Review of Interfacial Regulation of Apatite Flotation
Abstract
:1. Introduction
2. Basic Properties of Apatite
2.1. Crystal Structure Characteristics of Apatite
2.2. Surface Properties
2.2.1. Surface Wettability
2.2.2. Surface Electrical Properties
3. Flotation Reagents
3.1. Collector
Ionic Property | Collector | pH * | Concentration | Ref. | Year |
---|---|---|---|---|---|
Anionic | FrOC | 9 | 1000 g/t | [85] | 2024 |
2-Cl-9-ODA | 9 | 3 × 10−4 mol/L | [94] | 2024 | |
SNLS | 10 | 5 × 10−6 mol/L | [95] | 2023 | |
CSFA | 7 | 40 mg/L | [96] | 2021 | |
BHA | 9 | 1.2 × 10−4 mol/L | [97] | 2019 | |
Cationic | DHDB | 4.5 | 15 mg/L | [98] | 2019 |
LPDC | 6.5 | 25 mg/L | [99] | 2023 | |
HDMEA | 6.43 | 20 mg/L | [54] | 2022 | |
Amphoteric | DDALA | 6 | 3 × 10−4 mol/L | [48] | 2024 |
Lecithin | 8.5 | 40 mg/L | [100] | 2023 | |
C12Giy | 5 | 30 mg/L | [101] | 2022 | |
Nonionic | NI-EP | 4.5~5.2 | 125 g/t | [102] | 2025 |
oxyethylenated cetyl ether | 10 | 360 g/t | [103] | 2022 |
3.1.1. Anionic Collector
3.1.2. Cationic Collectors
3.1.3. Amphoteric Collectors
3.1.4. Nonionic Collector
3.2. Depressant
3.2.1. Depressors of Apatite
3.2.2. Depressors of Carbonate Minerals
3.2.3. Depressors of Silicate Minerals
4. Interface Regulation of Fine Apatite
4.1. Interaction Regulation Interparticle: Particle Aggregation and Stability
4.2. Interaction Regulation of Particle–Bubble
5. Future Outlook
- (1)
- Strengthening the development of highly selective, environmentally friendly reagents and expanding research from micro-flotation experiments to industrial trials.
- (2)
- Mixed reagents have been proven to perform better than single reagents, but their mechanisms are not yet thoroughly understood. In-depth research should be conducted using advanced detection equipment, and based on this, more reagent combinations should be proposed.
- (3)
- Research on the relationship between reagent structure and particle size in flotation systems is still insufficient, especially for fine particles or even ultra-fine particles (less than 10 μm).
- (4)
- Research on particle–particle interactions is still at the pure mineral testing stage, while the actual flotation slurry environment is much more complex. There should be more focus on the study of particle interactions in complex environments.
- (5)
- Regarding bubble size regulation, the optimization and development of micro-bubble generation equipment should be strengthened.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MAP | Monoammonium phosphate |
DAP | Diammonium phosphate |
(IMA-CNMNC) | The Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association |
AMCSD | American Mineralogist Crystal Structure Database |
WCR | Washburn capillary rise |
DDA | Dodecylamine |
DDAIP | 1-(dodecylamine)-2-propanol |
PZC | Point of zero charge |
IEP | Isoelectric point |
DFT | Density functional theory |
SDS | Sodium dodecyl sulfate |
TOFA | Tall oil fatty acid |
OAPEGE | Oleic acid polyethylene glycol ester |
HDMEA | N-(2-hydroxy-1, 1-dimethylethyl) |
DTAB | Dodecyltrimethyl ammonium bromide |
DDALA | N-dodecyl-β-alanine |
XG | Xanthogenate |
TG | Tragacanth gum |
PS | Phosphorylated starch |
CA | Citric acid |
S711 | Sulfonated naphthalene |
S808 | Sulfonated anthracene |
GA | Arabic gum |
KGM | Konjac glucomannan |
References
- Mineral Commodity Summaries. Mineral Commodity Summaries 2024; Mineral Commodity Summaries: Reston, VA, USA, 2024; p. 212. [Google Scholar]
- Grohol, M.; Veeh, C. Study on the Critical Raw Materials for the EU 2023—Final Report. 2023. Available online: https://op.europa.eu/en/publication-detail/-/publication/57318397-fdd4-11ed-a05c-01aa75ed71a1 (accessed on 31 March 2025).
- Fournie, T.; Rashwan, T.L.; Switzer, C.; Gerhard, J.I. Phosphorus Recovery and Reuse Potential from Smouldered Sewage Sludge Ash. Waste Manag. 2022, 137, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Zhang, Q.; Wang, X. New Insights on Depressive Mechanism of Citric Acid in the Selective Flotation of Dolomite from Apatite. Colloids Surf. A Physicochem. Eng. Asp. 2022, 653, 130075. [Google Scholar] [CrossRef]
- Zhang, F.; Williamson, B.J.; Broom-Fendley, S. Apatite Texture and Composition in the Tonglushan Porphyry-Related Skarn System, Eastern China: Implications for Mineral Exploration. Ore Geol. Rev. 2023, 158, 105493. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, Z.; Cao, X.; Fan, H.; Xiao, J.; Xia, Y.; Zeng, M. Geochemistry of Apatite Individuals in Zhijin Phosphorites, South China: Insight into the REY Sources and Diagenetic Enrichment. Ore Geol. Rev. 2022, 150, 105169. [Google Scholar] [CrossRef]
- Dong, L.; Cui, Y.; Qiao, L.; Lan, S.; Zheng, Q.; Shen, P.; Liu, D. A Critical Review on the Flotation of Calcium-Containing Minerals. Sep. Purif. Technol. 2025, 360, 131082. [Google Scholar] [CrossRef]
- Mineral Commodity Summaries. Mineral Commodity Summaries 2023; Mineral Commodity Summaries: Reston, VA, USA, 2023; p. 210. [Google Scholar]
- Cloud, P. Phosphorite Sedimentation: Phosphate Deposits of the World. Science 1987, 236, 1125–1126. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, A.S.; Frolov, A.A.; Belov, S.V. Regularities in the Distribution and Genetic Features of Phosphate Ore Deposits. Geol. Ore Depos. 2001, 43, 150–161. [Google Scholar]
- Andersson, S.S.; Wagner, T.; Jonsson, E.; Fusswinkel, T.; Whitehouse, M.J. Apatite as a Tracer of the Source, Chemistry and Evolution of Ore-Forming Fluids: The Case of the Olserum-Djupedal REE-Phosphate Mineralisation, SE Sweden. Geochim. Et Cosmochim. Acta 2019, 255, 163–187. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, G.; Yang, X. Isolating Elemental Phosphorus from Sewage Sludge Ash by Electrochemistry. Resour. Conserv. Recycl. 2023, 190, 106815. [Google Scholar] [CrossRef]
- Marques, C.F.; Olhero, S.; Abrantes, J.C.C.; Marote, A.; Ferreira, S.; Vieira, S.I.; Ferreira, J.M.F. Biocompatibility and Antimicrobial Activity of Biphasic Calcium Phosphate Powders Doped with Metal Ions for Regenerative Medicine. Ceram. Int. 2017, 43, 15719–15728. [Google Scholar] [CrossRef]
- Abouzeid, A.-Z.M.; Negm, A.T.; Elgillani, D.A. Upgrading of Calcareous Phosphate Ores by Flotation: Effect of Ore Characteristics. Int. J. Miner. Process. 2009, 90, 81–89. [Google Scholar] [CrossRef]
- Abouzeid, A.Z.M.; El-Jallad, I.S.; Orphy, M.K. Calcareous Phosphates and Their Calcined Products. Miner. Sci. Eng. 1980, 12, 73–83. [Google Scholar]
- Abouzeid, A.-Z.M. Physical and Thermal Treatment of Phosphate Ores—An Overview. Int. J. Miner. Process. 2008, 85, 59–84. [Google Scholar] [CrossRef]
- Raiymbekov, Y.; Besterekov, U.; Abdurazova, P.; Nazarbek, U. Review of Methods and Technologies for the Enrichment of Low-Grade Phosphorites. Rev. Inorg. Chem. 2022, 42, 385–395. [Google Scholar] [CrossRef]
- Wei, Z.; Sun, W.; Wang, P.; Liu, D.; Han, H. A Novel Metal–Organic Complex Surfactant for High-Efficiency Mineral Flotation. Chem. Eng. J. 2021, 426, 130853. [Google Scholar] [CrossRef]
- Feng, J.; Yang, B.; Zhu, H.; Zhang, H.; Zeng, M. The Utilization of 2-Phosphonobutane-1,2,4-Tricarboxylic Acid (PBTCA) as a Novel Sphalerite Depressant in the Selective Flotation of Galena from Sphalerite. Appl. Surf. Sci. 2021, 569, 150950. [Google Scholar] [CrossRef]
- Jiang, K.; Liu, J.; Wang, Y.; Zhang, D.; Han, Y. Surface Properties and Flotation Inhibition Mechanism of Air Oxidation on Pyrite and Arsenopyrite. Appl. Surf. Sci. 2023, 610, 155476. [Google Scholar] [CrossRef]
- Li, K.; Zhang, H.; Peng, T.; Liu, C.; Yang, S. Influences of Starch Depressant with the Various Molecular Structure on the Interactions between Hematite Particles and Flotation Bubbles. Colloids Surf. A: Physicochem. Eng. Asp. 2022, 652, 129814. [Google Scholar] [CrossRef]
- Xie, H.; Jin, Y.; Zhang, P.; Liu, Y.; Gao, L.; Feng, Q.; Liu, D. Surface Modification Mechanism of Galena with H2SO4 and Its Effect on Flotation Separation Performance. Appl. Surf. Sci. 2022, 579, 152129. [Google Scholar] [CrossRef]
- Gomez-Flores, A.; Heyes, G.W.; Ilyas, S.; Kim, H. Prediction of Grade and Recovery in Flotation from Physicochemical and Operational Aspects Using Machine Learning Models. Miner. Eng. 2022, 183, 107627. [Google Scholar] [CrossRef]
- Sis, H.; Chander, S. Reagents Used in the Flotation of Phosphate Ores: A Critical Review. Miner. Eng. 2003, 16, 577–585. [Google Scholar] [CrossRef]
- Somasundaran, P.; Sivakumar, A. Advances in Understanding Flotation Mechanisms. Min. Metall. Explor. 1988, 5, 97–103. [Google Scholar] [CrossRef]
- Derhy, M.; Taha, Y.; Benzaazoua, M.; El-Bahi, A.; Ait-Khouia, Y.; Hakkou, R. Assessment of the Selective Flotation of Calcite, Apatite and Quartz Using Bio-Based Collectors: Flaxseed, Nigella, and Olive Oils. Miner. Eng. 2022, 182, 107589. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, H.; Xiao, J.; Sun, W.; Tao, D.; Zuo, Y.; Han, H. Novel Metal-Starch Depressant for the Flotation Separation of Ultrafine Apatite and Dolomite Based on Experimental and Calculational Study. Sep. Purif. Technol. 2025, 362, 131877. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Xue, N.; Li, Z.; Zhu, Y.; Nie, Y. Flotation Separation of Apatite from Dolomite with Tara Gum as Depressant: An Experimental and Molecular Dynamics Simulation Study. Colloids Surf. A Physicochem. Eng. Asp. 2025, 708, 136044. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, L.; Fu, W.; Chi, R.; Li, H.; Yang, S. Investigations of Amino Trimethylene Phosphonic Acid as a Green and Efficient Depressant for the Flotation Separation of Apatite from Calcite. Miner. Eng. 2022, 181, 107552. [Google Scholar] [CrossRef]
- Ruan, Y.; He, D.; Chi, R. Review on Beneficiation Techniques and Reagents Used for Phosphate Ores. Minerals 2019, 9, 253. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, Q. Interaction Behavior between Coarse and Fine Particles in the Reverse Flotation of Fluorapatite and Dolomite. Langmuir 2023, 39, 12931–12943. [Google Scholar] [CrossRef]
- Yang, B.; Cao, S.; Zhu, Z.; Yin, W.; Sheng, Q.; Sun, H.; Yao, J.; Chen, K. Selective Flotation Separation of Apatite from Dolomite Utilizing a Novel Eco-Friendly and Efficient Depressant for Sustainable Manufacturing of Phosphate Fertilizer. J. Clean. Prod. 2021, 286, 124949. [Google Scholar] [CrossRef]
- George, P.; Nguyen, A.V.; Jameson, G.J. Assessment of True Flotation and Entrainment in the Flotation of Submicron Particles by Fine Bubbles. Miner. Eng. 2004, 17, 847–853. [Google Scholar] [CrossRef]
- Farrokhpay, S.; Ndlovu, B.; Bradshaw, D. Behaviour of Swelling Clays versus Non-Swelling Clays in Flotation. Miner. Eng. 2016, 96–97, 59–66. [Google Scholar] [CrossRef]
- Verdugo, L.; Zhang, L.; Etschmann, B.; Brugger, J.; Bruckard, W.; Menacho, J.; Molina, L.; Hoadley, A. Spent Lithium-Ion Battery Recycling Using Flotation Technology: Effect of Material Heterogeneity on Separation Performance. Processes 2024, 12, 1363. [Google Scholar] [CrossRef]
- Abdollahi, S.; Afraei, S.; Mehdilo, A.; Kouchakzadeh, R.; Irannajad, M. A New Mixture of Anionic Collectors for Improvement of Apatite Floatability. Miner. Eng. 2025, 222, 109129. [Google Scholar] [CrossRef]
- Wills, B.A.; Finch, J.A. Chapter 12—Froth Flotation. In Wills’ Mineral Processing Technology, 8th ed.; Wills, B.A., Finch, J.A., Eds.; Butterworth-Heinemann: Boston, UK, 2016; pp. 265–380. ISBN 978-0-08-097053-0. [Google Scholar]
- Pasero, M.; Kampf, A.R.; Ferraris, C.; Pekov, I.V.; Rakovan, J.; White, T.J. Nomenclature of the Apatite Supergroup Minerals. Eur. J. Mineral. 2010, 22, 163–179. [Google Scholar] [CrossRef]
- Bulina, N.V.; Makarova, S.V.; Prosanov, I.Y.; Vinokurova, O.B.; Lyakhov, N.Z. Structure and Thermal Stability of Fluorhydroxyapatite and Fluorapatite Obtained by Mechanochemical Method. J. Solid State Chem. 2020, 282, 121076. [Google Scholar] [CrossRef]
- Simukanga, S.; Lombe, W.C. Electrochemical Properties of Apatite and Other Minerals of Zambian Phosphate Ores in Aqueous Solution. Fertil. Res. 1995, 41, 159–166. [Google Scholar] [CrossRef]
- Engvik, A.K.; Golla-Schindler, U.; Berndt, J.; Austrheim, H.; Putnis, A. Intragranular Replacement of Chlorapatite by Hydroxy-Fluor-Apatite during Metasomatism. Lithos 2009, 112, 236–246. [Google Scholar] [CrossRef]
- Rulis, P.; Yao, H.; Ouyang, L.; Ching, W.Y. Electronic Structure, Bonding, Charge Distribution, and x-Ray Absorption Spectra of the (001) Surfaces of Fluorapatite and Hydroxyapatite from First Principles. Phys. Rev. B 2007, 76, 245410. [Google Scholar] [CrossRef]
- Xie, J.; Li, X.; Mao, S.; Li, L.; Ke, B.; Zhang, Q. Effects of Structure of Fatty Acid Collectors on the Adsorption of Fluorapatite (0 0 1) Surface: A First-Principles Calculations. Appl. Surf. Sci. 2018, 444, 699–709. [Google Scholar] [CrossRef]
- Comodi, P.; Liu, Y.; Zanazzi, P.F.; Montagnoli, M. Structural and Vibrational Behaviour of Fluorapatite with Pressure. Part I: In Situ Single-Crystal X-Ray Diffraction Investigation. Phys. Chem. Miner. 2001, 28, 219–224. [Google Scholar] [CrossRef]
- Kim, J.Y.; Fenton, R.R.; Hunter, B.A.; Kennedy, B.J. Powder Diffraction Studies of Synthetic Calcium and Lead Apatites. Aust. J. Chem. 2000, 53, 679–686. [Google Scholar] [CrossRef]
- Fuerstenau, D.W. Pradip Zeta Potentials in the Flotation of Oxide and Silicate Minerals. Adv. Colloid Interface Sci. 2005, 114–115, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Kholodov, V.N.; Nedumov, R.I. The Role of Black Shales in the Formation of Phosphate and Manganese Ores. Lithol. Miner. Resour. 2011, 46, 321–352. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, W.; Ren, Q.; Tu, R.; Qiu, F.; Gao, Z.; Xu, S.; Sun, W.; Tian, M. Innovating an Amphoteric Collector Derived from Dodecylamine Molecular Structure: Facilitating the Selective Flotation Separation of Apatite from Quartz and Dolomite. Miner. Eng. 2024, 215, 108819. [Google Scholar] [CrossRef]
- Derhy, M.; Taha, Y.; Ait-khouia, Y.; Elghali, A.; Benzaazoua, M.; Hakkou, R. Enhancing Selective Calcite and Dolomite Flotation in the Phosphate Ores: Investigation, Modeling, and Automated Mineralogy Assessment. Miner. Eng. 2024, 207, 108569. [Google Scholar] [CrossRef]
- Lan, S.; Shen, P.; Zheng, Q.; Qiao, L.; Dong, L.; Liu, D. Effective Flotation Separation of Apatite from Dolomite Using a New Eco-Friendly Depressant Gallic acid. Green Chem. 2024, 26, 1627–1636. [Google Scholar] [CrossRef]
- Krasowska, M.; Zawala, J.; Bradshaw-Hajek, B.H.; Ferri, J.K.; Beattie, D.A. Interfacial Characterisation for Flotation: 1. Solid-Liquid Interface. Curr. Opin. Colloid Interface Sci. 2018, 37, 61–73. [Google Scholar] [CrossRef]
- Derhy, M.; Taha, Y.; El-Bahi, A.; Ait-Khouia, Y.; Benzaazoua, M.; Hakkou, R. Selective Flotation of Calcite and Dolomite from Apatite Using Bio-Based Alternatives to Conventional Collectors: Castor and Mustard Oils. Miner. Eng. 2024, 208, 108597. [Google Scholar] [CrossRef]
- Liu, W.; Ge, R.; Guo, Y.; Xia, Y.; Zhao, S.; Liu, W.; Cui, B.; Shen, Y. Study on the Performance and Mechanism of Novel Hydroxyl Quaternary Ammonium Collector for Separation of Quartz from Apatite. J. Mol. Liq. 2025, 421, 126868. [Google Scholar] [CrossRef]
- Peng, X.; Liu, W.; Zhao, Q.; Liu, W.; Tong, K.; Zhao, P. Development and Utilization of a Novel Hydrogen Bonding Enhanced Collector in the Separation of Apatite from Quartz. Miner. Eng. 2022, 180, 107477. [Google Scholar] [CrossRef]
- Derhy, M.; Taha, Y.; Hakkou, R.; Benzaazoua, M. Review of the Main Factors Affecting the Flotation of Phosphate Ores. Minerals 2020, 10, 1109. [Google Scholar] [CrossRef]
- Ulusoy, U.; Yekeler, M. Correlation of the Surface Roughness of Some Industrial Minerals with Their Wettability Parameters. Chem. Eng. Process. Process Intensif. 2005, 44, 555–563. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q. Insight into the Influence of Surface Roughness on the Wettability of Apatite and Dolomite. Minerals 2020, 10, 114. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, H.; Li, S.; Cao, Y.; Ao, X. Effect of Mg, Al, and Fe Impurities on the Wettability of the Fluorapatite (001) Surface. Colloids Surf. A Physicochem. Eng. Asp. 2022, 654, 130130. [Google Scholar] [CrossRef]
- Gao, Z.-Y.; Jiang, Z.-Y.; Sun, W.; Gao, Y.-S. Typical Roles of Metal Ions in Mineral Flotation: A Review. Trans. Nonferrous Met. Soc. China 2021, 31, 2081–2101. [Google Scholar] [CrossRef]
- Parapari, P.S.; Irannajad, M.; Mehdilo, A. Modification of Ilmenite Surface Properties by Superficial Dissolution Method. Miner. Eng. 2016, 92, 160–167. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, F.; Yu, H.; Liu, M. Double Roles of Sodium Hexametaphosphate in the Flotation of Dolomite from Apatite. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127080. [Google Scholar] [CrossRef]
- Abdel-Khalek, N.A. Evaluation of Flotation Strategies for Sedimentary Phosphates with Siliceous and Carbonates Gangues. Miner. Eng. 2000, 13, 789–793. [Google Scholar] [CrossRef]
- Sun, R.; Xing, D.; Deng, J.; Jin, D.; Ma, S.; Liu, J.; Li, G.; Qin, G.; Liu, X. Effect of Sulfuric Acid Pretreatment on Flotation Performance of Calcite and Fluorite. Miner. Eng. 2023, 203, 108301. [Google Scholar] [CrossRef]
- Chen, J.; Yuan, X.; Yin, Y.; Wang, M.; Cheng, D.; Ao, X.; Xie, Y. Effect of Ca2+ Dissolution and Migration Transformation from Phosphorite on the Surface Properties of Dolomite. Miner. Eng. 2022, 188, 107824. [Google Scholar] [CrossRef]
- Németh, Z.; Csóka, I.; Semnani Jazani, R.; Sipos, B.; Haspel, H.; Kozma, G.; Kónya, Z.; Dobó, D.G. Quality by Design-Driven Zeta Potential Optimisation Study of Liposomes with Charge Imparting Membrane Additives. Pharmaceutics 2022, 14, 1798. [Google Scholar] [CrossRef] [PubMed]
- Kou, J.; Tao, D.; Xu, G. Fatty Acid Collectors for Phosphate Flotation and Their Adsorption Behavior Using QCM-D. Int. J. Miner. Process. 2010, 95, 1–9. [Google Scholar] [CrossRef]
- Cheng, R.; Li, C.; Liu, X.; Deng, S. Synergism of Octane Phenol Polyoxyethylene-10 and Oleic Acid in Apatite Flotation. Physicochem. Probl. Miner. Process. 2017, 53, 1214–1227. [Google Scholar] [CrossRef]
- Perrone, J.; Fourest, B.; Giffaut, E. Surface Characterization of Synthetic and Mineral Carbonate Fluoroapatites. J. Colloid Interface Sci. 2002, 249, 441–452. [Google Scholar] [CrossRef]
- Chaïrat, C.; Oelkers, E.H.; Schott, J.; Lartigue, J.-E. Fluorapatite Surface Composition in Aqueous Solution Deduced from Potentiometric, Electrokinetic, and Solubility Measurements, and Spectroscopic Observations. Geochim. Cosmochim. Acta 2007, 71, 5888–5900. [Google Scholar] [CrossRef]
- Yuehua, H.; Chi, R.; Xu, Z. Solution Chemistry Study of Salt-Type Mineral Flotation Systems: Role of Inorganic Dispersants. Ind. Eng. Chem. Res. 2003, 42, 1641–1647. [Google Scholar] [CrossRef]
- Nduwa-Mushidi, J.; Anderson, C.G. Surface Chemistry and Flotation Behaviors of Monazite–Apatite–Ilmenite–Quartz–Rutile–Zircon with Octanohydroxamic Acid. J. Sustain. Metall. 2017, 3, 62–72. [Google Scholar] [CrossRef]
- Amankonah, J.O.; Somasundaran, P. Effects of Dissolved Mineral Species on the Electrokinetic Behavior of Calcite and Apatite. Colloids Surf. 1985, 15, 335–353. [Google Scholar] [CrossRef]
- Mishra, S.K. The Electrokinetics of Apatite and Calcite in Inorganic Electrolyte Environment. Int. J. Miner. Process. 1978, 5, 69–83. [Google Scholar] [CrossRef]
- Dong, L.; Jiao, F.; Qin, W.; Zhu, H.; Jia, W. Selective Depressive Effect of Sodium Fluorosilicate on Calcite during Scheelite Flotation. Miner. Eng. 2019, 131, 262–271. [Google Scholar] [CrossRef]
- Angélica Evangelista de Carvalho, J.; Roberto Gomes Brandão, P.; Bicalho Henriques, A.; Silva de Oliveira, P.; Zanoni Lopes Cançado, R.; Rodrigues da Silva, G. Selective Flotation of Apatite from Micaceous Minerals Using Patauá Palm Tree Oil Collector. Miner. Eng. 2020, 156, 106474. [Google Scholar] [CrossRef]
- Santos, L.H.; Otávio dos Santos, G.; Fernandes de Magalhães, L.; Rodrigues da Silva, G.; Eduardo Clark Peres, A. Application of Andiroba Oil as a Novel Collector in Apatite Flotation. Miner. Eng. 2022, 185, 107678. [Google Scholar] [CrossRef]
- Abdel-Halim, M.M.; Abdel Khalek, M.A.; Zheng, R.; Gao, Z. Sodium N-Lauroylsarcosinate (SNLS) as a Selective Collector for Calcareous Phosphate Beneficiation. Minerals 2022, 12, 829. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, S.; Wang, W.; Zhang, J.; Yan, W.; Deng, J.; Feng, Q.; Huang, Y. The Effects of Ca(II) and Mg(II) Ions on the Flotation of Spodumene Using NaOL. Miner. Eng. 2015, 79, 40–46. [Google Scholar] [CrossRef]
- Castro, S.; Lopez-Valdivieso, A.; Laskowski, J.S. Review of the Flotation of Molybdenite. Part I: Surface Properties and Floatability. Int. J. Miner. Process. 2016, 148, 48–58. [Google Scholar] [CrossRef]
- Liao, S.; Wu, Y.; Yang, Y.; Wu, L.; Gu, G.; Wang, Y. Flotation Behavior and Mechanism of Microfine Apatite and Illite in Different Electrolyte Solution Systems. Colloids Surf. A Physicochem. Eng. Asp. 2024, 699, 134563. [Google Scholar] [CrossRef]
- Rao, K.H.; Antti, B.-M.; Forssberg, E. Mechanism of Oleate Interaction on Salt-Type Minerals, Part II. Adsorption and Electrokinetic Studies of Apatite in the Presence of Sodium Oleate and Sodium Metasilicate. Int. J. Miner. Process. 1990, 28, 59–79. [Google Scholar] [CrossRef]
- Jong, K.; Han, Y.; Ryom, S. Flotation Mechanism of Oleic Acid Amide on Apatite. Colloids Surf. A Physicochem. Eng. Asp. 2017, 523, 127–131. [Google Scholar] [CrossRef]
- de Oliveira, P.; Mansur, H.; Mansur, A.; da Silva, G.; Clark Peres, A.E. Apatite Flotation Using Pataua Palm Tree Oil as Collector. J. Mater. Res. Technol. 2019, 8, 4612–4619. [Google Scholar] [CrossRef]
- Xu, W.; Mei, G.; Tian, Y.; Shi, B.; Guo, C.; Pan, W. Reverse Cationic Flotation of Low-Grade Phosphate Ore Using Quaternary Ammonium Salt as a Collector and Its Adsorption Mechanism. Green Smart Min. Eng. 2024, 1, 322–335. [Google Scholar] [CrossRef]
- El-bahi, A.; Taha, Y.; Ait-Khouia, Y.; Elghali, A.; Benzaazoua, M. Enhancing Sustainability in Phosphate Ore Processing: Performance of Frying Oil as Alternative Flotation Collector for Carbonate Removal. Int. J. Min. Sci. Technol. 2024, 34, 557–571. [Google Scholar] [CrossRef]
- Ding, Z.; Li, J.; Bi, Y.; Yu, P.; Dai, H.; Wen, S.; Bai, S. The Adsorption Mechanism of Synergic Reagents and Its Effect on Apatite Flotation in Oleamide-Sodium Dodecyl Benzene Sulfonate (SDBS) System. Miner. Eng. 2021, 170, 107070. [Google Scholar] [CrossRef]
- Wang, X. Surface Wettability Regulation of Minerals in Flotation of Calcium-Magnesium Phosphate Ore. Ph.D. Thesis, Guizhou University, Guiyang, China, 2022. [Google Scholar]
- Budemberg, G.; Jolsterå, R.; Chelgani, S.C. Eco-Friendly Collectors in Apatite Froth Flotation: A Review. Int. J. Min. Sci. Technol. 2025, 35, 539–551. [Google Scholar] [CrossRef]
- Lan, S.; Dong, L.; Shen, P.; Zheng, Q.; Qiao, L.; Liu, D. Synergistic Impact of Surfactant and Sodium Oleate on Dolomite Removal from Fluorapatite via Reverse Flotation. Appl. Surf. Sci. 2024, 655, 159504. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Chai, Y.; Zhang, Q. Crystal Properties and Interaction with Flotation Reagent of Fluorapatite and Dolomite. Miner. Eng. 2023, 201, 108204. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Chen, J.; Xie, J.; Xie, F.; Li, L. Electronic Properties and Amine Collectors Effect of Fluorapatite and Quartz Surface. J. Guizhou Univ. 2017, 34, 21–28. [Google Scholar]
- Dederichs, T.; Möller, M.; Weichold, O. Colloidal Stability of Hydrophobic Nanoparticles in Ionic Surfactant Solutions: Definition of the Critical Dispersion Concentration. Langmuir 2009, 25, 2007–2012. [Google Scholar] [CrossRef] [PubMed]
- Veeramanoharan, A.; Kim, S.-C. A Comprehensive Review on Sustainable Surfactants from CNSL: Chemistry, Key Applications and Research Perspectives. RSC Adv. 2024, 14, 25429–25471. [Google Scholar] [CrossRef]
- Zhang, W.; Tu, R.; Ren, Q.; Liu, S.; Guo, Z.; Liu, P.; Tian, M. The Selective Flotation Separation of Apatite from Dolomite and Calcite Utilizing a Combination of 2-Chloro-9-Octadecenoic Acid Collector and Sodium Pyrophosphate Depressant. Sep. Purif. Technol. 2025, 353, 128446. [Google Scholar] [CrossRef]
- Abdel-Halim, M.M.; Fan, R.; Khalek, M.A.A.; Zheng, R.; Xu, S.; Gao, Z. Apatite–Calcite Flotation Separation Using Sodium N-Lauroylsarcosinate as a Selective Collector. Minerals 2023, 13, 970. [Google Scholar] [CrossRef]
- Ruan, Y.; Deng, B.; He, D.; Chi, R. Synergetic Effect of Cottonseed Fatty Acid Salt and Nonionic Surfactant NP-4 in the Froth Flotation of Siliceous-Calcareous Phosphate Rock. Colloids Surf. A Physicochem. Eng. Asp. 2021, 622, 126650. [Google Scholar] [CrossRef]
- Wang, L.; Tian, M.; Khoso, S.A.; Hu, Y.; Sun, W.; Gao, Z. Improved Flotation Separation of Apatite from Calcite with Benzohydroxamic Acid Collector. Miner. Process. Extr. Metall. Rev. 2019, 40, 427–436. [Google Scholar] [CrossRef]
- Liu, W.; Liu, W.; Wang, B.; Duan, H.; Peng, X.; Chen, X.; Zhao, Q. Novel Hydroxy Polyamine Surfactant N-(2-Hydroxyethyl)-N-Dodecyl-Ethanediamine: Its Synthesis and Flotation Performance Study to Quartz. Miner. Eng. 2019, 142, 105894. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, P.; Liu, W.; Liu, W.; Guo, Y.; Tong, K.; Chen, X. Novel Hydroxyl-Containing Quaternary Ammonium Salt N-(2-Hydroxyethyl)-N, N-Dimethyl-3-[(1-Oxododecyl)Amino]-1-Propanaminium: Its Synthesis and Flotation Performance to Quartz. Minerals 2023, 13, 702. [Google Scholar] [CrossRef]
- Farid, Z.; Assimeddine, M.; Abdennouri, M.; Barka, N.; Sadiq, M. Lecithin as an Ecofriendly Amphoteric Collector Foaming Agent for the Reverse Flotation of Phosphate Ore. Chem. Eng. Res. Des. 2023, 200, 292–302. [Google Scholar] [CrossRef]
- Li, J.; Nie, G.; Li, J.; Zhu, Z.; Wang, Z. Flotation Separation of Quartz and Dolomite from Collophane Using Sodium N-Dodecyl-β-Amino Propionate and Its Adsorption Mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128586. [Google Scholar] [CrossRef]
- Filippov, L.O.; Filippova, I.V.; Ardian, R.; Fornasiero, D. Ethoxylated Alcohols as Co-Collectors in Apatite, Calcite and Dolomite Flotation. Miner. Eng. 2025, 224, 109173. [Google Scholar] [CrossRef]
- Severov, V.V.; Filippova, I.V.; Filippov, L.O. Use of Fatty Acids with an Ethoxylated Alcohol for Apatite Flotation from Old Fine-Grained Tailings. Miner. Eng. 2022, 188, 107832. [Google Scholar] [CrossRef]
- Isah, A.; Arif, M.; Hassan, A.; Mahmoud, M.; Iglauer, S. Fluid–Rock Interactions and Its Implications on EOR: Critical Analysis, Experimental Techniques and Knowledge Gaps. Energy Rep. 2022, 8, 6355–6395. [Google Scholar] [CrossRef]
- Aarab, I.; Derqaoui, M.; Abidi, A.; Yaacoubi, A.; El Amari, K.; Etahiri, A.; Baçaoui, A. Direct Flotation of Low-Grade Moroccan Phosphate Ores: A Preliminary Micro-Flotation Study to Develop New Beneficiation Routes. Arab. J. Geosci. 2020, 13, 1252. [Google Scholar] [CrossRef]
- Gong, W.Q.; Parentich, A.; Little, L.H.; Warren, L.J. Adsorption of Oleate on Apatite Studied by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. Langmuir 1992, 8, 118–124. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Ke, B.; Mao, S. Density Functional Theory of Molecular Structure and Properties of Fatty Acid Collectors. Multipurp. Util. Miner. Resour. 2024, 45, 167–173. [Google Scholar] [CrossRef]
- Kang, Y.; Zhang, Q. The Flotation Separation of Apatite from Dolomite Using a Fatty Acid-Based Collector and the Mechanisms of Adsorption. Surf. Interface Anal. 2023, 55, 138–150. [Google Scholar] [CrossRef]
- Fuerstenau, M.C. Chapter 8—Flotation. In Principles of Mineral Processing; Society for Mining, Metallurgy, and Exploration, Inc.: Littleton, CO, USA, 2003; p. 252. ISBN 978-0-87335-167-6. [Google Scholar]
- Cook, B.K.; Gibson, C.E. A Review of Fatty Acid Collectors: Implications for Spodumene Flotation. Minerals 2023, 13, 212. [Google Scholar] [CrossRef]
- Houot, R. Beneficiation of Phosphatic Ores through Flotation: Review of Industrial Applications and Potential Developments. Int. J. Miner. Process. 1982, 9, 353–384. [Google Scholar] [CrossRef]
- de Lima, F.V.; Budemberg, G.; Cruz, S.H.; Braga, A.S. A Collector Promoter for Apatite Flotation in the Serra Do Salitre Complex. Minerals 2023, 13, 599. [Google Scholar] [CrossRef]
- Sis, H.; Chander, S. Improving Froth Characteristics and Flotation Recovery of Phosphate Ores with Nonionic Surfactants. Miner. Eng. 2003, 16, 587–595. [Google Scholar] [CrossRef]
- Giesekke, E.W.; Harris, P.J. The Role of Polyoxyethylene Alkyl Ethers in Apatite Flotation at Foskor, Phalaborwa (South Africa). Miner. Eng. 1994, 7, 1345–1361. [Google Scholar] [CrossRef]
- Cao, Q.; Cheng, J.; Wen, S.; Li, C.; Liu, J. Synergistic Effect of Dodecyl Sulfonate on Apatite Flotation with Fatty Acid Collector. Sep. Sci. Technol. 2016, 51, 1389–1396. [Google Scholar] [CrossRef]
- Du, W.; Li, X.; Zhang, Q. DFT Study of Coadsorption of Fatty Acid and Kerosene on Fluorapatite (001) Surface. Physicochem. Probl. Miner. Process. 2023, 59, 161890. [Google Scholar] [CrossRef]
- Yu, H.; Zhu, Y.; Lu, L.; Hu, X.; Li, S. Removal of Dolomite and Potassium Feldspar from Apatite Using Simultaneous Flotation with a Mixed Cationic-Anionic Collector. Int. J. Min. Sci. Technol. 2023, 33, 783–791. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Li, W.; Yan, X.; Zhang, H. Intensification of Interfacial Adsorption of Dodecylamine onto Quartz by Ultrasonic Method. Sep. Purif. Technol. 2019, 227, 115701. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, S.; Ren, Q.; Tu, R.; Qiu, F.; Xu, S.; Sun, W.; Tian, M. Proposing a Novel Factor Influencing Flotation Collector Abilities to Collect Minerals by Comparing Two Cationic Collectors N,N-Bis(2-Hydroxy-3-Chloropropyl) Dodecylamine and Dodecylamine. Appl. Surf. Sci. 2023, 640, 158284. [Google Scholar] [CrossRef]
- Novich, B.E.; Ring, T.A. Predictive Model for The Alkylamine-Quartz Flotation System. Langmuir 1985, 1, 701–708. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Z.; Tian, H.; Liu, J.; Guo, Z.; Liu, P.; Tian, M.; Xie, L. Experimental Evidence Supporting Distinct Adsorption Configurations of N,N-Bis(2-hydroxy-3-Chloropropyl) Dodecylamine and Dodecylamine on Apatite Surfaces: Quartz Crystal Microbalance and Atomic Force Microscopy Studies. Surf. Interfaces 2024, 51, 104681. [Google Scholar] [CrossRef]
- Luo, B.; Zhu, Y.; Sun, C.; Li, Y.; Han, Y. Flotation and Adsorption of a New Collector α-Bromodecanoic Acid on Quartz Surface. Miner. Eng. 2015, 77, 86–92. [Google Scholar] [CrossRef]
- Sun, H.; Yang, B.; Zhu, Z.; Yin, W.; Sheng, Q.; Hou, Y.; Yao, J. New Insights into Selective-Depression Mechanism of Novel Depressant EDTMPS on Magnesite and Quartz Surfaces: Adsorption Mechanism, DFT Calculations, and Adsorption Model. Miner. Eng. 2021, 160, 106660. [Google Scholar] [CrossRef]
- Liang, Q.; Xu, W.; Mei, G.; Tian, Y.; Guo, C.; Pan, W. Synthesis of a Photosensitive Quaternary Ammonium Collector and Its Flotation Performance and Mechanism for Quartz. Colloids Surf. A Physicochem. Eng. Asp. 2023, 661, 130936. [Google Scholar] [CrossRef]
- Rath, S.S.; Sahoo, H.; Das, B.; Mishra, B.K. Density Functional Calculations of Amines on the (101) Face of Quartz. Miner. Eng. 2014, 69, 57–64. [Google Scholar] [CrossRef]
- Zhang, W.; Ren, Q.; Tu, R.; Liu, S.; Qiu, F.; Guo, Z.; Liu, P.; Xu, S.; Sun, W.; Tian, M. The Application of a Novel Amine Collector, 1-(Dodecylamino)-2-Propanol, in the Reverse Flotation Separation of Apatite and Quartz. J. Mol. Liq. 2024, 399, 124377. [Google Scholar] [CrossRef]
- Shao, X.; Jiang, C.L.; Parekh, B.K. Enhanced Flotation Separation of Phosphate and Dolomite Using a New Amphoteric Collector. Min. Metall. Explor. 1998, 15, 11–14. [Google Scholar] [CrossRef]
- Somasundaran, P.; Zhang, L. Adsorption of Surfactants on Minerals for Wettability Control in Improved Oil Recovery Processes. J. Pet. Sci. Eng. 2006, 52, 198–212. [Google Scholar] [CrossRef]
- Pugh, R.J. The Role of the Solution Chemistry of Dodecylamine and Oleic Acid Collectors in the Flotation of Fluorite. Colloids Surf. 1986, 18, 19–41. [Google Scholar] [CrossRef]
- Rao, C.Y.V. Magnetically Coupled Sealless Pumps. Chem. Eng. World 1997, 32, 67–69. [Google Scholar]
- Filippov, L.O.; Filippova, I.V.; Lafhaj, Z.; Fornasiero, D. The Role of a Fatty Alcohol in Improving Calcium Minerals Flotation with Oleate. Colloids Surf. A Physicochem. Eng. Asp. 2019, 560, 410–417. [Google Scholar] [CrossRef]
- Liu, S.; Han, B.; Zhao, T. The Effect of Various Surfactants on Fatty Acid for Apatite Flotation and Their Adsorption Mechanizm. Physicochem. Probl. Miner. Process. 2021, 57, 46–56. [Google Scholar]
- Pawliszak, P.; Beheshti, A.; Møller, A.; Blencowe, A.; Beattie, D.A.; Krasowska, M. Increasing Surface Hydrophilicity with Biopolymers: A Combined Single Bubble Collision, QCM-D and AFM Study. J. Colloid Interface Sci. 2024, 667, 393–402. [Google Scholar] [CrossRef]
- Yu, L.; Yu, P.; Bai, S. A Critical Review on the Flotation Reagents for Phosphate Ore Beneficiation. Minerals 2024, 14, 828. [Google Scholar] [CrossRef]
- Liu, X.; Ruan, Y.; Li, C.; Cheng, R. Effect and Mechanism of Phosphoric Acid in the Apatite/Dolomite Flotation System. Int. J. Miner. Process. 2017, 167, 95–102. [Google Scholar] [CrossRef]
- Al-Fariss, T.F.; Arafat, Y.; Abd El-Aleem, F.A.; El-Midany, A.A. Investigating Sodium Sulphate as a Phosphate Depressant in Acidic Media. Sep. Purif. Technol. 2014, 124, 163–169. [Google Scholar] [CrossRef]
- Oulkhir, A.; Lyamlouli, K.; Oussfan, A.; Orange, F.; Etahiri, A.; Benhida, R. Efficient Flotation Separation Approach of Apatite from Calcite for Phosphate Up-Grading Using Phosphorylated Starch Macromolecules as a Selective Depressant. Carbohydr. Polym. 2025, 348, 122878. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Feng, B.; Zhang, W.; Guo, W. Study of the Effect and Mechanism of Environmentally Friendly Depressant Tragacanth Gum on Scheelite and Apatite Separation. Process Saf. Environ. Prot. 2025, 196, 106913. [Google Scholar] [CrossRef]
- Jing, L.; Xu, L.; Xue, K.; Wang, D.; Ma, Z.; Meng, J.; Shi, X.; Liu, C. Selective Depression by Using Environment-Friendly Depressant Pectin in Apatite and Dolomite Flotation System. Miner. Eng. 2023, 203, 108373. [Google Scholar] [CrossRef]
- Zhong, C.; Feng, B.; Zhang, L.; Zhang, W.; Wang, H.; Gao, Z. Flotation Separation of Apatite and Calcite Using Gum Arabic as a Depressant. Colloids Surf. A Physicochem. Eng. Asp. 2022, 632, 127723. [Google Scholar] [CrossRef]
- Wang, T.; Feng, B.; Guo, Y.; Zhang, W.; Rao, Y.; Zhong, C.; Zhang, L.; Cheng, C.; Wang, H.; Luo, X. The Flotation Separation Behavior of Apatite from Calcite Using Carboxymethyl Chitosan as Depressant. Miner. Eng. 2020, 159, 106635. [Google Scholar] [CrossRef]
- Jing, L.; Xue, K.; Tian, J.; Zhang, X.; Wang, D.; Guo, W.; Ma, Z.; Xu, L. Separation Mechanism of Apatite and Dolomite with Flotation Depressant Konjac Glucomannan. Miner. Eng. 2024, 216, 108844. [Google Scholar] [CrossRef]
- Wang, Y.; Ahmed Khoso, S.; Luo, X.; Tian, M. Understanding the Depression Mechanism of Citric Acid in Sodium Oleate Flotation of Ca2+-Activated Quartz: Experimental and DFT Study. Miner. Eng. 2019, 140, 105878. [Google Scholar] [CrossRef]
- Dho, H.; Iwasaki, I. Role of Sodium Silicate in Phosphate Flotation. Min. Metall. Explor. 1990, 7, 215–221. [Google Scholar] [CrossRef]
- Zheng, X.; Arps, P.J.; Smith, R.W. Adhesion of Two Bacteria onto Dolomite and Apatite: Their Effect on Dolomite Depression in Anionic Flotation. Int. J. Miner. Process. 2001, 62, 159–172. [Google Scholar] [CrossRef]
- Somasundaran, P.; Wang, D. Solution Chemistry: Minerals and Reagents, 1st ed.; Developments in Mineral Processing; Elsevier: Amsterdam, The Netherlands, 2006; Volume 17, ISBN 978-0-444-52059-3. [Google Scholar]
- Prasad, M.; Majumder, A.K.; Rao, T.C. Reverse Flotation of Sedimentary Calcareous/Dolomitic Rock Phosphate Ore—An Overview. Min. Metall. Explor. 2000, 17, 49–55. [Google Scholar] [CrossRef]
- Filippov, L.O.; Filippova, I.V.; Kaba, O.B.; Fornasiero, D. In-Situ Study of the Kinetics of Phosphoric Acid Interaction with Calcite and Fluorapatite by Raman Spectroscopy and Flotation. Miner. Eng. 2021, 162, 106729. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, J.; Liu, R.; Liu, C.; Liu, L.; Li, R.; Zhang, H.; Pang, J.; Liu, D. Application of Waste Acid from Phosphogysum Dam as an Eco-Friendly Depressant in Collophane Flotation. J. Clean. Prod. 2020, 267, 122184. [Google Scholar] [CrossRef]
- Liu, X.; Li, C.; Luo, H.; Cheng, R.; Liu, F. Selective Reverse Flotation of Apatite from Dolomite in Collophanite Ore Using Saponified Gutter Oil Fatty Acid as a Collector. Int. J. Miner. Process. 2017, 165, 20–27. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, Q.; Zhang, G.; Liu, D.; Liu, R. Effect of Sodium Pyrophosphate on the Reverse Flotation of Dolomite from Apatite. Minerals 2018, 8, 278. [Google Scholar] [CrossRef]
- Elgillani, D.A.; Abouzeid, A.-Z.M. Flotation of Carbonates from Phosphate Ores in Acidic Media. Int. J. Miner. Process. 1993, 38, 235–256. [Google Scholar] [CrossRef]
- Nagaraj, D.R.; Rothenberg, A.S.; Lipp, D.W.; Panzer, H.P. Low Molecular Weight Polyacrylamide-Based Polymers as Modifiers in Phosphate Beneficiation. Int. J. Miner. Process. 1987, 20, 291–308. [Google Scholar] [CrossRef]
- Wang, X.; Song, Q.; Xie, R.; Liu, J.; Zhu, Y. Selective Flotation Separation of Scheelite from Apatite by Application of ATMP as an Efficient Depressant. J. Mol. Liq. 2023, 378, 121604. [Google Scholar] [CrossRef]
- Zhang, P.; Snow, R. Evaluation of Phosphate Depressants in the Phosphate/Silica System. Min. Metall. Explor. 2009, 26, 101–104. [Google Scholar] [CrossRef]
- Chen, W.; Feng, Q.; Zhang, G.; Yang, Q.; Zhang, C. The Effect of Sodium Alginate on the Flotation Separation of Scheelite from Calcite and Fluorite. Miner. Eng. 2017, 113, 1–7. [Google Scholar] [CrossRef]
- Zhong, C.; Wang, H.; Feng, B.; Zhang, L.; Chen, Y.; Gao, Z. Flotation Separation of Scheelite and Apatite by Polysaccharide Depressant Xanthan Gum. Miner. Eng. 2021, 170, 107045. [Google Scholar] [CrossRef]
- Wang, L.; Lyu, W.; Li, F.; Liu, J.; Zhang, H. Discrepant Adsorption Behavior of Sodium Alginate onto Apatite and Calcite Surfaces: Implications for Their Selective Flotation Separation. Miner. Eng. 2022, 181, 107553. [Google Scholar] [CrossRef]
- McLean, R.J.C.; Beauchemin, D.; Clapham, L.; Beveridge, T.J. Metal-Binding Characteristics of the Gamma-Glutamyl Capsular Polymer of Bacillus Licheniformis ATCC 9945. Appl. Environ. Microbiol. 1990, 56, 3671–3677. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Nie, G.H.; Jiang, Y.; Luo, G.J.; Li, J. Selective Depression of Escherichia Coli on Flotation of Collophanite and Dolomite. Physicochem. Probl. Miner. Process. 2022, 58, 150604. [Google Scholar] [CrossRef]
- Rabia, H.; Ould Hamou, M.; Kasperkiewicz, K.; Brożek, J.; Augustyniak, M. Adhesion Abilities and Biosorption of Cd and Mg by Microorganisms—First Step for Eco-Friendly Beneficiation of Phosphate Ore. Sci. Rep. 2019, 9, 12929. [Google Scholar] [CrossRef] [PubMed]
- Qun, W.; Heiskanen, K. Batch Flotation Tests by Fatty Acid on a Phosphate-Iron Oxide-Silicate Regolith Ore Sample from Sokli, Finland. Miner. Eng. 1990, 3, 473–481. [Google Scholar] [CrossRef]
- Sayilgan, A.; Arol, A.I. Effect of Carbonate Alkalinity on Flotation Behavior of Quartz. Int. J. Miner. Process. 2004, 74, 233–238. [Google Scholar] [CrossRef]
- Wang, L.; Gao, H.; Song, S.; Zhou, W.; Xue, N.; Nie, Y.; Feng, B. The Depressing Role of Sodium Alginate in the Flotation of Ca2+-Activated Quartz Using Fatty Acid Collector. J. Mol. Liq. 2021, 343, 117618. [Google Scholar] [CrossRef]
- Dai, L.; Feng, B.; Zhang, L.; Chen, Y.; Bayoundoula, J. Selective Flotation Separation of Spodumene and Quartz with Carboxylated Chitosan as Depressant. Miner. Eng. 2023, 203, 108343. [Google Scholar] [CrossRef]
- Xiang, Z.; Feng, B.; Zhang, L.; Bayoundoula, J.; Wang, Z. The Role of Depressant Pectin in the Flotation Separation of Spodumene and Quartz. Miner. Eng. 2023, 203, 108320. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, L.; Hu, X.; Zhang, X.; Zheng, G. Flotation Separation of Quartz from Magnesite Using Carboxymethyl Cellulose as Depressant. Trans. Nonferrous Met. Soc. China 2022, 32, 1623–1637. [Google Scholar] [CrossRef]
- Sun, N.; Wang, G.; Ge, P.; Sun, W.; Xu, L.; Tang, H.; Wang, L. Selective Flotation of Quartz from Feldspar Using Hydroxypropyl Starch as Depressant. Miner. Eng. 2023, 195, 108022. [Google Scholar] [CrossRef]
- Sokolović, J.; Mišković, S. The Effect of Particle Size on Coal Flotation Kinetics: A Review. Physicochem. Probl. Miner. Process. 2018, 54, 1172–1190. [Google Scholar]
- Zhang, D.; Ma, F.; Tao, Y. Study on Effect of Nanobubble on Ultra-Fine Flake Graphite (UFG) Flotation. Part. Sci. Technol. 2023, 41, 1062–1070. [Google Scholar] [CrossRef]
- Yoon, R.-H. The Role of Hydrodynamic and Surface Forces in Bubble-Particle Interaction. Int. J. Miner. Process. 2000, 58, 129–143. [Google Scholar] [CrossRef]
- Dai, Z.; Fornasiero, D.; Ralston, J. Particle-Bubble Collision Models—A Review. Adv. Colloid Interface Sci. 2000, 85, 231–256. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, H.; Li, X.; Li, D.; Wang, W.; Liang, Y.; Yan, X.; Zhang, H. Effect of Energy Input on Flotation of Particles with Different Sizes: Perspective of Hydrodynamics Characteristics. J. Environ. Chem. Eng. 2023, 11, 111272. [Google Scholar] [CrossRef]
- Ye, J. Study on Interfacial Regulation of Fine Apatite Flotation. Ph.D. Thesis, Guizhou University, Guiyang, China, 2020. [Google Scholar]
- Yang, B.; Huang, P.; Song, S.; Luo, H.; Zhang, Y. Hydrophobic Agglomeration of Apatite Fines Induced by Sodium Oleate in Aqueous Solutions. Results Phys. 2018, 9, 970–977. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Q. Study of Oleic Acid-Induced Hydrophobic Agglomeration of Apatite Fines through Rheology. Miner. Eng. 2024, 218, 108911. [Google Scholar] [CrossRef]
- Basařová, P.; Hubička, M. The Collision Efficiency of Small Bubbles with Large Particles. Miner. Eng. 2014, 66, 230–233. [Google Scholar] [CrossRef]
- Cheng, G.; Shi, C.; Yan, X.; Zhang, Z.; Xu, H.; Lu, Y. A Study of Bubble-Particle Interactions in a Column Flotation Process. Physicochem. Probl. Miner. Process. 2017, 53, 17–33. [Google Scholar] [CrossRef]
- Ross, V.E. Flotation and Entrainment of Particles during Batch Flotation Tests. Miner. Eng. 1990, 3, 245–256. [Google Scholar] [CrossRef]
- Hoang, D.H.; Hassanzadeh, A.; Peuker, U.A.; Rudolph, M. Impact of Flotation Hydrodynamics on the Optimization of Fine-Grained Carbonaceous Sedimentary Apatite Ore Beneficiation. Powder Technol. 2019, 345, 223–233. [Google Scholar] [CrossRef]
- Waters, K.E.; Hadler, K.; Cilliers, J.J. The Flotation of Fine Particles Using Charged Microbubbles. Miner. Eng. 2008, 21, 918–923. [Google Scholar] [CrossRef]
- Santana, R.C.; Ribeiro, J.A.; Santos, M.A.; Reis, A.S.; Ataíde, C.H.; Barrozo, M.A.S. Flotation of Fine Apatitic Ore Using Microbubbles. Sep. Purif. Technol. 2012, 98, 402–409. [Google Scholar] [CrossRef]
- Li, C.; Wang, L. Improved Froth Zone and Collection Zone Recoveries of Fine Mineral Particles in a Flotation Column with Oscillatory Air Supply. Sep. Purif. Technol. 2018, 193, 311–316. [Google Scholar] [CrossRef]
- Song, S.; Zhang, X.; Yang, B.; Lopez-Mendoza, A. Flotation of Molybdenite Fines as Hydrophobic Agglomerates. Sep. Purif. Technol. 2012, 98, 451–455. [Google Scholar] [CrossRef]
- Santana, R.C.; Farnese, A.C.C.; Fortes, M.C.B.; Ataíde, C.H.; Barrozo, M.A.S. Influence of Particle Size and Reagent Dosage on the Performance of Apatite Flotation. Sep. Purif. Technol. 2008, 64, 8–15. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, H.; Xing, Y.; Cao, Y.; Gui, X. The Effect of Impeller Speeds on the Nanobubbles Flotation Efficiency of Ultrafine Coal Particles. Powder Technol. 2025, 449, 120431. [Google Scholar] [CrossRef]
- Zeng, M.; Li, K.; Huang, L.; Bao, S.; Liu, C.; Yang, S. Interaction Mechanism of Interfacial Nano-Micro Bubbles with Collec-tors and Its Effects on the Fine Apatite Flotation. Appl. Surf. Sci. 2025, 682, 161736. [Google Scholar] [CrossRef]
- Jung, M.U.; Kim, Y.C.; Bournival, G.; Ata, S. Industrial Application of Microbubble Generation Methods for Recovering Fine Particles through Froth Flotation: A Review of the State-of-the-Art and Perspectives. Adv. Colloid Interface Sci. 2023, 322, 103047. [Google Scholar] [CrossRef]
- Chen, Y.; Truong, V.N.T.; Bu, X.; Xie, G. A Review of Effects and Applications of Ultrasound in Mineral Flotation. Ultrason. Sonochem. 2020, 60, 104739. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.U.; Kim, Y.C.; Bournival, G.; Ata, S. An Acoustic Agglomeration Method for Segregation of Micro– to Nano–Bubbles for the Flotation of Ultrafine Particles. Sep. Purif. Technol. 2025, 361, 131290. [Google Scholar] [CrossRef]
- Gao, K.; Liu, H.; Sun, L.; Zhang, Z. Effect of Gas Input Conditions and Ultrasound on the Dynamic Behavior of Flotation Bubbles. ACS Omega 2022, 7, 22326–22340. [Google Scholar] [CrossRef] [PubMed]
Collector | Concentration | pH * | Angle (°) | Ref. | Year |
---|---|---|---|---|---|
NaOL | 5 × 10−4 mol/L | Natural | 96.7 | [31] | 2023 |
Mustard oil | 450 mg/L | Natural | 90 | [52] | 2024 |
Dodecylamine | 20 mg/L | 6.6 | 72.34 | [53] | 2025 |
Flaxseed oil | 100 mg/L | Natural | 86.8 | [26] | 2022 |
Nigella oil | 300 mg/L | Natural | 88.20 | [26] | 2022 |
TOFA-OAPEGE6 7:3 | 20 mg/L | 9.5 | 88.03 | [36] | 2025 |
HDMEA | 20 mg/L | Unknown | 70.39 | [54] | 2022 |
Reagents | Concentration | Presence | Absence | Ref. | Year |
---|---|---|---|---|---|
HOl | 7.5 mg/L | <3.0 | 4.0 | [81] | 1990 |
Oleic acid amide | 15 mg/L | <2 | 2.8 | [82] | 2017 |
Pataua oil | Unknown | 4 | 6.5 | [83] | 2019 |
LH-01 | 1 × 10−2 mol/L | 4.8 | 4.5 | [84] | 2024 |
Frying oil | 30 mg/L | <1 | 3.70 | [85] | 2024 |
SDBS | 1.33 × 10−1 mol/L | <3 | 3.08 | [86] | 2021 |
Oleamide | 2.67 × 10−4 mol/L | <3 | 3.08 | [86] | 2021 |
Mineral to Be Depressed | Depressant | Concentration | pH * | Ref. | Year |
---|---|---|---|---|---|
Apatite | H3PO4 | 80 mg/L | 7.6 | [135] | 2017 |
Sodium sulphate | 3000 g/t | 6.0 | [136] | 2014 | |
Phosphorylated starch | 800 g/t | 9.0 | [137] | 2025 | |
Tragacanth gum | 30 mg/L | 8.0 | [138] | 2025 | |
Carbonate minerals | Al starch | 10 mg/L | 9.0 | [27] | 2025 |
Pectin | 80 mg/L | 9.0 | [139] | 2023 | |
Gum Arabic | 75 mg/L | 9.0 | [140] | 2022 | |
Carboxymethyl chitosan | 10 mg/L | 9.0 | [141] | 2020 | |
Konjac glucomannan | 40 mg/L | 9.0 | [142] | 2024 | |
Silicate minerals | Citric acid | 1 × 10−3 mol/L | 12 | [143] | 2019 |
Sodium silicate | 500 g/t | 9.4 | [144] | 1990 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Li, L.; Li, Z.; Wang, M.; Liu, F.; Mi, H. Review of Interfacial Regulation of Apatite Flotation. Minerals 2025, 15, 558. https://doi.org/10.3390/min15060558
Liu Z, Li L, Li Z, Wang M, Liu F, Mi H. Review of Interfacial Regulation of Apatite Flotation. Minerals. 2025; 15(6):558. https://doi.org/10.3390/min15060558
Chicago/Turabian StyleLiu, Zhe, Lixia Li, Zhuguo Li, Meng Wang, Feifei Liu, and Hongcheng Mi. 2025. "Review of Interfacial Regulation of Apatite Flotation" Minerals 15, no. 6: 558. https://doi.org/10.3390/min15060558
APA StyleLiu, Z., Li, L., Li, Z., Wang, M., Liu, F., & Mi, H. (2025). Review of Interfacial Regulation of Apatite Flotation. Minerals, 15(6), 558. https://doi.org/10.3390/min15060558