 0.23 | 13.77 | 0 | 0.07 | 49.53 | 0.34 | Sesquioxide | |
3 | 0.26 | 35.82 | 11.68 | 9.69 | 0 | 0.03 | 39.48 | 3.30 | Cr-rich spinel | |
4 | 6.14 | 0.45 | 0 | 0.04 | 0.11 | 0.06 | 9.37 | 83.82 | Fe-C-Cr alloy | |
30%Fe | 5 | 5.91 | 0.22 | 0.03 | 0.02 | 0.10 | 0.03 | 9.16 | 84.55 | Fe-C-Cr alloy |
6 | 0.36 | 34.97 | 0.16 | 13.77 | 0.04 | 0.08 | 49.97 | 0.66 | Sesquioxide | |
7 | 0.41 | 33.94 | 10.53 | 10.98 | 0 | 0.01 | 40.82 | 3.04 | Cr-rich spinel | |
60%Fe | 8 | 5.73 | 0.34 | 0 | 0.05 | 0.03 | 0 | 7.95 | 85.9 | Fe-C-Cr alloy |
9 | 3.8 | 30.27 | 0.07 | 12.16 | 0 | 0 | 53.06 | 0.64 | Sesquioxide | |
10 | 3.94 | 30.56 | 8.21 | 11.34 | 0.06 | 0.01 | 41.13 | 4.75 | Cr-rich spinel |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Zhang, F.; Cen, Y.; Lei, Z. Mechanism of Iron Powder to Enhance Solid-State Reduction of Chromite Ore. Minerals 2025, 15, 652. https://doi.org/10.3390/min15060652
Jiang X, Zhang F, Cen Y, Lei Z. Mechanism of Iron Powder to Enhance Solid-State Reduction of Chromite Ore. Minerals. 2025; 15(6):652. https://doi.org/10.3390/min15060652
Chicago/Turabian StyleJiang, Xianghong, Feng Zhang, Yulong Cen, and Zhuowei Lei. 2025. "Mechanism of Iron Powder to Enhance Solid-State Reduction of Chromite Ore" Minerals 15, no. 6: 652. https://doi.org/10.3390/min15060652
APA StyleJiang, X., Zhang, F., Cen, Y., & Lei, Z. (2025). Mechanism of Iron Powder to Enhance Solid-State Reduction of Chromite Ore. Minerals, 15(6), 652. https://doi.org/10.3390/min15060652