Nature of Perovskite Mineralization of Silicate-Carbonate Veins in the Margins of Kusinsko-Kopanskaya Layered Intrusion (South Urals, Russia)
Abstract
1. Introduction
1.1. Historical Background
1.2. Modern Studies of Perovskite
2. Geological Setting
3. Material and Methods
3.1. Sample Collection
3.2. Analytical Methods
4. Results
4.1. Parageneses with Perovskite
№ | MgO | Al2O3 | SiO2 | CaO | TiO2 | V2O5 | MnO | FeO | Fe2O3 | Y2O3 | ZrO2 | Ce2O3 | Nd2O3 | Sm2O3 | Σ | Mineral |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 17.11 | 0.59 | – * | – | 0.05 | – | 1.39 | 19.73 | 63.90 | – | – | – | – | – | 102.77 | Mg0.79Fe0.18Mn0.04Fe1.98Al0.02O4.00 |
2 | – | – | – | 40.93 | 56.15 | 0.79 | – | 0.60 | – | – | – | – | – | – | 98.47 | Ca1.01Ti0.97V0.01Fe0.01O2.98 |
3 | – | – | – | 41.79 | 57.06 | 0.40 | 0.03 | 0.46 | – | – | – | – | – | – | 98.74 | Ca1.00Ti0.98V0.01Fe0.01O2.99 |
4 | 17.03 | 1.08 | – | – | 0.22 | 0.09 | 1.39 | 18.65 | 61.51 | – | – | – | – | – | 99.97 | Mg0.80Fe0.17Mn0.04Fe1.95Al0.04O4.00 |
5 | 0.38 | 1.55 | 36.60 | 34.78 | 2.37 | – | – | – | 27.08 | – | – | – | – | – | 102.76 | (Ca3.03Mg0.05)∑3.08(Fe1.65Al0.15Ti0.14)∑1.94 Si2.98O12.02 |
6 | – | 0.23 | – | 41.18 | 55.54 | 0.49 | – | 0.72 | – | – | 1.01 | 0.54 | 0.13 | – | 99.84 | Ca1.00Ti0.95V0.01Fe0.01Al0.01O2.97 |
7 | – | 0.21 | 0.36 | 40.25 | 56.31 | 0.54 | – | 0.54 | – | – | – | 0.59 | – | – | 98.80 | Ca0.99Ti0.97V0.01Fe0.01Al0.01Si0.01O2.99 * |
8 | – | – | 0.41 | 41.04 | 56.41 | 0.54 | – | 0.46 | – | – | – | 0.48 | – | 0.31 | 99.65 | Ca1.00Ti0.97V0.01Fe0.01Si0.01O2.98 * |
9 | – | 0.09 | – | 39.30 | 56.11 | 0.43 | – | 1.04 | – | – | – | 0.90 | 0.52 | – | 98.39 | Ca0.98Ti0.98Fe0.02V0.01Ce0.01O2.99 |
10 | 13.02 | – | – | 0.73 | – | – | 2.14 | 22.61 | 61.15 | – | – | – | – | – | 99.65 | Mg0.67Fe0.28Mn0.06Ca0.03Fe2.00O4.00 |
11 | – | – | – | 40.28 | 56.16 | – | – | 1.76 | – | – | – | – | – | – | 98.20 | Ca0.99Ti0.97Fe0.03O2.97 |
12 | 0.33 | 2.40 | 36.05 | 34.71 | 2.79 | – | – | – | 26.07 | – | – | – | – | – | 102.35 | (Ca3.03Mg0.04)∑3.07(Fe1.61Al0.17Ti0.14)∑1.92 Si2.94O12.04 |
13 | – | – | – | 40.81 | 56.01 | – | – | 0.27 | – | – | – | 0.32 | – | – | 97.41 | Ca1.01Ti0.98Fe0.01O2.98 |
14 | – | – | – | 40.60 | 58.04 | – | – | 0.42 | – | – | – | – | – | – | 99.06 | Ca0.99Ti1.00Fe0.01O3.00 |
15 | 30.45 | – | – | – | 64.24 | 0.85 | 1.94 | 2.24 | – | – | – | – | – | – | 99.72 | Mg0.93Ti0.99Fe0.04 Mn0.03V0.01O3.00 |
16 | – | – | – | 41.21 | 59.10 | – | – | 0.49 | – | – | – | – | – | – | 100.80 | Ca0.99Ti1.00Fe0.01O3.00 |
17 | – | 1.09 | – | 12.39 | 36.16 | – | – | – | 6.28 | 2.59 | 34.36 | 1.01 | 1.55 | 0.34 | 95.77 | (Ca0.81Y0.08Nd0.03Ce0.02Sm0.01)∑0.95Zr1.02 (Ti1.66Fe0.29Al0.08)∑1.93O6.94 |
18 | – | – | – | 10.38 | 33.55 | – | – | 6.81 | – | 4.53 | 32.01 | 1.31 | 4.10 | 0.98 | 93.67 | (Ca0.71Y0.15Nd0.09Ce0.03Sm0.02)∑1.00Zr1.00 (Ti1.62Fe0.37)∑1.99O6.95 |
19 | 29.54 | – | – | – | 65.00 | – | 1.42 | 4.42 | – | – | – | – | – | – | 100.38 | Mg0.90Ti1.00Fe0.08Mn0.02O3.00 |
20 | – | – | – | 8.00 | 31.96 | – | – | 0.02 | 6.76 | 7.63 | 32.80 | 2.27 | 5.37 | 1.96 | 103.53 | (Ca0.56Y0.26Nd0.12Ce0.05Sm0.04Fe0.04)∑1.07 Zr1.04(Ti1.56Fe0.33)∑1.89O7.00 |
21 | – | – | – | 7.64 | 32.03 | – | – | 0.88 | 5.49 | 7.28 | 32.58 | 2.96 | 6.14 | 1.61 | 102.10 | (Ca0.54Y0.25Nd0.14Fe0.08Ce0.07Sm0.04)∑1.12 Zr1.04(Ti1.57Fe0.27)∑1.84O7.00 |
№ | MgO | SiO2 | CaO | TiO2 | MnO | FeO | Fe2O3 | Y2O3 | Nb2O5 | ZrO2 | La2O3 | Ce2O3 | Nd2O3 | Σ | Formulae |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2.34 | – | – | – | 0.35 | 40.08 | 55.78 | – | – | – | – | – | – | 98.55 | Fe0.86Mg0.13Fe2.00O4.00 |
2 | – | – | 40.20 | 56.73 | – | 1.97 | – | – | – | – | – | – | 98.90 | Ca0.99Fe0.04Ti0.98O2.98 | |
3 | – | – | 41.31 | 57.84 | – | 0.33 | – | – | – | – | – | – | 99.48 | Ca1.01Fe0.01Ti0.99O2.99 | |
4 | – | – | 40.78 | 57.51 | 0.09 | 0.37 | – | – | 0.19 | – | – | – | 98.94 | Ca1.00Fe0.01Ti0.99O2.99 | |
5 | – | – | 40.63 | 56.95 | – | 0.36 | – | – | – | – | – | – | 97.94 | Ca1.00Fe0.01Ti0.99O2.99 | |
6 | – | – | 39.84 | 56.61 | – | 1.40 | – | – | – | – | – | – | 97.85 | Ca0.99Fe0.03Ti0.99O2.99 | |
7 | – | 2.08 | 11.48 | 31.81 | – | – | 6.38 | 3.74 | 32.85 | 2.26 | – | 3.12 | 1.96 | 95.68 | (Ca0.77Y0.12Ce0.07Nb0.06Nd0.4)∑1.06 Zr1.00(Ti1.50Fe0.30)∑1.80Si0.13O7.00 * |
8 | – | – | 40.46 | 58.24 | – | 0.38 | – | – | – | – | – | 99.08 | Ca0.99Fe0.01Ti1.00O3.00 | ||
9 | 0.66 | 1.30 | 11.73 | 31.92 | – | – | 7.21 | 3.87 | 31.70 | 1.87 | 0.54 | 2.85 | 1.17 | 94.82 | (Ca0.78Y0.13Ce0.06Nb0.05 Nd0.3La0.01Mg0.06)∑1.13 Zr0.96(Ti1.49Fe0.34)∑1.83Si0.08O6.90 * |
10 | 18.18 | 54.01 | 26.03 | 0.14 | – | 0.15 | – | – | – | – | – | – | 98.51 | Ca1.02Mg0.99Fe0.07Si1.98O5.98 | |
11 | – | – | 38.43 | 56.25 | – | 1.56 | 0.16 | – | 0.12 | 1.96 | 2.22 | 0.58 | 101.28 | (Ca0.95Fe0.03Ce0.02La0.02)∑1.02Ti0.98O3.00 | |
12 | – | – | 40.84 | 58.08 | – | 0.81 | 0.32 | – | – | – | – | 0.37 | 100.42 | (Ca0.99Fe0.02)∑1.01Ti0.99O2.99 | |
13 | – | – | 38.21 | 54.20 | – | 1.13 | 0.26 | – | – | 2.48 | 2.86 | 0.82 | 99.96 | (Ca0.96Fe0.02Ce0.02La0.02Nd0.01)∑1.03 Ti0.96O2.99 | |
14 | 18.38 | 54.58 | 26.05 | – | – | 1.08 | – | – | – | – | – | – | 100.09 | Ca1.01Mg0.99Fe0.03Si1.97O5.97 | |
15 | – | – | 40.01 | 56.95 | – | 0.50 | – | – | – | 0.87 | 0.53 | 0.26 | 99.12 | (Ca0.99Fe0.01La0.01)∑1.01Ti0.99O2.99 | |
16 | 16.96 | 52.76 | 25.61 | – | – | 2.24 | – | – | – | – | – | – | 97.57 | Ca1.02Mg0.94Fe0.07Si1.97O5.97 |
4.2. Perovskite Crystal Shape Difference between Mines
4.3. Chemical Composition of Perovskites
№ | CaO | TiO2 | V2O3 | FeO | La2O3 | Ce2O3 | Nd2O3 | Sm2O3 | Σ | Formulae |
---|---|---|---|---|---|---|---|---|---|---|
1 | 40.75 | 57.13 | 0.35 | 0.37 | – | 0.83 | – | – | 99.44 | (Ca1.00Fe0.01Ce0.01)∑1.01(Ti0.98V0.01) ∑0.99O2.99 |
2 | 37.82 | 54.33 | 0.62 | 2.06 | – | 2.42 | 2.03 | 0.23 | 99.51 | (Ca0.95Fe0.04Ce0.02Nd0.02)1.03(Ti0.96V0.01)0.97O2.98 |
3 | 38.16 | 54.61 | 0.54 | 1.76 | – | 2.88 | 1.74 | – | 99.69 | (Ca0.96Fe0.03Ce0.02Nd0.01)1.03(Ti0.96V0.01)0.97O2.99 |
4 | 40.53 | 57.40 | 0.50 | 0.68 | – | 0.73 | – | 0.21 | 100.05 | (Ca0.99Fe0.01Ce0.01)1.01(Ti0.98V0.01)0.99O2.98 |
5 | 38.79 | 55.63 | 0.32 | 1.57 | – | 1.42 | 0.26 | – | 98.15 | (Ca0.97Fe0.03Nb0.02Ce0.01)1.03(Ti0.98V0.01)0.99O2.98 |
6 | 39.40 | 56.05 | 0.37 | 1.43 | – | 1.52 | 0.65 | 0.19 | 99.60 | (Ca0.97Ce0.01Fe0.03Nd0.01)1.02(Ti0.97V0.01)0.98O2.98 |
7 | 39.39 | 56.55 | 0.62 | 0.66 | – | 0.71 | – | – | 97.92 | (Ca0.98Fe0.01Ce0.01)1.00(Ti0.99V0.01)1.00O2.98 |
8 | 40.80 | 57.31 | 0.38 | 0.41 | – | 0.75 | – | – | 99.66 | (Ca1.00Fe0.01Ce0.01)1.02(Ti0.98V0.01)0.99O2.99 |
9 | 39.53 | 56.77 | 0.84 | 0.67 | – | 0.66 | 0.69 | – | 99.15 | (Ca0.98Fe0.01Ce0.01Nd0.01)1.00(Ti0.98V0.02)1.00O2.98 |
10 | 37.29 | 55.38 | – | 1.75 | – | 2.35 | 1.26 | 0.16 | 98.19 | (Ca0.95Fe0.03Ce0.02Nd0.01)1.01(Ti0.99V0.00)0.99O2.98 |
11 | 40.38 | 57.50 | – | 0.66 | 0.36 | 0.43 | – | – | 99.33 | (Ca0.99Fe0.01)1.01(Ti0.99V0.00)0.99O2.98 |
12 | 39.85 | 56.72 | – | 0.77 | – | 0.75 | – | – | 98.09 | (Ca0.99Fe0.01Ce0.01)1.01(Ti0.99V0.00)0.99O2.98 |
13 | 40.12 | 56.61 | – | 0.48 | – | 0.27 | – | – | 97.48 | (Ca1.00Fe0.01)1.01(Ti0.99V0.00)0.99O2.99 |
14 | 39.90 | 57.20 | – | 0.48 | – | – | – | – | 97.57 | (Ca0.99Fe0.01)1.00(Ti1.00V0.00)1.00O2.98 |
15 | 38.43 | 56.85 | 0.31 | 1.70 | 0.70 | 2.51 | 0.40 | – | 100.89 | (Ca0.95Fe0.03Ce0.02La0.01)1.01(Ti0.98V0.01)0.99O2.98 |
16 | 38.38 | 56.68 | 0.32 | 1.66 | 0.62 | 2.55 | 0.36 | – | 100.58 | (Ca0.95Fe0.03Ce0.02La0.01)1.01(Ti0.98V0.01)0.99O2.98 |
17 | 37.33 | 54.91 | – | 1.39 | 1.04 | 3.06 | 0.38 | – | 98.12 | (Ca0.95Ce0.03Fe0.03La0.01)1.02(Ti0.98V0.00)0.98O2.98 |
18 | 39.76 | 58.60 | – | 0.66 | 0.15 | 0.28 | – | – | 99.45 | (Ca0.98Ce0.00Fe0.01)0.99(Ti1.01V0.00)1.01O2.98 |
Element | Octahedral Perovskites of Perovskite Mine | Cubic Perovskites of Perovskite Mine | Cubic Perovskites of Zelentsov Mine | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
№ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Fe | 2390 | 2800 | 3790 | 2620 | 3680 | 4240 | 3400 | 4070 | 2830 | 2410 | 2950 | 2550 |
Sr | 57.0 | 57.70 | 55.7 | 53.20 | 52.1 | 62.6 | 52.0 | 53.0 | 29.2 | 22.2 | 20.5 | 39.80 |
Y | 216 | 217.00 | 38.9 | 143.7 | 231 | 179 | 316 | 320 | 470 | 224 | 194 | 329 |
Zr | 12.0 | 12.0 | 8.59 | 22.1 | 24.8 | 21.5 | 26.7 | 27.7 | 345 | 293 | 56.0 | 622 |
Nb | 466 | 469 | 624 | 479 | 334 | 557 | 237 | 312 | 138.5 | 139 | 249 | 166 |
La | 3320 | 3360 | 4760 | 2950 | 2260 | 3440 | 1770 | 2280 | 798 | 352 | 1550 | 510 |
Ce | 5190 | 4720 | 8560 | 4000 | 3250 | 4370 | 2760 | 3430 | 1430 | 906 | 2530 | 493 |
Pr | 463 | 480 | 735 | 341 | 327 | 407 | 292 | 322 | 153.6 | 116.6 | 251 | 45.9 |
Nd | 895 | 903 | 1335 | 644 | 696 | 786 | 682 | 808 | 306 | 257 | 438 | 82.0 |
Sm | 444 | 402.4 | 495 | 451 | 563 | 624 | 580 | 712 | 270 | 227 | 225 | 70.8 |
Eu | 110.5 | 111.9 | 111.0 | 148.0 | 143 | 175 | 135 | 161 | 71.0 | 43.3 | 43.2 | 22.0 |
Gd | 199.0 | 195 | 167.0 | 290.0 | 391 | 341 | 387 | 390 | 269 | 184 | 169 | 67.6 |
Tb | 20.1 | 20.2 | 11.2 | 28.40 | 40.2 | 31.9 | 39.1 | 40.1 | 37.9 | 25.0 | 20.2 | 12.8 |
Dy | 94.2 | 98.2 | 40.9 | 123.0 | 179 | 137 | 187 | 195 | 253 | 146.9 | 115 | 91.0 |
Ho | 11.1 | 10.9 | 2.84 | 9.73 | 15.7 | 11.6 | 17.8 | 19.8 | 26.8 | 15.4 | 12.1 | 13.8 |
Er | 35.8 | 36.3 | 8.60 | 36.2 | 64.2 | 42.5 | 73.8 | 72.4 | 138.5 | 76.1 | 59.3 | 93.0 |
Tm | 2.18 | 2.19 | 0.37 | 1.60 | 2.37 | 1.69 | 3.03 | 3.39 | 7.52 | 3.75 | 3.12 | 6.44 |
Yb | 10.6 | 11.0 | 11.3 | 7.17 | 11.5 | 7.34 | 14.9 | 16.1 | 44.1 | 22.3 | 14.7 | 45.7 |
Lu | 0.81 | 0.78 | 0.13 | 0.59 | 0.89 | 0.54 | 1.06 | 1.18 | 2.91 | 1.65 | 0.97 | 3.94 |
Pb | 18.0 | 18.0 | 24.0 | 16.1 | – | 16.0 | 12.3 | 15.2 | 1.32 | 0.77 | 3.51 | 4.69 |
La/Yb | 313 | 305 | 422 | 411 | 197 | 469 | 119 | 142 | 18 | 16 | 105 | 11 |
4.4. U-Pb Age of Perovskite Mineralization
5. Discussion
5.1. Comparison of Perovskite from Calcite-Silicate Veins and Ultramafic Alkaline Rocks
5.2. The Nature of Perovskite Mineralization and Its Geological Implications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rose, G. Beschreibung einiger neuen Mineralien des Urals. Ann. Der Phys. Und Chem. 1839, 48, 551–573. [Google Scholar] [CrossRef]
- Mushketov, I.V. Materials for the Study of the Geonostic Structure and Ore Resources of the Zlatoust Mining District in the Southern Urals; Printing House of the Imperial Academy of Sciences: St. Petersburg, Russia, 1887; 231p. (In Russian) [Google Scholar]
- Pekov, I. Minerals First Discovered on the Territory of the Former Soviet Union; Ocean Pictures: Moscow, Russia, 1998; 369p. [Google Scholar]
- Popov, V.A.; Rassomakhin, M.A. Mineral assemblages of the Shishim mine in the Southern Urals. Mineralogy 2023, 9, 23–44. (In Russian) [Google Scholar] [CrossRef]
- Plat, G.G. Perovskite, loparite and Ba-Fe hollandite from the Schryburt Lake carbonatite complex, northwestern Ontario, Canada. Mineral. Mag. 1994, 58, 49–57. [Google Scholar] [CrossRef]
- Mitchell, R.H. Perovskites: Modern and Ancient; Almaz Press Inc.: Thunder Bay, ON, Canada, 2002; 316p. [Google Scholar]
- Batumike, J.M.; Griffin, W.L.; Belousova, E.A.; Pearson, N.J.; O’Reilly, S.Y.; Shee, S.R. LAM-ICP-MS U–Pb dating of kimberlitic perovskite: Eocene-Oligocene kimberlites from the Kundelungu Plateau, D.R. Congo. Earth Planet. Sci. Lett. 2008, 267, 609–619. [Google Scholar] [CrossRef]
- Wu, F.; Yang, Y.; Mitchell, R.H.; Li, Q.; Yang, J.; Zhang, Y. In situ U-Pb age determination and Nd isotopic analysis of perovskites from kimberlites in southern Africa and Somerset Island, Canada. Lithos 2010, 115, 205–222. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Reguir, E.P.; Kamenetsky, V.S.; Sharygin, V.V.; Golovin, A.V. Trace element partitioning in perovskite: Implications for the geochemistry of kimberlites and other mantle-derived under saturated. Rocks Chem. Geol. 2013, 353, 112–131. [Google Scholar] [CrossRef]
- Potter, N.J.; Ferguson, M.R.M.; Kamenetsky, V.S.; Chakhmouradian, A.R.; Sharygin, V.V.; Thompson, J.M.; Goemann, K. Textural evolution of perovskite in the Afrikanda alkaline–ultramafic complex, Kola Peninsula, Russia. Contrib. Mineral. Petrol. 2018, 137, 100. [Google Scholar] [CrossRef]
- Myasnikov, V.S. Mineral mines of the Shishim and Nazyam mountains. Mineral. Ural. 1954, 1, 250–268. (In Russian) [Google Scholar]
- Gekimyants, V.M. Mineralogy of Titanium and Zirconium in Skarns, Rodingites, and Rodingite-Like Formations of the Western Urals; MGU: Moscow, Russia, 2002; 20p. (In Russian) [Google Scholar]
- Belkovsky, A.I.; Loktina, I.N.; Nesterov, A.R. Mineral mines of the Shishimsky-Nazyamsky mountains: Pre-carbonatite skarns and early (oreless) carbonatites. Probl. Petrog. Ore Form. 1998, 12–14. (In Russian) [Google Scholar]
- Popov, V.A. The Akhmatov Mine in the South Urals: Notes on Mineralogy. Mineral. Alm. 2012, 17, 8–46. [Google Scholar]
- Kholodnov, V.V.; Shagalov, E.S. The Upper and Lower Age Boundaries of the Middle Riphean (Ti-Fe-V) Intrusions of the Kusinsko-Kopanskaya Complex in the South Urals: U-Pb Dating of Zircons from the Medvedevskoe Deposite. Dokl. Earth Sci. 2012, 446, 1171–1175. [Google Scholar] [CrossRef]
- Kinny, P.D.; Griffin, B.J.; Heaman, L.M.; Brakhfogel, F.F.; Spetsius, Z.V. SHRIMP U–Pb Ages of Perovskite from Yakutian Kimberlites. Russ. Geol. Geophys. 1997, 38, 97–105. [Google Scholar]
- Ireland, T.R.; Compston, W.; Williams, I.S.; Wendt, I. U-Pb systematics of individual perovskite grains from the Allende and Murchison carbonaceous chondrites. Earth Planet. Sci. Lett. 1990, 101, 379–387. [Google Scholar] [CrossRef]
- Stepanov, S.Y.; Sharpenok, L.N.; Palamarchuk, R.S.; Glazov, A.I.; Palamarchuk, R.S. Distribution of trace elements in perovskite from skarns and calcite veins of the Chernaya rechka and Nazyam ridges (South Urals). Mineralogy 2017, 3, 61–70. [Google Scholar]
- Arakcheeva, A.V.; Lubman, G.U.; Pushcharovsky, D.Y.; Gekimyants, V.M.; Popov, V.A. Crystal structure and microtwinning of natural orthorhombic perovskite CaTiO3. Crystallogr. Rep. 1997, 42, 46–54. [Google Scholar]
- Goldschmidt, V. Atlas der Krystallformen; University of Toronto: Toronto, ON, Canada, 1913. (In German) [Google Scholar]
- Stepanov, S.Y.; Puchkov, V.N.; Palamarchuk, R.S.; Popov, V.A.; Lepehina, E.N.; Sharpenok, L.N.; Antonov, A.V. The first evidence for Paleozoic endogenous activity on the Western slope of the Southern Urals. Dokl. Earth Sci. 2020, 493, 499–503. [Google Scholar] [CrossRef]
- Woolley, A.R. Alkaline Rocks and Carbonatites of the World—Part 3: Africa; The Geological Society: London, UK, 2001. [Google Scholar]
- Arzamastsev, A.; Arzamastseva, L.; Bea, F.; Montero, P. Rare earth elements in rocks and minerals from alkaline plutons of the Kola Peninsula, NW Russia, as indicators of alkaline magma evolution. Russ. J. Earth Sci. 2002, 4, 187–209. [Google Scholar] [CrossRef]
- Alexandrov, S.M.; Troneva, M.A. Composition, mineral assemblages and genesis of serendibite-bearing magnesian skarns. Geochem. Int. 2006, 44, 665–680. [Google Scholar] [CrossRef]
- Starikova, A.E.; Sklyarov, E.V.; Kotov, A.B.; Sal’nikova, E.B.; Fedorovskii, V.S.; Lavrenchuk, A.V.; Mazukabzov, A.M. Vein calciphyre and contact Mg skarn from the Tazheran massif (Western Baikal area, Russia): Age and genesis. Dokl. Earth Sciense 2014, 457, 1003–1007. [Google Scholar] [CrossRef]
- Sklyarov, E.V.; Karmanov, N.S.; Lavrenckuk, A.V.; Starikova, A.E. Perovskites of the Tazheran Massif (Baikal, Russia). Minerals 2019, 9, 323. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Mitchell, R.H. Compositional variation of perovskite group minerals from the carbonatite complexes of the Kola Alkaline Province, Russia. Can. Mineral. 1997, 35, 1293–1310. [Google Scholar]
- Arzamastsev, A.; Arzamastseva, L. Paleozoic Tholeiite Magmatism in the Kola Province, Russia: Relations to Alkaline Magmatism. In Proceedings of the Goldshmidt, Prague, Czech Republic, 15–19 August 2011. [Google Scholar]
- Mitchell, R.H. Kimberlites, Orangeites and Related Rocks; Plenium Press: New York, NY, USA, 1995; 410p. [Google Scholar]
- Chakhmouradian, A.R.; Mitchell, R.H. Occurrence, alteration patterns and compositional variation of perovskite in kimberlites. Can. Mineral. 2000, 38, 975–994. [Google Scholar] [CrossRef]
- Reguir, E.P.; Camacho, A.; Yang, P.; Chakhmouradian, A.R.; Kamenetsky, V.S.; Halden, N.M. Trace-element study and uranium–lead dating of perovskite from the Afrikanda plutonic complex, Kola Peninsula (Russia) using LA-ICP-MS. Mineral. Petrol. 2010, 100, 95–103. [Google Scholar] [CrossRef]
- Chen, W.; Simonetti, A. Evidence for the Multi-Stage Petrogenetic History of the Oka Carbonatite Complex (Quebec, Canada) as Recorded by Perovskite and Apatite. Minerals 2014, 4, 437–476. [Google Scholar] [CrossRef]
- Chalapathi Rao, N.V.; Fu-Yuan, R.H.; Li, Q.-L.; Lehmann, B. Mesoproterozoic U–Pb ages, trace element and Sr–Nd isotopic composition of perovskite from kimberlites of the Eastern Dharwar craton, southern India: Distinct mantle sources and a widespread 1.1 Ga tectonomagmatic event. Chem. Geol. 2013, 353, 48–64. [Google Scholar]
- Ghobadi, M.; Gerdes, A.; Kogarko, L.; Hoefer, H.; Brey, G. In situ LA-ICP-MS Isotopic and Geochronological Studies on Carbonatites and Phoscorites from the Guli Massif, Maymecha-Kotuy, Polar Siberia. Geochem. Int. 2018, 56, 766–783. [Google Scholar] [CrossRef]
- Rass, I.T. Fractionation of microcomponents in coexisting high- and low-calcium alkaline-ultrabasic series of the Odikhincha massif (Polar Siberia). Geochemistry 2004, 8, 852–863. (In Russian) [Google Scholar]
- Chernoostrovets, A.N. The history of discovery and study of Zelentsov mineral mine (mine of the 3-rd magnetic bald peak) of the Nazyam mountains, Southern Urals. Ural. Geol. J. 2014, 3, 42–52. (In Russian) [Google Scholar]
- Puchkov, V.N.; Kozlov, V.I.; Krasnobaev, A.A. Paleozoic U-Pb SHRIMP dating of magmatic rocks of the Bashkir megaanticlinorium. Geol. Collect. 2011, 9, 36–43. (In Russian) [Google Scholar]
- Krasnobaev, A.A.; Puchkov, V.N.; Sergeeva, N.D. Polychronous zirconology of navysh volcanics of the Ai formation (Southern Urals). Dokl. Earth Sci. 2018, 478, 56–61. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepanov, S.; Palamarchuk, R.; Kutyrev, A.; Lepekhina, E.; Sharpenok, L.; Shagalov, E.; Minervina, E. Nature of Perovskite Mineralization of Silicate-Carbonate Veins in the Margins of Kusinsko-Kopanskaya Layered Intrusion (South Urals, Russia). Minerals 2024, 14, 478. https://doi.org/10.3390/min14050478
Stepanov S, Palamarchuk R, Kutyrev A, Lepekhina E, Sharpenok L, Shagalov E, Minervina E. Nature of Perovskite Mineralization of Silicate-Carbonate Veins in the Margins of Kusinsko-Kopanskaya Layered Intrusion (South Urals, Russia). Minerals. 2024; 14(5):478. https://doi.org/10.3390/min14050478
Chicago/Turabian StyleStepanov, Sergey, Roman Palamarchuk, Anton Kutyrev, Elena Lepekhina, Ludmila Sharpenok, Evgeniy Shagalov, and Elena Minervina. 2024. "Nature of Perovskite Mineralization of Silicate-Carbonate Veins in the Margins of Kusinsko-Kopanskaya Layered Intrusion (South Urals, Russia)" Minerals 14, no. 5: 478. https://doi.org/10.3390/min14050478
APA StyleStepanov, S., Palamarchuk, R., Kutyrev, A., Lepekhina, E., Sharpenok, L., Shagalov, E., & Minervina, E. (2024). Nature of Perovskite Mineralization of Silicate-Carbonate Veins in the Margins of Kusinsko-Kopanskaya Layered Intrusion (South Urals, Russia). Minerals, 14(5), 478. https://doi.org/10.3390/min14050478