Low-Temperature Thermochronology Records the Convergence between the Anatolide–Tauride Block and the Arabian Platform along the Southeast Anatolian Orogenic Belt
Abstract
1. Introduction
Geological Setting
2. Materials and Methods
3. Results
3.1. Zircon U-Pb Dating
3.2. Apatite Fission Track Dating
3.3. U-Th/He Dating
Sample Number | 4He (nmol) | Mass (μg) | a FT | U (ppm) | Th (ppm) | Sm (ppm) | Th/U | b eU (ppm) | Uncorr. Age (Ma) | Corr. Age (Ma) | ±1σ (Ma) | c ESR (μm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Apatite | ||||||||||||
FK-637-1 | 6.45 × 10−4 | 27.21 | 0.757 | 32.51 | 27.27 | 35.97 | 0.85 | 38.7 | 11.8 | 15.5 | 9.1 | 50.9 |
FK-637-3 | 9.28 × 10−4 | 33.38 | 0.745 | 33.25 | 8.09 | 29.94 | 0.25 | 34.9 | 15.2 | 20.4 | 3.7 | 55.6 |
FK-637-2 | 3.03 × 10−3 | 29.07 | 0.731 | 47.42 | 1.64 | 34.88 | 0.03 | 47.5 | 41.5 | 56.8 | 23.5 | 52.4 |
18.0 | 2.4 | |||||||||||
FK-638-1 | 1.28 × 10−3 | 15.55 | 0.68 | 115.61 | 0.49 | 44.02 | 0.00 | 114.9 | 13.6 | 19.9 | 31.0 | 44.2 |
FK-638-2 | 4.88 × 10−3 | 24.33 | 0.718 | 199.78 | 3.45 | 57.02 | 0.02 | 199.1 | 18.7 | 26.0 | 5.0 | 50.8 |
FK-638-3 | 4.71 × 10−4 | 12.48 | 0.66 | 63.81 | 21.43 | 51.33 | 0.34 | 68.4 | 10.7 | 16.2 | 1.3 | 41.4 |
21.1 | 4.9 | |||||||||||
FK-639B-1 | 3.86 × 10−4 | 19.00 | 0.696 | 29.68 | 12.85 | 34.77 | 0.44 | 32.5 | 12.3 | 17.7 | 3.2 | 46.1 |
FK-639B-2 | 3.98 × 10−4 | 6.18 | 0.571 | 146.75 | 1.12 | 46.71 | 0.01 | 145.9 | 8.5 | 14.9 | 25.3 | 31.5 |
FK-639B-3 | 2.60 × 10−3 | 13.11 | 0.653 | 255.40 | 11.65 | 46.88 | 0.05 | 256.3 | 14.4 | 22.1 | 2.6 | 40.0 |
19.9 | 2.2 | |||||||||||
FK-640-1 | 1.93 × 10−3 | 44.35 | 0.749 | 41.20 | 0.59 | 23.89 | 0.01 | 41.0 | 20.0 | 26.7 | 12.5 | 56.9 |
FK-640-2 | 6.07 × 10−4 | 13.61 | 0.647 | 50.74 | 59.83 | 31.61 | 1.19 | 64.4 | 13.4 | 20.7 | 11.6 | 39.3 |
FK-640-3 | 7.26 × 10−4 | 17.66 | 0.674 | 49.58 | 4.97 | 29.95 | 0.10 | 50.4 | 15.8 | 23.4 | 10.4 | 42.8 |
23.6 | 2.5 | |||||||||||
FK-641-1 | 8.27 × 10−4 | 17.23 | 0.685 | 85.18 | 2.61 | 41.64 | 0.03 | 85.2 | 10.7 | 15.6 | 5.3 | 45.0 |
FK-641-2 | 1.30 × 10−3 | 36.75 | 0.75 | 60.53 | 0.75 | 32.98 | 0.01 | 60.3 | 11.0 | 14.7 | 6.7 | 56.7 |
FK-641-3 | 3.53 × 10−4 | 19.12 | 0.687 | 33.78 | 13.95 | 27.66 | 0.42 | 36.8 | 9.8 | 14.3 | 1.3 | 44.6 |
14.9 | 0.5 | |||||||||||
SG-2-1 | 6.14 × 10−4 | 16.74 | 0.687 | 52.37 | 46.44 | 12.14 | 0.89 | 62.9 | 11.2 | 16.3 | 0.3 | 45.3 |
SG-2-2 | 5.66 × 10−5 | 27.23 | 0.719 | 5.12 | 6.36 | 3.78 | 1.25 | 6.6 | 7.6 | 10.5 | 0.6 | 50.3 |
SG-2-3 | 3.13 × 10−4 | 15.70 | 0.675 | 35.06 | 12.02 | 17.76 | 0.35 | 37.6 | 10.5 | 15.5 | 0.8 | 42.9 |
14.1 | 2.5 | |||||||||||
SG-3-1 | 3.50 × 10−5 | 9.38 | 0.626 | 19.78 | 28.33 | 4.23 | 1.44 | 26.3 | 3.1 | 5.0 | 0.3 | 37.4 |
SG-3-2 | 4.31 × 10−4 | 24.96 | 0.73 | 43.75 | 37.10 | 9.92 | 0.85 | 52.1 | 6.3 | 8.6 | 3.3 | 52.9 |
SG-3-3 | 9.47 × 10−5 | 13.66 | 0.646 | 46.66 | 12.51 | 7.53 | 0.27 | 49.2 | 2.8 | 4.3 | 1.0 | 39.1 |
SG-3-4 | 1.60 × 10−4 | 14.90 | 0.664 | 27.14 | 4.36 | 4.09 | 0.16 | 27.9 | 7.9 | 11.9 | 3.1 | 42.1 |
6.0 | 1.9 | |||||||||||
Zircon | ||||||||||||
FKZ-637-1 | 1.14 × 10−2 | 27.21 | 0.757 | 239.54 | 164.99 | 0.97 | 0.69 | 276.6 | 28.1 | 37.1 | 0.3 | 37.6 |
FKZ-637-2 | 1.05 × 10−2 | 29.07 | 0.731 | 228.76 | 44.40 | 0.72 | 0.20 | 237.5 | 28.1 | 38.4 | 0.9 | 37.5 |
FKZ-637-3 | 1.87 × 10−2 | 33.38 | 0.745 | 343.01 | 98.24 | 1.03 | 0.29 | 363.6 | 28.4 | 38.1 | 0.4 | 41.5 |
37.9 | 0.6 | |||||||||||
FKZ-638-1 | 1.23 × 10−2 | 15.55 | 0.68 | 697.61 | 66.31 | 2.34 | 0.10 | 708.1 | 20.7 | 30.4 | 0.6 | 31.8 |
FKZ-638-2 | 1.02 × 10−3 | 24.33 | 0.718 | 6.94 | 7.44 | 1.09 | 1.08 | 8.6 | 110.4 | 153.8 | 16.6 | 37.5 |
FKZ-640-1 | 1.38 × 10−2 | 44.35 | 0.749 | 250.81 | 17.98 | 0.37 | 0.07 | 253.2 | 22.7 | 30.4 | 0.6 | 60.8 |
FKZ-640-2 | 1.35 × 10−2 | 13.61 | 0.647 | 418.68 | 251.72 | 1.61 | 0.61 | 474.8 | 38.7 | 59.8 | 0.5 | 41.5 |
FKZ-640-3 | 1.16 × 10−3 | 17.66 | 0.674 | 12.61 | 10.21 | 4.17 | 0.82 | 14.9 | 95.9 | 142.3 | 13.2 | 44.9 |
45.1 | 14.7 | |||||||||||
FKZ-641-1 | 1.21 × 10−2 | 17.23 | 0.685 | 413.64 | 56.13 | 1.38 | 0.14 | 423.8 | 30.6 | 44.7 | 0.8 | 47.6 |
FKZ-641-2 | 5.82 × 10−2 | 36.75 | 0.75 | 956.96 | 26.67 | 0.55 | 0.03 | 956.2 | 30.5 | 40.7 | 1.8 | 54.9 |
42.7 | 2.0 | |||||||||||
SGZ-1-1 | 6.08 × 10−2 | 18.84 | 0.751 | 1519.39 | 158.67 | 0.68 | 0.11 | 1545.6 | 38.4 | 51.2 | 0.7 | 45.7 |
SGZ-1-2 | 6.08 × 10−2 | 17.11 | 0.738 | 1039.36 | 216.72 | 1.09 | 0.21 | 1082.7 | 60.3 | 81.7 | 1.0 | 43.1 |
SGZ-1-3 | 6.08 × 10−2 | 9.70 | 0.695 | 764.81 | 128.30 | 2.41 | 0.17 | 789.4 | 145.3 | 209.1 | 6.5 | 36.8 |
66.5 | 15.3 | |||||||||||
SGZ-2-1 | 6.08 × 10−2 | 53.02 | 0.821 | 615.98 | 98.11 | 0.45 | 0.16 | 634.5 | 33.3 | 40.5 | 0.4 | 64.4 |
SGZ-2-3 | 3.32 × 10−2 | 16.44 | 0.731 | 988.08 | 610.67 | 1.74 | 0.62 | 1124.4 | 33.1 | 45.3 | 0.4 | 36.2 |
SGZ-2-2 | 6.08 × 10−2 | 11.02 | 0.692 | 1922.78 | 1047.15 | 2.87 | 0.55 | 2154.8 | 47.1 | 68.1 | 0.5 | 41.8 |
42.9 | 2.4 | |||||||||||
SGZ-3-1 | −5.63 × 10−6 | 5.54 | 0.639 | 9.02 | 24.25 | 5.23 | 2.73 | 14.6 | −2.6 | −4.1 | −1.7 | 30.6 |
SGZ-3-2 | 2.41 × 10−2 | 14.69 | 0.732 | 1258.40 | 100.58 | 2.33 | 0.08 | 1272.8 | 23.8 | 32.5 | 0.7 | 42.2 |
3.4. Thermal History Modeling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oberhänsli, R.; Bousquet, R.; Candan, O.; Okay, A. Dating Subduction Events in East Anatolia, Turkey. Turk. J. Earth Sci. 2012, 21, 1–17. [Google Scholar]
- Oberhänsli, R.; Candan, O.; Bousquet, R.; Rimmele, G.; Okay, A.; Goff, J. Alpine high pressure evolution of the eastern Bitlis complex, SE Turkey. In Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform; Sosson, M., Kaymakci, N., Stephenson, R.A., Bergerat, F., Starostenko, V., Eds.; Special Publications; Geological Society: London, UK, 2010; Volume 340, pp. 461–483. [Google Scholar]
- Robertson, A.H.F.; Parlak, O.; Taslı, K. Testing alternative tectonic models for the Permian-Pleistocene tectonic development of the Kyrenia Range, N Cyprus: Implications for E Mediterranean Tethyan palaeogeography. Gondwana Res. 2024, 132, 343–379. [Google Scholar] [CrossRef]
- Robertson, A.H.F.; Parlak, O.; Ustaomer, T. Overview of the Palaeozoic-neogene evolution of neotethys in the Eastern Mediterranean region (Southern Turkey, Cyprus, Syria). Pet. Geosci. 2012, 18, 381–404. [Google Scholar] [CrossRef]
- Garfunkel, Z. Neotethyan ophiolites: Formation and obduction within the life cycle of the host basins. In Tectonic Development of the Eastern Mediterranean Region; Robertson, A.H.F., Mountrakis, D., Eds.; Special Publications; Geological Society: London, UK, 2006; Volume 260, pp. 301–326. [Google Scholar]
- Garfunkel, Z. Origin of the Eastern Mediterranean basin: A reevaluation. Tectonophysics 2004, 391, 11–34. [Google Scholar] [CrossRef]
- Okay, A.I.; Zattin, M.; Cavazza, W. Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology 2010, 38, 35–38. [Google Scholar] [CrossRef]
- Parlak, O.; Rizaoglu, T.; Bagci, U.; Karaoglan, F.; Hock, V. Tectonic significance of the geochemistry and petrology of ophiolites in southeast Anatolia, Turkey. Tectonophysics 2009, 473, 173–187. [Google Scholar] [CrossRef]
- Allen, M.B.; Armstrong, H.A. Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 265, 52–58. [Google Scholar] [CrossRef]
- Yılmaz, Y. Southeast Anatolian Orogenic Belt revisited (geology and evolution). Can. J. Earth Sci. 2019, 56, 1163–1180. [Google Scholar] [CrossRef]
- Karaoğlan, F.; Parlak, O.; Hejl, E.; Neubauer, F.; Klötzli, U. The temporal evolution of the active margin along the Southeast Anatolian Orogenic Belt (SE Turkey): Evidence from U–Pb, Ar–Ar and fission track chronology. Gondwana Res. 2016, 33, 190–208. [Google Scholar] [CrossRef]
- Yılmaz, Y.; Yiğitbaş, E.; Çemen, İ. Tectonics of the Southeast Anatolian Orogenic Belt. In Compressional Tectonics; John Wiley & Sons: Hoboken, NJ, USA, 2023; pp. 203–222. [Google Scholar]
- Rolland, Y.; Perincek, D.; Kaymakci, N.; Sosson, M.; Barrier, E.; Avagyan, A. Evidence for ∼80–75Ma subduction jump during Anatolide–Tauride–Armenian block accretion and ∼48 Ma Arabia–Eurasia collision in Lesser Caucasus–East Anatolia. J. Geodyn. 2012, 56–57, 76–85. [Google Scholar] [CrossRef]
- Oberhänsli, R.; Koralay, E.; Candan, O.; Pourteau, A.; Bousquet, R. Late Cretaceous eclogitic high-pressure relics in the Bitlis Massif. Geodin. Acta 2014, 26, 175–190. [Google Scholar] [CrossRef]
- Cavazza, W.; Cattò, S.; Zattin, M.; Okay, A.I.; Reiners, P. Thermochronology of the Miocene Arabia-Eurasia collision zone of southeastern Turkey. Geosphere 2018, 14, 2277–2293. [Google Scholar] [CrossRef]
- Karaoğlan, F.; Parlak, O.; Robertson, A.; Thöni, M.; Klötzli, U.; Koller, F.; Okay, A.İ. Evidence of Eocene high-temperature/high-pressure metamorphism of ophiolitic rocks and granitoid intrusion related to Neotethyan subduction processes (Doğanşehir area, SE Anatolia). In Geological Development of Anatolia and the Easternmost Mediterranean Region; Robertson, A.H.F., Parlak, O., Ünlügenç, U.C., Eds.; Special Publications; Geological Society: London, UK, 2013; Volume 372, pp. 249–272. [Google Scholar]
- Aktaş, G.; Robertson, A.H.F. The Maden Complex, SE Turkey: Evolution of a Neotethyan active margin. In The Geological Evolution of the Eastern Mediterranean; Dixon, J.E., Robertson, A.H.F., Fleet, A.J., Eds.; Special Publications; Geological Society: London, UK, 1984; Volume 17, pp. 375–402. [Google Scholar]
- Yılmaz, Y. New Evidence and Model on the Evolution of the Southeast Anatolian Orogen. Geol. Soc. Am. Bull. 1993, 105, 251–271. [Google Scholar] [CrossRef]
- Yiğitbaş, E.; Yılmaz, Y. New evidence and solution to the Maden complex controversy of the Southeast Anatolian orogenic belt (Turkey). Geol. Rundsch. 1996, 85, 250–263. [Google Scholar] [CrossRef]
- Bialik, O.M.; Frank, M.; Betzler, C.; Zammit, R.; Waldmann, N.D. Two-step closure of the Miocene Indian Ocean Gateway to the Mediterranean. Sci. Rep. 2019, 9, 8842. [Google Scholar] [CrossRef] [PubMed]
- Harzhauser, M.; Kroh, A.; Mandic, O.; Piller, W.E.; Gohlich, U.; Reuter, M.; Berning, B. Biogeographic responses to geodynamics: A key study all around the Oligo-Miocene Tethyan Seaway. Zool. Anz. 2007, 246, 241–256. [Google Scholar] [CrossRef]
- Hüsing, S.K.; Zachariasse, W.-J.; van Hinsbergen, D.J.J.; Krijgsman, W.; Inceöz, M.; Harzhauser, M.; Mandic, O.; Kroh, A. Oligocene–Miocene basin evolution in SE Anatolia, Turkey: Constraints on the closure of the eastern Tethys gateway. In Collision and Collapse at the Africa-Arabia-Eurasia Subduction Zone; Van Hinsbergen, D.J.J., Edwards, M.A., Govers, R., Eds.; Special Publications; Geological Society: London, UK, 2009; Volume 311, pp. 107–132. [Google Scholar]
- Şengör, A.M.C.; Özeren, M.S.; Keskin, M.; Sakinç, M.; Özbakır, A.D.; Kayan, İ. Eastern Turkish high plateau as a small Turkic-type orogen: Implications for post-collisional crust-forming processes in Turkic-type orogens. Earth-Sci. Rev. 2008, 90, 1–48. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Yılmaz, Y. Tethyan Evolution of Turkey—A Plate Tectonic Approach. Tectonophysics 1981, 75, 181–241. [Google Scholar] [CrossRef]
- Topak, Y. Growth of the imbrication zone along the southeast Anatolian orogenic belt: Evidence from fission track thermochronology from Gölbaşı region (SE Turkey). Turk. J. Earth Sci. 2022, 31, 178–192. [Google Scholar] [CrossRef]
- Gülyüz, E.; Durak, H.; Özkaptan, M.; Krijgsman, W. Paleomagnetic constraints on the early Miocene closure of the southern Neo-Tethys (Van region; East Anatolia): Inferences for the timing of Eurasia-Arabia collision. Glob. Planet. Chang. 2020, 185, 103089. [Google Scholar] [CrossRef]
- Bozkurt, E. Neotectonics of Turkey—A synthesis. Geodin. Acta 2001, 14, 3–30. [Google Scholar] [CrossRef]
- Elitok, Ö.; Dolmaz, M.N. Tectonic Escape Mechanism in the Crustal Evolution of Eastern Anatolian Region (Turkey). In New Frontiers in Tectonic Research—At the Midst of Plate Convergence; Schattner, U., Ed.; IntechOpen: Rijeka, Croatia, 2011; Chapter 11. [Google Scholar]
- Koç, A.; Kaymakçı, N. Kinematics of Surgu Fault Zone (Malatya, Turkey): A remote sensing study. J. Geodyn. 2013, 65, 292–307. [Google Scholar] [CrossRef]
- Westaway, R.; Arger, J. Kinematics of the Malatya-Ovacik fault zone. Geodin. Acta 2001, 14, 103–131. [Google Scholar] [CrossRef]
- Westaway, R.; Demir, T.; Seyrek, A. Geometry of the Turkey-Arabia and Africa-Arabia plate boundaries in the latest Miocene to Mid-Pliocene: The role of the Malatya-Ovacık Fault Zone in eastern Turkey. eEarth 2008, 3, 27–35. [Google Scholar] [CrossRef]
- Westaway, R.; Demir, T.; Seyrek, A.; Beck, A. Kinematics of active left-lateral faulting in SE Turkey from offset Pleistocene river gorges: Improved constraint on the rate and history of relative motion between the Turkish and Arabian plates. J. Geol. Soc. Lond. 2006, 163, 149–164. [Google Scholar] [CrossRef]
- Kaymakci, N.; Inceöz, M.; Ertepinar, P.; Koç, A. Late Cretaceous to Recent kinematics of SE Anatolia (Turkey); Special Publications; Geological Society: London, UK, 2010; Volume 340, pp. 409–435. [Google Scholar] [CrossRef]
- Whitney, D.L.; Delph, J.R.; Thomson, S.N.; Beck, S.L.; Brocard, G.Y.; Cosca, M.A.; Darin, M.H.; Kaymakcı, N.; Meijers, M.J.M.; Okay, A.I.; et al. Breaking plates: Creation of the East Anatolian fault, the Anatolian plate, and a tectonic escape system. Geology 2023, 51, 673–677. [Google Scholar] [CrossRef]
- Emre, Ö.; Duman, T.Y.; Özalp, S.; Saroglu, F.; Olgun, S.; Elmaci, H.; Çan, T. Active fault database of Turkey. Bull. Earthq. Eng. 2018, 16, 3229–3275. [Google Scholar] [CrossRef]
- Hisarlı, Z.M.; Çinku, M.; Ustaömer, T.; Keskin, M.; Orbay, N. Neotectonic deformation in the Eurasia–Arabia collision zone, the East Anatolian Plateau, E Turkey: Evidence from palaeomagnetic study of Neogene–Quaternary volcanic rocks. Int. J. Earth Sci. 2015, 1–27. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Dai, J.; Xu, G.; Hou, Y.; Li, X. Propagation of the deformation and growth of the Tibetan–Himalayan orogen: A review. Earth-Sci. Rev. 2015, 143, 36–61. [Google Scholar] [CrossRef]
- Yılmaz, Y.; Yiğitbaş, E.; Çemen, İ. Tectonics of the Southeast Anatolian Orogenic Belt. Earth Space Sci. Open Arch. 2022, 1–40. [Google Scholar] [CrossRef]
- Hozatlıoğlu, D.; Bozkaya, Ö.; Yalçın, H. Göksun, Afşin ve Ekinözü (Kahramanmaraş, Türkiye) Metamorfitlerindeki Fillosilikatların Jeokimyasal Özellikleri. Türkiye Jeoloji Bülteni 2020, 64, 41–74. [Google Scholar] [CrossRef]
- Yılmaz, A.; Bedi, Y.; Uysal, Ş.; Yusufoğlu, H.; Atabey, E.; ve Aydın, N. Doğu Toroslar’da Uzunyayla ile Beritdağı Arasının jeolojik yapısı. TPJD Bülteni 1993, 5, 69–87. [Google Scholar]
- Bedi, Y.; Yusufoğlu, H.; Beyazpirinç, M.; Özkan, M.K.; Usta, D.; Yıldız, H. Doğu Toroslar’ın Jeodinamik Evrimi (Afşin-Elbistan-Goksun-Sariz Dolayı) [Geodynaic Evolution of Eattern Taurides (Afşin-Elbitan-Göksun-Sarız)]; 11150; Maden Tetkik Ve Arama Genel Müdürlüğü: Ankara, Turkey, 2009; p. 388. [Google Scholar]
- Hozatlıoğlu, D.; Bozkaya, Ö.; Yalçın, H.; Yılmaz, H. Mineralogical characteristics of metamorphic massif units outcropping in Göksun, Afşin and Ekinözü (Kahramanmaraş) region. Bull. Miner. Res. Explor. 2019, 1–10. [Google Scholar] [CrossRef]
- Bilgiç, T. Turkey Geological Map, Sheet Sivas: Ankara, Turkey: Maden Tetkik ve Arama Genel Müdürlüğü, Scale 1:500,000. 2002. Available online: https://www.mta.gov.tr/v3.0/sayfalar/hizmetler/doc/SIVAS.pdf (accessed on 11 June 2024).
- Günay, Y.; Şenel, M. Turkey Geological Map, Sheet Cizre: Ankara, Turkey: Maden Tetkik ve Arama Genel Müdürlüğü, Scale 1:500,000. 2002. Available online: https://www.mta.gov.tr/v3.0/sayfalar/hizmetler/doc/CIZRE.pdf (accessed on 11 June 2024).
- Şenel, M.; Ercan, T. Turkey Geological Map, Sheet Van: Ankara, Turkey, Maden Tetkik ve Arama Genel Müdürlüğü, Scale 1:500,000. 2002. Available online: https://www.mta.gov.tr/v3.0/sayfalar/hizmetler/doc/VAN.pdf (accessed on 11 June 2024).
- Ulu, U. Turkey Geological Map, Sheet Hatay: Ankara, Turkey: Maden Tetkik ve Arama Genel Müdürlüğü, Scale 1:500,000. 2002. Available online: https://www.mta.gov.tr/v3.0/sayfalar/hizmetler/doc/HATAY.pdf (accessed on 11 June 2024).
- Tarhan, N. Turkey Geological Map, Sheet Erzurum: Ankara, Turkey: Maden Tetkik ve Arama Genel Müdürlüğü, Scale 1:500,000. 2002. Available online: https://www.mta.gov.tr/v3.0/sayfalar/hizmetler/doc/Erzurum.pdf (accessed on 11 June 2024).
- Bozkurt, E.; Mittwede, S.K. Introduction to the Geology of Turkey—A Synthesis. Int. Geol. Rev. 2001, 43, 578–594. [Google Scholar] [CrossRef]
- Žák, J.; Svojtka, M.; Hajná, J.; Ackerman, L. Detrital zircon geochronology and processes in accretionary wedges. Earth-Sci. Rev. 2020, 207, 103214. [Google Scholar] [CrossRef]
- Gulyuz, E. Apatite fission track dating of the Beypazari Granitoid: Insight for the inception of collision along the Northern Neotethys, Turkey. Geodin. Acta 2020, 32, 1–10. [Google Scholar] [CrossRef]
- Farley, K.A. (U-Th)/He Dating: Techniques, Calibrations, and Applications. Rev. Mineral. Geochem. 2002, 47, 819–844. [Google Scholar] [CrossRef]
- Farley, K.A.; Wolf, R.A.; Silver, L.T. The effects of long alpha-stopping distances on (U-Th)/He ages. Geochim. Cosmochim. Acta 1996, 60, 4223–4229. [Google Scholar] [CrossRef]
- Gallagher, K. Transdimensional inverse thermal history modeling for quantitative thermochronology. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef]
- Ketcham, R.A.; Carter, A.; Donelick, R.A.; Barbarand, J.; Hurford, A.J. Improved modeling of fission-track annealing in apatite. Am. Mineral. 2007, 92, 799–810. [Google Scholar] [CrossRef]
- Flowers, R.M.; Ketcham, R.A.; Shuster, D.L.; Farley, K.A. Apatite (U–Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim. Cosmochim. Acta 2009, 73, 2347–2365. [Google Scholar] [CrossRef]
- Guenthner, W.R.; Reiners, P.W.; Drake, H.; Tillberg, M. Zircon, titanite, and apatite (U-Th)/He ages and age-eU correlations from the Fennoscandian Shield, southern Sweden. Tectonics 2017, 36, 1254–1274. [Google Scholar] [CrossRef]
- Ketcham, R.A.; Gautheron, C.; Tassan-Got, L. Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology: Refinement of the baseline case. Geochim. Cosmochim. Acta 2011, 75, 7779–7791. [Google Scholar] [CrossRef]
- Linnemann, U.; Ouzegane, K.; Drareni, A.; Hofmann, M.; Becker, S.; Gärtner, A.; Sagawe, A. Sands of West Gondwana: An archive of secular magmatism and plate interactions—A case study from the Cambro-Ordovician section of the Tassili Ouan Ahaggar (Algerian Sahara) using U–Pb–LA-ICP-MS detrital zircon ages. Lithos 2011, 123, 188–203. [Google Scholar] [CrossRef]
- Vermeesch, P. RadialPlotter: A Java application for fission track, luminescence and other radial plots. Radiat. Meas. 2009, 44, 409–410. [Google Scholar] [CrossRef]
- He, J.; Thomson, S.N.; Reiners, P.W.; Hemming, S.R.; Licht, K.J. Rapid erosion of the central Transantarctic Mountains at the Eocene-Oligocene transition: Evidence from skewed (U-Th)/He date distributions near Beardmore Glacier. Earth Planet. Sci. Lett. 2021, 567, 117009. [Google Scholar] [CrossRef]
- Reilinger, R.; McClusky, S.; Vernant, P.; Lawrence, S.; Ergintav, S.; Cakmak, R.; Ozener, H.; Kadirov, F.; Guliev, I.; Stepanyan, R.; et al. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef]
- Reilinger, R.E.; McClusky, S.C.; Oral, M.B.; King, R.W.; Toksoz, M.N.; Barka, A.A.; Kinik, I.; Lenk, O.; Sanli, I. Global Positioning System measurements of present-day crustal movements in the Arabia-Africa-Eurasia plate collision zone. J. Geophys. Res. Solid Earth 1997, 102, 9983–9999. [Google Scholar] [CrossRef]
- Ural, M.; Arslan, M.; Göncüoglu, M.C.; Tekin, K.U.; Kürüm, S. Late Cretaceous arc and back-arc formation within the Southern Neotethys: Whole-rock, trace element and Sr-Nd-Pb isotopic data from basaltic rocks of the Yüksekova Complex (Malatya-Elazığ, SE Turkey). Ofioliti 2015, 40, 57–72. [Google Scholar]
- Ural, M.; Sayit, K.; Tekin, U.T. Whole-Rock and Nd-Pb Isotope Geochemistry and Radiolarian Ages of the Volcanics from the Yüksekova Complex (Maden Area, Elaziğ, E Turkey): Implications for A Late Cretaceous (Santonian-Campanian) Back-Arc Basin in the Southern Neotethys. Ofioliti 2022, 47, 65–83. [Google Scholar] [CrossRef]
- Göncüoğlu, C.; Turhan, N. Geology of the Bitlis Metamorphic Belt. In Geology of the Taurus Belt; Tekeli, O., Göncüoğlu, M.C., Eds.; Mineral Research and Expolaration Instutute of Turkey (MTA): Ankara, Turkey, 1984; pp. 237–244. [Google Scholar]
- Okay, A.I.; Zattin, M.; Özcan, E.; Sunal, G. Uplift of Anatolia. Turk. J. Earth Sci. 2020, 29, 696–713. [Google Scholar] [CrossRef]
- Pişkin, Ö.; Delaloye, M. Petrologie et G eochronologie des ophiolites de Çelikhan (Taurus Oriental, Turquie). Schweiz. Mineral. Petrogr. Mitteilungen 1981, 61, 133–145. [Google Scholar]
- Pişkin, Ö. Çelikhan Doğusu Lökokuvars-monzonitleri Üzerine Petrokimya ve Jeokronoloji Verileri (Adıyaman-Türkiye). Türkiye Jeoloji Kurumu Bülteni 1978, 21, 107–111. [Google Scholar]
- Tuncer, M. Neotethyan Tectonostratigraphic Evolution of SE Anatolian Basin, Türkiye. Ph.D. Thesis, Middle East Technical University, Ankara, Turkey, 2023. [Google Scholar]
- Yılmaz, H.; Alpaslan, M.; Temel, A. Two-stage felsic volcanism in the western part of the southeastern Anatolian orogen: Petrologic and geodynamic implications. Int. Geol. Rev. 2007, 49, 120–141. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Seely, D.R. Structure and Stratigraphy of Forearc Regions. AAPG Bull. 1979, 63, 2–31. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Seely, D.R. Forearc Stratigraphy and Structure. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2 May 1977. [Google Scholar]
- Pişkin, Ö. Çelikhan Çevresi Ultrabazikleri içindeki Rodenjitler ve Kimyasal Analizleri. Türkiye Jeoloji Kurumu Bülteni 1975, 18, 17–20. [Google Scholar]
- Gradstein, F.M.; Ogg, J.G.; Smith, A.G. A Geologic Time Scale 2004; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Slama, J.; Kosler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plesovice zircon - A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; AllÉ, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; Quadt, A.V.; Roddick, J.C.; Spiegel, W. Three Natural Zircon Standards For U-Th-Pb, Lu-Hf, Trace Element And REE Analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Petrus, J.A.; Kamber, B.S. VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction. Geostand. Geoanal. Res. 2012, 36, 247–270. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Vermeesch, P. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Hasebe, N.; Barbarand, J.; Jarvis, K.; Carter, A.; Hurford, A.J. Apatite fission-track chronometry using laser ablation ICP-MS. Chem. Geol. 2004, 207, 135–145. [Google Scholar] [CrossRef]
- Lin, J.; Liu, Y.S.; Yang, Y.H.; Hu, Z.C. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios. Solid Earth Sci. 2016, 1, 5–27. [Google Scholar] [CrossRef]
- Paton, C.; Woodhead, J.D.; Hellstrom, J.C.; Hergt, J.M.; Greig, A.; Maas, R. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem. Geophys. Geosyst. 2010, 11, Q0AA06. [Google Scholar] [CrossRef]
Sample | Lithology | Lat | Long | Altitude (m) |
---|---|---|---|---|
FK637 | mica–quartz schist | 38.021438 | 37.17277 | 1180 |
FK638 | muscovite schist | 38.019075 | 37.1873 | 1181 |
FK639a | amphibole schist | 38.017914 | 37.18866 | 1180 |
FK639b | mica–quartz schist | 38.017914 | 37.18866 | 1180 |
FK640 | mica–quartz schist | 38.018566 | 37.19313 | 1185 |
FK641 | mica–quartz schist | 38.092591 | 37.14769 | 1157 |
SG-1 | plg + bio + quartz schist | 38.00113 | 37.12302 | 1275 |
SG-2 | bio + chlorite schist | 38.001756 | 37.11594 | 1190 |
SG-3 | bio + plg + quartz schist | 38.000647 | 37.11036 | 1130 |
Sample Number | No. of Grains | Ns | ρs (105 cm−2) | 238U (μg/g) | Dpar (μm) | P(χ2) | Pooled Age (Ma ± 1σ) | Central Age (Ma ± 1σ) | NL | MTL (μm ) | SD (μm) |
---|---|---|---|---|---|---|---|---|---|---|---|
FK637 | 33 | 583 | 0.29 | 29.24 | 1.96 | 0.19 | 24.1 ± 1.1 | 26.6 ± 1.2 | 91 | 11.26 | 2.08 |
FK638 | 40 | 3562 | 0.12 | 86.24 | 1.94 | 0.26 | 17.9 ± 0.3 | 21.3 ± 0.4 | 163 | 11.04 | 2.02 |
FK639b | 43 | 1019 | 0.39 | 103.54 | 1.31 | 0.12 | 15.3 ± 0.5 | 18.0 ± 0.7 | 208 | 11.32 | 1.92 |
FK640 | 47 | 737 | 0.26 | 30.82 | 1.64 | 0.95 | 23.5 ± 0.9 | 26.2 ± 0.9 | 79 | 11.57 | 1.99 |
FK641 | 35 | 707 | 0.30 | 36.87 | 1.54 | 0.08 | 29.1 ± 1.3 | 31.0 ± 1.5 | 79 | 10.61 | 2.29 |
SG-1 | 42 | 711 | 0.27 | 28.30 | 1.64 | 0.03 | 29.6 ± 1.2 | 33.1 ± 1.6 | 44 | 11.38 | 2.38 |
SG-2 | 14 | 168 | 0.22 | 17.71 | 1.98 | 0.40 | 16.9 ± 3.2 | 30.0 ± 5.4 | 5 | 11.03 | 2.93 |
SG-3 | 13 | 181 | 0.15 | 20.31 | 1.96 | 0.87 | 17.7 ± 2.8 | 22.8 ± 3.4 | 20 | 11.27 | 2.41 |
Durango | 39 | 2036 | 1.97 | 12.90 | 0.98 | 28.9 ± 1.29 | 29.3 ± 1.3 |
Sample | Altitude (m) | AHe Age ± 1σ (Ma) | AFT Age ± 1σ (Ma) | ZHe Age ± 1σ (Ma) |
---|---|---|---|---|
FK637 | 1180 | 18 ± 2.4 | 26.7 ± 1.6 | 37.9 ± 0.6 |
FK638 | 1181 | 21.1 ± 4.9 | 20.4 ± 1.3 | 30.4 ± 0.6 |
FK639b | 1180 | 19.9 ± 2.2 | 18.1 ± 0.9 | |
FK640 | 1185 | 23.6 ± 2.5 | 25.8 ± 0.9 | 30.4 ± 0.6 |
FK641 | 1157 | 14.9 ± 0.5 | 31 ± 1.5 | 42.7 ± 2 |
SG1 | 1275 | 33.1 ± 1.6 | 51.2 ± 0.7 | |
SG2 | 1185 | 14.1 ± 2.5 | 32.3 ± 9.9 | 42.9 ± 2.4 |
SG3 | 1130 | 6 ± 1.9 | 23.4 ± 4.9 | 32.5 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gildir, S.; Karaoğlan, F.; Gülyüz, E. Low-Temperature Thermochronology Records the Convergence between the Anatolide–Tauride Block and the Arabian Platform along the Southeast Anatolian Orogenic Belt. Minerals 2024, 14, 614. https://doi.org/10.3390/min14060614
Gildir S, Karaoğlan F, Gülyüz E. Low-Temperature Thermochronology Records the Convergence between the Anatolide–Tauride Block and the Arabian Platform along the Southeast Anatolian Orogenic Belt. Minerals. 2024; 14(6):614. https://doi.org/10.3390/min14060614
Chicago/Turabian StyleGildir, Semih, Fatih Karaoğlan, and Erhan Gülyüz. 2024. "Low-Temperature Thermochronology Records the Convergence between the Anatolide–Tauride Block and the Arabian Platform along the Southeast Anatolian Orogenic Belt" Minerals 14, no. 6: 614. https://doi.org/10.3390/min14060614
APA StyleGildir, S., Karaoğlan, F., & Gülyüz, E. (2024). Low-Temperature Thermochronology Records the Convergence between the Anatolide–Tauride Block and the Arabian Platform along the Southeast Anatolian Orogenic Belt. Minerals, 14(6), 614. https://doi.org/10.3390/min14060614