Petrogenesis and Tectonic Evolution of Huashigou Granitoids in the South Qilian Orogen, NW China: Constraints from Geochronology, Geochemistry, and Sr–Nd–Hf–O Isotopes
Abstract
:1. Introduction
2. Regional Geology and Petrography
3. Analytical Methods
3.1. Zircon U–Pb Age Analytical Method
3.2. Whole-Rock, Sr–Nd–O, and Hf Isotopic Analytical Method
4. Results
4.1. Geochronology
4.2. Whole-Rock Geochemistry
4.2.1. Hua1 Pluton
4.2.2. Hua2 Pluton
4.2.3. Hua4 Pluton
4.3. Whole-Rock Sr–Nd–O and Hf Isotopes
5. Discussion
5.1. Petrogenesis
5.1.1. Petrogenesis of the Hua1 Pluton
5.1.2. Petrogenesis of the Hua4 Pluton and Hua2 Pluton
5.2. Tectonic Setting of Huashigou Granitoids
5.3. Tectonic Implications
5.3.1. Tectonic System of Altyn Tagh
5.3.2. North Qaidam–Qilian Tectonic System
5.3.3. Tectonic Setting of Altyn Tagh and North Qaidam–Qilian
5.3.4. Nd Model Age and Attribution of Precambrian Basement in the Qilian Block
6. Conclusions
- (1)
- Zircon U–Pb dating yielded crystallization ages of 368.7 ± 3.5 Ma, 261.5 ± 0.63 Ma, and 262.2 ± 1.4 Ma for the Hua1, Hua2, and Hua4 plutons, respectively.
- (2)
- Trace elements and Sr–Nd–Hf–O isotopes indicated that Huashigou granitoids were derived from the partial melting of the lower crust.
- (3)
- Huashigou granitoids were formed in the orogenic–post-orogenic extensional tectonic setting, and they were derived from different tectonic levels or crustal depths. Late Devonian granitoids were formed from the decompression melting of enriched and shallow-depth crustal materials. Middle–Late Permian granitoids resulted from the partial melting of the basaltic lower crust through heating by underplating basaltic magma. Additionally, they may have been formed by slab break-off magmatism.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, H.F.; Zhang, K.X. Evolution and characteristics of the Central Orogenic Belt. Earth Sci.-J. China Univ. Geosci. 1998, 23, 437–442, (In Chinese with English abstract). [Google Scholar]
- Lu, S.N.; Yu, H.F.; Li, H.K.; Chen, Z.H.; Wang, H.C.; Zhang, C.L.; Xiang, Z.Q. Early Paleozoic suture zones and tectonic divisions in the “Central China Orogen”. Geol. Bull. China 2006, 25, 1368–1380, (In Chinese with English abstract). [Google Scholar]
- Xu, Z.Q.; Yang, J.S.; Li, H.B.; Yao, J.X. The early Paleozoic terrene framework and the formation of the high-pressure (HP) and ultra-high pressure (UHP) metamorphic belts at the Central Orogenic Blet (COB). Acta Geol. Sin. 2006, 80, 1793–1806, (In Chinese with English abstract). [Google Scholar]
- Qiu, H.N.; Wijbrans, J.R. The Paleozoic metamorphic history of the Central orogenic belt of China from 40Ar/39Ar geochronology of eclogite garnet fluid inclusions. Earth Planet. Sci. Lett. 2008, 268, 501–514. [Google Scholar] [CrossRef]
- Yang, J.S.; Xu, Z.Q.; Ma, C.Q.; Wu, C.L.; Zhang, J.X.; Wang, Z.Q.; Wang, G.C.; Zhang, H.F.; Dong, Y.P.; Lai, S.C. Compound orogeny and scientific problems concerning the Central Orogenic Blet of China. Geol. China 2010, 37, 1–11, (In Chinese with English abstract). [Google Scholar]
- Liu, L.; Che, Z.C.; Luo, J.H.; Wang, Y.; Gao, Z.J. Recognition and implication of eclogite in the western Altun Mountains, Xinjiang. Chin. Sci. Bull. 1997, 42, 931–934, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Liu, L.; Chen, D.L.; Zhang, A.D.; Sun, Y.; Wang, Y.; Yang, J.Q.; Luo, J.H. Ultrahigh pressure gneissic K-feldspar garnet clinopyroxenite in the Altyn Tagh, NW China: Evidence from clinopyroxene exsolution in garnet. Sci. China (D) 2005, 48, 1000–1010, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Sobel, E.R.; Arnaud, N.; Jolivet, M.; Ritts, B.D.; Brunei, M. Jurassic to Cenozoic exhumation history of the Altyn Tagh range, northwest China, constrained by 40Ar/39Ar and apatite fission track thermochronology. Paleoz. Mesoz. Tecton. Evol. Cent. East. Asia 2001, 194, 247–267. [Google Scholar]
- Yang, J.S.; Xu, Z.Q.; Zhang, J.X.; Chu, C.Y.; Zhang, R.Y.; Liou, J.G. Tectonic significance of early Paleozoic high-pressure rocks in Altun-Qaidam-Qilian mountains, northwest China. Mem.-Geol. Soc. Am. 2001, 194, 151–170. [Google Scholar]
- Yang, J.S.; Wu, C.L.; Zhang, J.X.; Shi, R.D.; Meng, F.C.; Wooden, J.; Yang, H.Y. Protolith of eclogites in the north Qaidam and Altun UHP terrane, NW China: Earlier oceanic crust? J. Asian Earth Sci. 2006, 28, 185–204. [Google Scholar] [CrossRef]
- Zhang, J.X.; Zhang, Z.M.; Xu, Z.Q.; Yang, J.S.; Cui, J.W. Petrology and geochronology of eclogites from the western segment of the Altyn Tagh, northwestern China. Lithos 2001, 56, 187–206. [Google Scholar] [CrossRef]
- Zhang, J.X.; Yang, J.S.; Xu, Z.Q.; Meng, F.C.; Li, H.B.; Shi, R.D. Evidence for UHP metamorphism of eclogites from the Altun Mountains. Chin. Sci. Bull. 2002, 47, 751–755, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Zhang, J.X.; Mattinson, C.G.; Meng, F.C.; Wan, Y.S. An early palaeozoic HP/HT granulite-garnet peridotite association in the south altyn tagh, nw china: P-T history and U-Pb geochronology. J. Metamorph. Geol. 2005, 23, 491–510. [Google Scholar] [CrossRef]
- Zhang, J.X.; Yang, J.S.; Mattinson, C.G.; Xu, Z.Q.; Meng, F.C.; Shi, R.D. Two contrasting eclogite cooling histories, North Qaidam HP/UHP terrane, western China: Petrological and isotopic constraints. Lithos 2005, 84, 51–76. [Google Scholar] [CrossRef]
- Zhang, J.X.; Meng, F.C.; Li, J.P.; Mattinson, C.G. Coesite in eclogite from the North Qaidam Mountains and its implications. Chin. Sci. Bull. 2009, 54, 1105–1110, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Wan, Y.S.; Xu, Z.Q.; Yang, J.S.; Zhang, J.X. The Precambrian High-grade basement of the Qilian Terrane and Neighboring areas: Its ages and compositions. Acta Geosci. Sin. 2003, 24, 319–324, (In Chinese with English abstract). [Google Scholar]
- Song, S.G.; Niu, Y.L. Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China. Am. Mineral. 2004, 89, 1330–1336. [Google Scholar] [CrossRef]
- Song, S.G.; Zhang, L.; Niu, Y.L.; Su, L.; Jian, P.; Liu, D. Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau: A record of complex histories from oceanic lithosphere subduction to continental collision. Earth Planet. Sci. Lett. 2005, 234, 99–118. [Google Scholar] [CrossRef]
- Song, S.G.; Zhang, L.; Niu, Y.L.; Su, L.; Song, B.; Liu, D. Evolution from oceanic subduction to continental collision: A case study from the Northern Tibetan Plateau based on geochemical and geochronological data. J. Petrol. 2006, 47, 435–455. [Google Scholar] [CrossRef]
- Song, S.G.; Su, L.; Li, X.H.; Niu, Y.L.; Zhang, L. Grenville-age orogenesis in the Qaidam-Qilian block: The link between South China and Tarim. Precambrian Res. 2012, 220, 9–22. [Google Scholar] [CrossRef]
- Song, S.G.; Niu, Y.L.; Su, L. Tectonics of the North Qilian orogen, NW China. Gondwana Res. 2013, 23, 1378–1401. [Google Scholar] [CrossRef]
- Yang, S.; Li, Z.; Chen, H.; Santosh, M.; Dong, C.; Yu, X. Permian bimodal dyke of Tarim Basin, NW China: Geochemical characteristics and tectonic implications. Gondwana Res. 2007, 12, 113–120. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.F.; Yong, Y.; Yan, Z.; Yuan, C.; Liu, C.Z.; Li, J.L. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China. J. Asian Earth Sci. 2009, 35, 323–333. [Google Scholar] [CrossRef]
- Dong, S.L.; Li, Z.; Gao, J.; Zhu, L. Progress of studies on early Paleozoic tectonic framework and crystalline rock geochronology in Altun-Qilian-Kunlun Orogen. Geol. Rev. 2013, 59, 731–746. [Google Scholar]
- Wang, C.; Liu, L.; Yang, W.Q.; Zhu, X.H.; Cao, Y.T.; Kang, L.; Chen, S.F.; Li, R.S.; He, S.P. Provenance and ages of the altyn complex in altyn tagh: Implications for the early neoproterozoic evolution of northwestern china. Precambrian Res. 2013, 230, 193–208. [Google Scholar] [CrossRef]
- Yu, S.Y.; Zhang, J.X.; del Real, P.G.; Zhao, X.L.; Hou, K.J.; Gong, J.H.; Li, Y.S. The Grenvillian orogeny in the Altun–Qilian–North Qaidam mountain belts of northern Tibet Plateau: Constraints from geochemical and zircon U–Pb age and Hf isotopic study of magmatic rocks. J. Asian Earth Sci. 2013, 73, 372–395. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, L.; Christy, A.G. From oceanic subduction to continental collision: An overview of HP–UHP metamorphic rocks in the North Qaidam UHP belt, NW China. J. Asian Earth Sci. 2013, 63, 98–111. [Google Scholar] [CrossRef]
- Liu, L.; Sun, Y.; Xiao, P.X.; Che, Z.C.; Luo, J.H.; Chen, D.L.; Wang, Y. Discovery of ultrahighpressure magnesite-bearing garnet lherzolite (>3.8 GPa) in the Altyn Tagh, Northwest China. Chin. Sci. Bull. 2002, 47, 881–886, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Liu, L.; Sun, Y.; Luo, J.H.; Wang, Y.; Chen, D.L.; Zhang, A.D. Ultra-high pressure metamorphism of granitic gneiss in the Yinggelisayi area, Altun Mountains, NW China. Sci. China (D) 2004, 47, 338–346, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Zhang, A.D.; Liu, L.; Sun, Y.; Chen, D.L.; Wang, Y.; Luo, J.H. SHRIMP U-Pb zircon ages for the UHP metamorphosed granitoid gneiss in Altyn Tagh and their geological significance. Chin. Sci. Bull. 2004, 49, 2527–2532, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Yu, S.Y.; Zhang, J.X.; Gong, J.H. Zr-in-rutile thermometry in HP/HP granulite in the Bashiwake area of the South Altun and its geological implications. Earth Sci. Front. 2011, 18, 140–150, (In Chinese with English abstract). [Google Scholar]
- Li, Y.S.; Zhang, J.X.; Li, S.R.; Yu, S.Y.; Gong, J.H.; Lin, Y.H. Metamorphic evolution of the Bashiwake garnet peridotite from the South Altyn Tagh. Acta Petrol. Sin. 2013, 29, 2073–2092, (In Chinese with English abstract). [Google Scholar]
- Xu, W.C.; Zhang, H.F.; Liu, X.M. U-Pb zircon dating constraints on formation time of Qilian high-grade metamorphic rock and its tectonic implication. Sci. Bull. 2007, 52, 531–538, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Barbarin, B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 1999, 46, 605–626. [Google Scholar] [CrossRef]
- Qi, X.X.; Li, H.B.; Wu, C.L.; Yang, J.S.; Zhang, J.X.; Meng, F.C.; Shi, R.D.; Chen, S.Y. SHRIMP U-Pb zircon dating for Qiashikansayi granodio-rite, the Northern Altyn Tagh Mountains and its geological implications. Sci. Bull. 2005, 50, 440–445, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Qi, X.X.; Wu, C.L.; Li, H.B. SHRIMP U-Pb age of zircons from Kazisayi granite in the northern Alty Tagh mountains and its significations. Acta Petrol. Sin. 2005, 21, 859–866, (In Chinese with English abstract). [Google Scholar]
- Wang, J.R.; Guo, Y.S.; Fu, S.M.; Chen, J.L.; Qin, X.F.; Zhang, H.P.; Yang, Y.J. Early Paleozoic adakitic rocks in Heishishan, Gansu and their significance for tectonodynamics. Acta Petrol. Sin. 2005, 21, 977–985, (In Chinese with English abstract). [Google Scholar]
- Kusky, T.; Li, J.H.; Santosh, M. The Paleoproterozoic North Hebei Orogen: North China’s collisional suture with the Columbia supercontinent. Gondwana Res. 2007, 12, 4–28. [Google Scholar] [CrossRef]
- Wang, C.; Liu, L.; Zhang, A.D.; Yang, W.Q.; Cao, Y.T. Geochemistry and petrography of early Paleozoic Yusupuleke Tagh rapakivi-textured granite complex, South Altyn: An example for magma mixing. Acta Petrol. Sin. 2008, 24, 2809–2819, (In Chinese with English abstract). [Google Scholar]
- Xiao, W.J.; Windley, B.F.; Allen, M.B. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res. 2013, 23, 1316–1341. [Google Scholar] [CrossRef]
- Jia, Z.L.; Chen, W.F.; Sha, X.; Wang, J.R. Discovery od middle Permian adakitic rocks in south Qilian area, Gansu and impliccations foe tectonics and Cu(Au) mineralizaton. Geotecton. Metallog. 2017, 156, 222–234, (In Chinese with English abstract). [Google Scholar]
- Hu, W.L.; Jia, Z.L.; Wang, J.R.; Hou, K.X.; Wang, S.H. Geochronology and geochemistry characteristics of the granites from the Huashigou area, south Qilian and their tectonic significance. Geol. J. China Univ. 2016, 22, 242–253, (In Chinese with English abstract). [Google Scholar]
- Ralf, L. How Does Water Bind to Metal Surfaces: Hydrogen Atoms Up or Hydrogen Atoms Down? Angew. Chem. Int. Ed. 2003, 42, 3458–3460. [Google Scholar]
- Andersen, T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem. Geol. 2002, 193, 59–79. [Google Scholar] [CrossRef]
- Vavra, G. On The Kinematics of Zircon Growth and Its Petrogenetic Significance:A Cathodoluminescence Study. Contrib. Mineral. Petrol. 1990, 106, 90–99. [Google Scholar] [CrossRef]
- Paterson, B.A.; Stephens, W.E.; Rogers, G.; Williams, I.S.; Hinton, R.W.; Herd, D.A. The Nature of Zircon Inheritance In Two Granite Plutons. Earth Sci. 1992, 83, 459–471. [Google Scholar]
- Rubatto, D.; Gebauer, D. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples From The Western Alps. Cathodoluminescence In Geosciences; Springer: Berlin/Heidelberg, Germany, 2000; pp. 373–400. [Google Scholar]
- Möller, A.; O’Brien, P.J.; Kennedy, A.; Kroner, A. Linking Growth Episodes of Zircon and Metamorphic Textures To Zircon Chemistry: An Example From The Ultrahigh-Temperature Granulites of Rogaland (Sw Norway). Geol. Soc. Lond. Spec. Publ. 2003, 220, 65–81. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M.; Armstrong, R.L.; Tarney, J. The composition and evolution of the continental crust: Rare earth element evidence from sedimentary rocks [and discussion]. Philosophical Transactions of the Royal Society of London. Ser. A Math. Phys. Sci. 1981, 301, 381–399. [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: London, UK, 1985; pp. 57–72. [Google Scholar]
- Wedepohl, K.H. Der primäre Erdmantel und die durch Krustenbildung verarmte Mantelzusammensetzung. Fortschr Min. 1981, 59, 203–205. [Google Scholar]
- Weaver, B.L.; Tarney, J. Empirical approach to estimating the composition of the continental crust. Nature 1984, 310, 575–577. [Google Scholar] [CrossRef]
- Barth, M.G.; McDonough, W.F.; Rudnick, R.L. Tracking the budget of Nb and Ta in the continental crust. Chem. Geol. 2000, 165, 197–213. [Google Scholar] [CrossRef]
- Sun, S.S.; Mcdonough, W.F. Chemical and Isotopic Systematics of Oceanic Basalits: Implications for Mantle Composition and Processes. In Mamgmatis In The Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society Special Publications: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Condie, K.C. Mafic crustal xenoliths and the origin of the lower continental crust. Lithos 1999, 46, 95–101. [Google Scholar] [CrossRef]
- Davies, G.R.; Macdonald, R. Crustal influences in the petrogenesis of the Naivasha basalt-comendite complex: Combined trace element and Sr-Nd-Pb isotope constraints. J. Pet. 1987, 28, 1009–1031. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Hofmann, A.W.; Jochum, K.P.; Seufert, M.; White, W.M. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth Planet. Sci. Lett. 1986, 79, 33–45. [Google Scholar] [CrossRef]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Defant, M.J. Reply for comment by R. Conner on the “Evidence suggests slab melting in arc magmas” by M. Defant and P. Kepezhinskas (EOS, 2001, 82:65, 68-69). Eos Trans. Am. Geophys. Union 2002, 66, 256–257. [Google Scholar] [CrossRef]
- Kay, S.M.; Ramos, V.A.; Marquez, M. Evidence in Cerro Pampa volcanic rocks of slab melting prior to ridge trench collision in southern South America. J. Geol. 1993, 101, 703–714. [Google Scholar] [CrossRef]
- Yogodzinski, G.M.; Kay, R.W.; Volynets, O.N.; Koloskov, A.V.; Kay, S.M. Magnesian andesite in the western Aleutian Komandorsky region: Implications for slab melting and processes in the mantle wedge. Geol. Soc. Am. 1995, 107, 505–519. [Google Scholar] [CrossRef]
- Stern, C.R.; Kilian, R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Austral volcanic zone. Contrib Min. Pet. 1996, 123, 263–281. [Google Scholar] [CrossRef]
- Rapp, R.P.; Shimizu, N.; Norman, M.D.; Applegate, G.S. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chem. Geol. 1999, 160, 335–356. [Google Scholar] [CrossRef]
- Peacock, S.M.; Rushmer, T.; Thompson, A.B. Partial melting of subducting oceanic crust. Earth Planet. Sci. Lett. 1994, 121, 227–244. [Google Scholar] [CrossRef]
- Muir, R.J.; Weaver, S.D.; Bradshaw, J.D.; Eby, G.N.; Evans, J.A. The Cretaceous Separation Point batholith, New Zealand: Granitoid magmas formed by melting of mafic lithosphere. J. Geol. Soc. 1995, 152, 689–701. [Google Scholar] [CrossRef]
- Petford, N.; Atherton, M. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru. J. Petrol. 1996, 37, 1491–1521. [Google Scholar] [CrossRef]
- Kemp, A.I.S.; Hawkesworth, C.J.; Foster, G.L.; Paterson, B.A.; Woodhead, J.D.; Hergt, J.M.; Whitehouse, M.J. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science 2007, 315, 980–983. [Google Scholar] [CrossRef] [PubMed]
- Whalen, J.B.; Hildebrand, R.S. Trace element discrimination of arc, slab failure, and A-type granitic rocks. Lithos 2019, 348–349, 105179. [Google Scholar] [CrossRef]
- DePaolo, D.J. Age dependence of the composition of continental crust: Evidence from Nd isotopic variations in granitic rocks. Earth Planet. Sci. Lett. 1988, 90, 263–271. [Google Scholar] [CrossRef]
- Landoll, J.D.; Foland, K.A. The formation of quartz syenite by crustal contamination at Mont Shefford and other Montere-gian complexes, Quebec. Can. Mineral. 1996, 34, 301–324. [Google Scholar]
- Chen, J.F.; Jahn, B.M. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics 1998, 284, 101–133. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Wang, Z.G.; Zou, T.R.; Masuda, A. The REE, isotopic composition of O, Pb, Sr and Nd and diagenetic model of granitoids in Altay region. In New Improve-Ment of Solid Geosciences in Northern Xinjiang; Tu, G.Z., Ed.; Science Press: Beijing, China, 1993; pp. 239–266. (In Chinese) [Google Scholar]
- Zhao, Z.H.; Wang, Z.G.; Zou, T.R.; Masuda, A. Study on petrogenesis of alkali-rich intrusive rocks of Ulungur, Xinjiang. Geochimica 1996, 25, 205–220, (In Chinese with English abstract). [Google Scholar]
- Chen, J.F.; Zhou, T.X.; Xie, Z.; Zhang, X.; Guo, X.S. Formation of positive εNd(T) granitoids from the Alataw Mountains, Xinjiang, China, by mixing and fractional crystallization: Implication for Phanernozoic crustal growth. Tectonophysics 2000, 328, 53–67. [Google Scholar] [CrossRef]
- Wu, S.P.; Wu, C.L.; Wang, M.Y.; Chen, Q.L.; Wooden, J.L. SHRIMP U-Pb zircon dating of the Tula granite pluton on the south side of the Altun Fault and its geological implications. Acta Geol. Sin.-Engl. Ed. 2008, 82, 409–414. [Google Scholar]
- Leake, B.E. Granite magmas: Their sources, initiation and consequences of emplacement. J. Geol. Soc. 1990, 147, 579–589. [Google Scholar] [CrossRef]
- Kula, J.L.; Spell, T.L.; Wells, M.L. Syntectonic Intrusion and Exhumation of a Mesozoic Plutonic Complex in the Late Cretaceous, Granite Mountains, Southeastern California. 2002. Available online: https://www.researchgate.net/publication/313524963_Syntectonic_intrusion_and_exhumation_of_a_Mesozoic_plutonic_complex_in_the_Late_Cretaceous_Granite_Mountains_southeastern_California (accessed on 31 January 2002).
- Aranguren, A.; Tubia, J.; Bouchez, J.L.; Vigneresse, J.L. The Guitiriz granite, Variscan belt of northern Spain: Extension-controlled emplacement of magma during tectonic escape. Earth Planet. Sci. Lett. 1996, 139, 165–176. [Google Scholar] [CrossRef]
- Foster, D.A.; Schafer, C.; Fanning, C.M.; Hyndman, D.W. Relationships between crustal partial melting, plutonism, orogeny, and exhumation: Idaho–Bitterroot batholith. Tectonophysics 2001, 342, 313–350. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Hellman, P.L.; Green, T.H. The role of sphene as an accessory phase in the high-pressure partial melting of hydrous mafic compositions. Earth Planet. Sci. Lett. 1979, 42, 191–201. [Google Scholar] [CrossRef]
- Sen, C.; Dunn, T. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: Implications for the origin of adakites. Contrib. Mineral. Petrol. 1994, 117, 394–409. [Google Scholar] [CrossRef]
- Liu, J.; Bohlen, S.R.; Ernst, W.G. Stability of hydrous phases in subducting oceanic crust. Earth Planet. Sci. Lett. 1996, 143, 161–171. [Google Scholar] [CrossRef]
- Klemme, S.; Blundy, J.D.; Wood, B.J. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochim. Et Cosmochim. Acta 2002, 66, 3109–3123. [Google Scholar] [CrossRef]
- Xiao, L.; Clemens, J.D. Origin of potassic (C-type) adakite magmas: Experimental and field constraints. Lithos 2007, 95, 399–414. [Google Scholar] [CrossRef]
- Xiong, X.L.; Adam, J.; Green, T.H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chem. Geol. 2005, 218, 339–359. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Li, C.D.; Wang, Y.L.; Jin, W.J.; Jia, X.Q. Granite classification on the basis of Sr and Yb contents and its implications. Acta Petrol. Sin. 2006, 22, 2249–2269, (In Chinese with English abstract). [Google Scholar]
- Cui, J.W.; Tang, Z.M.; Deng, J.F.; Yue, Y.J.; Meng, L.S.; Yu, Q.F.; Li, J.X.; Lai, S.C.; Qi, L.; Guo, G.C.; et al. Altyn Tagh Fault System; Geological Publishing House: Beijing, China, 1999; pp. 39–49. (In Chinese) [Google Scholar]
- Ma, T.Q.; Wang, X.H. Characteristic and geology meaning of alkaline calcium invade-rock zone at the SW Fringe of Alltun Massif. Hunan Geol. 2002, 21, 12–16, (In Chinese with English abstract). [Google Scholar]
- Liu, L.; Che, Z.C.; Wang, Y.; Luo, J.H.; Wang, J.Q.; Gao, Z.J. The evidence of Sm-Nd isochron age for the early Paleozoic ophiolite in Mangya area, Altun Mountains. Chin. Sci. Bull. 1998, 43, 754–756, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Yang, J.S.; Shi, R.D.; Wu, C.L.; Su, D.C.; Chen, S.Y.; Wang, X.B.; Woonden, J. Petrology and SHRIMP age of the Hongliugou ophiolite at Milan, north Altun, at the northern margin of the Tibetan plateau. Acta Petrol. Sin. 2008, 24, 1567–1584, (In Chinese with English abstract). [Google Scholar]
- Liu, L.; Wang, C.; Cao, Y.T.; Chen, D.L.; Kang, L.; Yang, W.Q.; Zhu, X.H. Geochronology of multi-stage metamorphic events: Constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW China. Lithos 2012, 136, 10–26. [Google Scholar] [CrossRef]
- Liu, L.; Wang, C.; Chen, D.L.; Zhang, A.D.; Luo, J.H. Petrology and geochronology of HP–UHP rocks from the South Altyn Tagh, northwestern China. J. Asian Earth Sci. 2009, 35, 232–244. [Google Scholar] [CrossRef]
- Yang, J.S.; Xu, Z.Q.; Zhang, J.X.; Sun, S.G.; Wu, C.L.; Shi, R.D.; Li, H.B.; Mauruce, B. Early Paleozoic North Qaidam UHP metamorphic belt on the north-eastern Tibetan plateau and a paired subduction model. Terra Nova 2002, 14, 397–404. [Google Scholar]
- Wu, C.L.; Wooden, J.L.; Robinson, P.T.; Gao, Y.H.; Wu, S.P. Geocchemistry and zircon SHRIMP U-Pb dating of granitoids from the west segment of the North Qaidam. Sci. China Earth Sci. 2009, 52, 1771–1790, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Hao, G.J.; Lu, S.N.; Wang, H.C.; Xin, H.T.; Li, H.K. The pre-Devonian tectonic framework in the northern margin of Qaidam basin and geological evolution of Olongbuluck palaeo block. Earth Sci. Front. 2004, 11, 115–122, (In Chinese with English abstract). [Google Scholar]
- Ge, X.H.; Ye, H.W.; Liu, Y.J.; Liu, J.L.; Pan, H.X.; Ren, S.M. Research Progress of Altyn Fault In Western China. Earth Sci. Front. 2000, 7, 243–244, (In Chinese with English abstract). [Google Scholar]
- Chen, X.H.; Gehrels, G.; Wang, X.F.; Yang, F.; Chen, Z.L. Granite from north Altyn Tagh, NW China: U-Pb geochronology and tectonic setting. Bull. Mineral. Petrol. Geochem. 2003, 22, 294–298, (In Chinese with English abstract). [Google Scholar]
- Zuo, G.C.; Liu, J.C. The evolution of tectonic of early Paleozoic in north Qilian range, China. Sci. Geol. Sin. 1987, 1, 14–24, (In Chinese with English abstract). [Google Scholar]
- Feng, Y.M.; He, S.P. Geotectonics and Orogeny of the Qilian Mountains, China; Geological Publishing House: Beijing, China, 1996; pp. 84–101. (In Chinese) [Google Scholar]
- Wilde, S.A.; Zhao, G.; Sun, M. Development of the North China Craton during the late Archaean and its final amalgamation at 1.8 Ga: Some speculations on its position within a global Palaeoproterozoic supercontinent. Gondwana Res. 2002, 5, 85–94. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Jiang, C.F.; Yan, Q.R.; Yan, Z. Accretion and collision orogenesis in the West Kunlun Mountains. China. Gondwana Res. 2001, 4, 843–844. [Google Scholar]
- Tung, K.; Yang, H.J.; Yang, H.Y.; Liu, D.; Zhang, J.; Wan, Y.; Tseng, C.Y. SHRIMP U-Pb geochronology of the zircons from the Precambrian basement of the Qilian Block and its geological significances. Chin. Sci. Bull. 2007, 52, 2687–2701, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Zhu, B.Q. Geochemical evidence for the southern China block being a part of Gondwana. J. Southeast Asia Sci. 1994, 9, 319–329. [Google Scholar]
- Wu, F.Y.; Zhao, G.C.; Wilde, S.A.; Sun, D. Nd isotopic constraints on crustal formation in the north China craton. J. Asian Earth Sci. 2005, 24, 523–545. [Google Scholar] [CrossRef]
Lithology | Hua1 | Hua2 | Hua4 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | YQ-57 | YQ-58 | YQ-59 | YQ-60 | YQ-61 | YQ-62 | YQ-63 | YQ-81 | YQ-82 | YQ-83 | YQ-84 | YQ-89 | YQ-90 | YQ-91 | YQ-92 |
Major elements (%) | |||||||||||||||
SiO2 | 67.78 | 68.48 | 67.81 | 68.87 | 68.16 | 68.35 | 68.44 | 52.41 | 53.32 | 52.43 | 52.54 | 67.28 | 66.43 | 63.64 | 67.01 |
TiO2 | 0.41 | 0.40 | 0.48 | 0.42 | 0.44 | 0.42 | 0.41 | 1.58 | 1.40 | 1.57 | 1.57 | 0.50 | 0.49 | 0.55 | 0.48 |
Al2O3 | 15.77 | 15.29 | 15.43 | 15.26 | 15.41 | 15.52 | 15.45 | 19.69 | 19.66 | 19.67 | 19.68 | 16.07 | 16.34 | 16.62 | 16.18 |
TFe2O3 | 3.69 | 3.62 | 4.01 | 3.67 | 3.83 | 3.68 | 3.60 | 9.23 | 8.71 | 9.01 | 8.91 | 3.95 | 3.83 | 4.34 | 3.72 |
MnO | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.09 | 0.11 | 0.09 | 0.09 | 0.03 | 0.04 | 0.06 | 0.04 |
MgO | 1.22 | 1.19 | 1.38 | 1.20 | 1.31 | 1.25 | 1.21 | 3.18 | 2.99 | 3.25 | 3.14 | 1.81 | 1.73 | 2.50 | 2.09 |
CaO | 3.80 | 3.48 | 3.72 | 3.39 | 3.65 | 3.66 | 3.56 | 8.07 | 7.97 | 8.11 | 7.91 | 1.65 | 2.08 | 2.93 | 1.82 |
Na2O | 3.79 | 3.60 | 3.53 | 3.57 | 3.65 | 3.68 | 3.65 | 4.81 | 4.75 | 4.91 | 4.77 | 4.13 | 4.39 | 3.50 | 4.41 |
K2O | 2.71 | 3.06 | 2.83 | 3.06 | 3.02 | 2.99 | 3.01 | 0.64 | 0.63 | 0.65 | 0.68 | 3.77 | 3.63 | 3.80 | 3.61 |
P2O5 | 0.11 | 0.13 | 0.15 | 0.13 | 0.14 | 0.13 | 0.13 | 0.23 | 0.24 | 0.24 | 0.22 | 0.14 | 0.14 | 0.12 | 0.14 |
LOI | 0.95 | 0.90 | 0.94 | 0.82 | 0.61 | 0.67 | 0.77 | 0.31 | 0.54 | 0.34 | 0.29 | 0.95 | 1.06 | 1.47 | 0.86 |
TOTAL | 100.29 | 100.21 | 100.34 | 100.45 | 100.28 | 100.41 | 100.29 | 100.24 | 100.32 | 100.27 | 99.8 | 100.28 | 100.16 | 99.53 | 100.36 |
Mg# | 37.24 | 37.10 | 38.18 | 36.98 | 38.03 | 37.87 | 37.62 | 38.20 | 38.12 | 39.29 | 38.74 | 45.12 | 44.77 | 50.83 | 50.20 |
A/CNK | 1.07 | 1.05 | 1.07 | 1.06 | 1.04 | 1.05 | 1.05 | 1.06 | 1.07 | 1.04 | 1.07 | 1.15 | 1.11 | 1.12 | 1.13 |
Trace elements (×10−6) | |||||||||||||||
Rb | 90.18 | 105.55 | 95.42 | 107.30 | 106.60 | 105.01 | 105.51 | 16.78 | 17.93 | 16.61 | 18.61 | 146.57 | 140.96 | 190.47 | 164.27 |
Cs | 2.44 | 2.92 | 2.50 | 3.15 | 3.44 | 3.31 | 3.36 | 0.88 | 0.89 | 0.87 | 0.91 | 4.52 | 4.31 | 6.09 | 5.11 |
Sr | 226.50 | 211.00 | 218.50 | 205.30 | 210.30 | 213.10 | 210.50 | 585.70 | 573.90 | 584.60 | 593.10 | 172.40 | 197.90 | 217.30 | 194.90 |
Ba | 690.00 | 702.30 | 777.70 | 685.20 | 700.70 | 679.20 | 666.00 | 191.40 | 177.60 | 194.00 | 203.50 | 1066.10 | 993.00 | 1015.30 | 1103.40 |
Sc | 7.81 | 8.08 | 9.25 | 8.28 | 8.77 | 8.01 | 8.23 | 27.04 | 24.30 | 27.61 | 25.72 | 10.40 | 10.62 | 9.33 | 10.30 |
Nb | 14.02 | 14.82 | 16.40 | 15.90 | 15.31 | 14.68 | 14.69 | 11.41 | 11.29 | 11.34 | 11.80 | 13.81 | 13.30 | 13.59 | 13.18 |
Ta | 0.98 | 1.11 | 1.14 | 1.28 | 1.10 | 1.14 | 1.08 | 0.53 | 0.60 | 0.55 | 0.57 | 1.00 | 1.00 | 0.93 | 0.95 |
Zr | 196.99 | 200.86 | 195.42 | 194.65 | 223.69 | 192.78 | 230.61 | 213.65 | 227.58 | 215.93 | 194.50 | 171.99 | 184.44 | 143.45 | 155.80 |
Hf | 4.82 | 5.08 | 4.91 | 5.04 | 5.66 | 4.89 | 5.72 | 4.86 | 5.23 | 4.91 | 4.42 | 4.42 | 4.70 | 3.64 | 4.07 |
U | 1.59 | 1.62 | 1.75 | 1.61 | 1.50 | 1.46 | 1.89 | 0.54 | 0.77 | 0.58 | 0.44 | 3.48 | 3.02 | 2.50 | 1.85 |
Th | 13.76 | 19.08 | 18.32 | 20.48 | 18.26 | 17.15 | 19.12 | 2.59 | 2.59 | 2.41 | 2.99 | 14.53 | 16.05 | 9.89 | 13.48 |
Cr | 7.12 | 7.69 | 8.68 | 6.81 | 7.53 | 7.16 | 6.70 | 5.25 | 3.67 | 4.14 | 5.07 | 13.32 | 10.51 | 9.50 | 10.30 |
Ni | 6.15 | 6.34 | 7.21 | 5.88 | 6.47 | 6.20 | 6.15 | 8.80 | 6.65 | 7.46 | 9.45 | 11.71 | 10.71 | 11.99 | 9.59 |
La | 39.88 | 47.78 | 49.15 | 55.70 | 51.45 | 41.47 | 48.44 | 22.45 | 21.54 | 22.81 | 24.04 | 35.27 | 43.04 | 39.44 | 28.11 |
Ce | 71.71 | 83.73 | 90.00 | 99.07 | 89.04 | 73.19 | 84.75 | 56.02 | 55.19 | 56.33 | 56.94 | 61.80 | 72.08 | 64.31 | 49.20 |
Pr | 7.01 | 8.53 | 8.96 | 9.72 | 8.97 | 7.48 | 8.42 | 7.93 | 8.01 | 8.00 | 7.88 | 6.44 | 7.44 | 6.40 | 5.17 |
Nd | 23.53 | 28.52 | 30.33 | 32.69 | 30.10 | 25.57 | 28.36 | 36.66 | 38.06 | 36.75 | 35.55 | 22.45 | 25.07 | 22.19 | 18.42 |
Sm | 3.92 | 4.70 | 5.06 | 5.20 | 4.90 | 4.39 | 4.60 | 8.63 | 9.04 | 8.74 | 8.27 | 3.89 | 4.19 | 3.65 | 3.37 |
Eu | 1.09 | 1.04 | 1.11 | 1.03 | 1.07 | 1.05 | 1.04 | 2.40 | 2.36 | 2.42 | 2.37 | 0.82 | 0.95 | 1.58 | 0.82 |
Gd | 3.58 | 4.23 | 4.55 | 4.59 | 4.36 | 4.04 | 4.12 | 8.43 | 8.67 | 8.60 | 8.10 | 3.45 | 3.83 | 3.27 | 3.20 |
Tb | 0.53 | 0.62 | 0.67 | 0.67 | 0.64 | 0.60 | 0.60 | 1.30 | 1.35 | 1.33 | 1.25 | 0.52 | 0.57 | 0.46 | 0.50 |
Dy | 3.25 | 3.74 | 4.04 | 3.99 | 3.78 | 3.65 | 3.57 | 7.79 | 7.96 | 7.94 | 7.44 | 3.13 | 3.46 | 2.66 | 3.11 |
Ho | 0.65 | 0.75 | 0.80 | 0.80 | 0.76 | 0.74 | 0.73 | 1.54 | 1.59 | 1.57 | 1.48 | 0.64 | 0.70 | 0.55 | 0.65 |
Er | 1.91 | 2.24 | 2.36 | 2.41 | 2.27 | 2.18 | 2.13 | 4.32 | 4.45 | 4.37 | 4.13 | 1.92 | 2.10 | 1.72 | 1.91 |
Tm | 0.30 | 0.35 | 0.37 | 0.38 | 0.35 | 0.35 | 0.34 | 0.62 | 0.64 | 0.62 | 0.59 | 0.30 | 0.33 | 0.28 | 0.30 |
Yb | 1.99 | 2.32 | 2.42 | 2.49 | 2.33 | 2.29 | 2.23 | 3.75 | 3.97 | 3.77 | 3.62 | 2.03 | 2.15 | 2.01 | 1.95 |
Lu | 0.31 | 0.36 | 0.37 | 0.38 | 0.36 | 0.35 | 0.35 | 0.55 | 0.58 | 0.55 | 0.52 | 0.32 | 0.34 | 0.33 | 0.30 |
Y | 19.41 | 22.74 | 23.82 | 24.23 | 22.90 | 22.25 | 21.88 | 42.36 | 43.32 | 42.57 | 40.10 | 18.71 | 20.98 | 17.05 | 19.87 |
∑REE | 569.67 | 672.88 | 708.91 | 765.86 | 708.83 | 606.44 | 670.30 | 701.28 | 710.84 | 708.67 | 692.53 | 519.60 | 600.28 | 543.21 | 441.35 |
(La/Yb)N | 14.39 | 14.77 | 14.59 | 16.05 | 15.82 | 12.97 | 15.56 | 4.29 | 3.89 | 4.33 | 4.77 | 12.46 | 14.39 | 14.09 | 10.33 |
δEu | 0.89 | 0.72 | 0.71 | 0.64 | 0.71 | 0.76 | 0.73 | 0.86 | 0.82 | 0.85 | 0.89 | 0.68 | 0.72 | 1.40 | 0.76 |
Sample | 87Sr/86Sr | 2s | Sr (×10−6) | Rb (×10−6) | 86Sr (×10−6) | 87Rb/86Sr | (87Sr/86Sr)i | U–Pb Age/Ga | |||
---|---|---|---|---|---|---|---|---|---|---|---|
YQ-57 | 0.718408 | 0.000121 | 227 | 90.2 | 0.0985 | 1.153 | 0.712356 | 0.3687 | |||
YQ-63 | 0.719577 | 0.000114 | 210 | 106 | 0.0985 | 1.452 | 0.711936 | 0.3687 | |||
YQ-83 | 0.706211 | 0.000018 | 585 | 16.6 | 0.0986 | 0.082 | 0.705905 | 0.2618 | |||
YQ-84 | 0.706309 | 0.000023 | 593 | 18.6 | 0.0986 | 0.091 | 0.705971 | 0.2618 | |||
YQ-91 | 0.729009 | 0.000021 | 217 | 190 | 0.0984 | 2.542 | 0.719528 | 0.2622 | |||
YX-1 | 0.732882 | 0.000124 | 144 | 154 | 0.0984 | 3.094 | 0.721339 | 0.2622 | |||
Sample | 143Nd/144Nd | 2s | Nd (×10−6) | Sm (×10−6) | 144Nd (×10−6) | 147Sm/144Nd | (143Nd/144Nd)i | εNd(t) | T2DM (Ga) | tCHUR (Ga) | |
YQ-57 | 0.512070 | 0.000013 | 23.5 | 3.92 | 0.2380 | 0.1006 | 0.511827 | −6.555202 | 1.6 | 0.900661 | |
YQ-63 | 0.512068 | 0.000007 | 28.4 | 4.60 | 0.2380 | 0.9080 | 0.511815 | −6.790724 | 1.6 | 0.905239 | |
YQ-83 | 0.512587 | 0.000008 | 36.7 | 8.74 | 0.2380 | 0.1437 | 0.512341 | 0.778167 | 1.0 | 0.146910 | |
YQ-84 | 0.512584 | 0.000007 | 35.6 | 8.27 | 0.2380 | 0.1406 | 0.512343 | 0.824325 | 1.0 | 0.146764 | |
YQ-91 | 0.512032 | 0.000006 | 22.2 | 3.65 | 0.2380 | 0.0993 | 0.511861 | −8.569046 | 1.7 | 0.948493 | |
YX-1 | 0.512072 | 0.000006 | 29.2 | 4.83 | 0.2380 | 0.1001 | 0.511899 | −7.817007 | 1.7 | 0.893627 | |
Sample | 176Hf/177Hf | 2s | Lu (×10−6) | Hf (×10−6) | 177Hf (×10−6) | 176Hf (10−6) | 176Lu | 176Lu/177Hf | (176Hf/177Hf)i | εHf(t) | TDM (Ga) |
YQ-83 | 0.282543 | 0.000009 | 0.35 | 5.72 | 0.185953 | 0.052604 | 0.02584 | 0.0084777 | 0.28248 | −2.07584 | 1.4 |
Sample | Lithology | ||||||||||
YQ-83 | Quartz diorite | ||||||||||
YQ-91 | Quartz mica porphyritic diorite |
Spots | 238U (×10−6) | 232Th (×10−6) | Th/U | Isotope Ratio | Isotope Age | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
206Pb/238U | 1σ | 207Pb/235U | 1σ | 207Pb/206Pb | 1σ | 206Pb/238U | 1σ | 207Pb/235U | 1σ | ||||
YQ57-01 | 315 | 190 | 0.60 | 0.05889 | 0.00087 | 0.48024 | 0.01794 | 0.05914 | 0.00222 | 369 | 5 | 398 | 12 |
YQ57-02 | 350 | 116 | 0.33 | 0.06042 | 0.00088 | 0.43998 | 0.01578 | 0.05280 | 0.0019 | 378 | 5 | 370 | 11 |
YQ57-03 | 150 | 97 | 0.65 | 0.06003 | 0.00108 | 0.46993 | 0.03886 | 0.05678 | 0.00481 | 376 | 7 | 391 | 27 |
YQ57-05 | 316 | 274 | 0.87 | 0.05920 | 0.00087 | 0.46580 | 0.01765 | 0.05706 | 0.00217 | 371 | 5 | 388 | 12 |
YQ57-06 | 339 | 224 | 0.66 | 0.05871 | 0.00087 | 0.42920 | 0.01595 | 0.05301 | 0.00198 | 368 | 5 | 363 | 11 |
YQ57-07 | 252 | 232 | 0.92 | 0.06073 | 0.00090 | 0.47908 | 0.01839 | 0.05721 | 0.00221 | 380 | 5 | 397 | 13 |
YQ57-08 | 355 | 326 | 0.92 | 0.05921 | 0.00087 | 0.43751 | 0.01630 | 0.05359 | 0.00201 | 371 | 5 | 368 | 12 |
YQ57-09 | 293 | 223 | 0.76 | 0.05810 | 0.00086 | 0.45036 | 0.01849 | 0.05621 | 0.00232 | 364 | 5 | 378 | 13 |
YQ57-12 | 361 | 204 | 0.56 | 0.06005 | 0.00089 | 0.48010 | 0.01811 | 0.05798 | 0.00220 | 376 | 5 | 398 | 12 |
YQ57-13 | 439 | 288 | 0.66 | 0.05781 | 0.00085 | 0.42800 | 0.01604 | 0.05369 | 0.00202 | 362 | 5 | 362 | 11 |
YQ57-15 | 284 | 195 | 0.69 | 0.06071 | 0.00091 | 0.45580 | 0.01880 | 0.05445 | 0.00226 | 380 | 6 | 381 | 13 |
YQ57-16 | 348 | 297 | 0.85 | 0.05931 | 0.00089 | 0.47418 | 0.01820 | 0.05798 | 0.00224 | 371 | 5 | 394 | 13 |
YQ57-17 | 290 | 173 | 0.60 | 0.05908 | 0.00091 | 0.43250 | 0.01788 | 0.05308 | 0.00222 | 370 | 6 | 365 | 13 |
YQ57-18 | 427 | 293 | 0.69 | 0.05886 | 0.00088 | 0.44790 | 0.01736 | 0.05518 | 0.00215 | 369 | 5 | 376 | 12 |
YQ57-19 | 273 | 157 | 0.57 | 0.05829 | 0.00088 | 0.46156 | 0.01955 | 0.05742 | 0.00245 | 365 | 5 | 385 | 14 |
YQ57-20 | 440 | 415 | 0.94 | 0.05592 | 0.00084 | 0.45384 | 0.01804 | 0.05886 | 0.00236 | 351 | 5 | 380 | 13 |
YQ57-21 | 404 | 259 | 0.64 | 0.05727 | 0.00086 | 0.43694 | 0.01781 | 0.05533 | 0.00227 | 359 | 5 | 368 | 13 |
YQ57-22 | 413 | 271 | 0.66 | 0.05881 | 0.00088 | 0.43850 | 0.01720 | 0.05407 | 0.00214 | 368 | 5 | 369 | 12 |
YQ57-23 | 162 | 108 | 0.67 | 0.05978 | 0.00094 | 0.47134 | 0.02617 | 0.05717 | 0.00320 | 374 | 6 | 392 | 18 |
YQ57-25 | 330 | 230 | 0.70 | 0.05761 | 0.00090 | 0.42060 | 0.01812 | 0.05295 | 0.00231 | 361 | 5 | 356 | 13 |
YQ81-01 | 177 | 153 | 0.86 | 0.04155 | 0.00062 | 0.29453 | 0.01115 | 0.05141 | 0.00196 | 262 | 4 | 262 | 9 |
YQ81-02 | 239 | 228 | 0.95 | 0.04167 | 0.00060 | 0.29783 | 0.01107 | 0.05183 | 0.00193 | 263 | 4 | 265 | 9 |
YQ81-03 | 236 | 281 | 1.19 | 0.04182 | 0.00061 | 0.29759 | 0.01127 | 0.05161 | 0.00196 | 264 | 4 | 265 | 9 |
YQ81-04 | 99 | 72 | 0.73 | 0.04197 | 0.00066 | 0.29891 | 0.01434 | 0.05165 | 0.00250 | 265 | 4 | 266 | 11 |
YQ81-05 | 151 | 123 | 0.81 | 0.04105 | 0.00061 | 0.29311 | 0.01254 | 0.05178 | 0.00223 | 259 | 4 | 261 | 10 |
YQ81-06 | 217 | 204 | 0.94 | 0.04174 | 0.00061 | 0.30703 | 0.01496 | 0.05335 | 0.00260 | 264 | 4 | 272 | 12 |
YQ81-07 | 86 | 62 | 0.72 | 0.04313 | 0.00069 | 0.30454 | 0.02352 | 0.05120 | 0.00397 | 272 | 4 | 270 | 18 |
YQ81-08 | 149 | 121 | 0.81 | 0.04087 | 0.00062 | 0.28327 | 0.01129 | 0.05026 | 0.00202 | 258 | 4 | 253 | 9 |
YQ81-09 | 49 | 17 | 0.35 | 0.04204 | 0.00075 | 0.29870 | 0.02003 | 0.05152 | 0.00349 | 265 | 5 | 265 | 16 |
YQ81-10 | 150 | 129 | 0.86 | 0.04095 | 0.00062 | 0.29902 | 0.01291 | 0.05295 | 0.00230 | 259 | 4 | 266 | 10 |
YQ81-11 | 136 | 82 | 0.60 | 0.04043 | 0.00062 | 0.28644 | 0.01301 | 0.05138 | 0.00235 | 255 | 4 | 256 | 10 |
YQ81-12 | 120 | 103 | 0.85 | 0.04057 | 0.00065 | 0.28818 | 0.01395 | 0.05151 | 0.00252 | 256 | 4 | 257 | 11 |
YQ81-13 | 135 | 113 | 0.84 | 0.04076 | 0.00063 | 0.29006 | 0.01336 | 0.05161 | 0.00240 | 258 | 4 | 259 | 11 |
YQ81-14 | 125 | 108 | 0.87 | 0.04255 | 0.00066 | 0.30327 | 0.01373 | 0.05169 | 0.00236 | 269 | 4 | 269 | 11 |
YQ81-15 | 105 | 87 | 0.82 | 0.04228 | 0.00068 | 0.31220 | 0.01887 | 0.05355 | 0.00326 | 267 | 4 | 276 | 15 |
YQ81-16 | 159 | 136 | 0.85 | 0.04097 | 0.00064 | 0.29132 | 0.01328 | 0.05156 | 0.00237 | 259 | 4 | 260 | 10 |
YQ81-17 | 130 | 126 | 0.97 | 0.04318 | 0.00067 | 0.29919 | 0.01248 | 0.05024 | 0.00212 | 273 | 4 | 266 | 10 |
YQ81-18 | 175 | 148 | 0.85 | 0.04153 | 0.00062 | 0.29472 | 0.01278 | 0.05146 | 0.00224 | 262 | 4 | 262 | 10 |
YQ81-19 | 154 | 131 | 0.85 | 0.03991 | 0.00061 | 0.28186 | 0.01182 | 0.05122 | 0.00216 | 252 | 4 | 252 | 9 |
YQ81-20 | 161 | 140 | 0.87 | 0.04046 | 0.00062 | 0.29061 | 0.01533 | 0.05209 | 0.00276 | 256 | 4 | 259 | 12 |
YQ81-21 | 125 | 97 | 0.77 | 0.04172 | 0.00066 | 0.29840 | 0.01384 | 0.05187 | 0.00243 | 263 | 4 | 265 | 11 |
YQ81-22 | 117 | 102 | 0.87 | 0.04233 | 0.00066 | 0.30153 | 0.01521 | 0.05166 | 0.00263 | 267 | 4 | 268 | 12 |
YQ81-23 | 55 | 18 | 0.32 | 0.03984 | 0.00075 | 0.28010 | 0.03220 | 0.05099 | 0.00589 | 252 | 5 | 251 | 26 |
YQ81-24 | 114 | 89 | 0.78 | 0.04082 | 0.00066 | 0.28811 | 0.01330 | 0.05119 | 0.00239 | 258 | 4 | 257 | 10 |
YQ81-25 | 40 | 16 | 0.40 | 0.03988 | 0.00083 | 0.28361 | 0.03353 | 0.05157 | 0.00614 | 252 | 5 | 254 | 27 |
YQ81-26 | 83 | 32 | 0.38 | 0.04179 | 0.0007 | 0.29816 | 0.01652 | 0.05175 | 0.00290 | 264 | 4 | 265 | 13 |
YQ81-27 | 100 | 83 | 0.83 | 0.04162 | 0.00067 | 0.29657 | 0.01594 | 0.05168 | 0.00280 | 263 | 4 | 264 | 12 |
YQ81-28 | 135 | 115 | 0.86 | 0.04160 | 0.00065 | 0.29434 | 0.01348 | 0.05131 | 0.00237 | 263 | 4 | 262 | 11 |
YQ81-29 | 76 | 53 | 0.70 | 0.04171 | 0.00073 | 0.29603 | 0.01754 | 0.05147 | 0.00309 | 263 | 5 | 263 | 14 |
YQ81-30 | 141 | 129 | 0.91 | 0.04253 | 0.00067 | 0.30127 | 0.01447 | 0.05138 | 0.00249 | 268 | 4 | 267 | 11 |
YQ81-31 | 195 | 179 | 0.92 | 0.04061 | 0.00062 | 0.28495 | 0.01207 | 0.05088 | 0.00217 | 257 | 4 | 255 | 10 |
YQ81-32 | 234 | 210 | 0.90 | 0.04081 | 0.00061 | 0.28668 | 0.01135 | 0.05095 | 0.00203 | 258 | 4 | 256 | 9 |
YQ81-33 | 49 | 20 | 0.40 | 0.04214 | 0.00079 | 0.29406 | 0.02197 | 0.05061 | 0.00383 | 266 | 5 | 262 | 17 |
YQ81-34 | 124 | 103 | 0.83 | 0.04197 | 0.00067 | 0.29729 | 0.01325 | 0.05137 | 0.00232 | 265 | 4 | 264 | 10 |
YQ81-35 | 223 | 206 | 0.92 | 0.04100 | 0.00062 | 0.29325 | 0.01179 | 0.05187 | 0.00210 | 259 | 4 | 261 | 9 |
YQ81-36 | 55 | 17 | 0.31 | 0.04195 | 0.00077 | 0.31005 | 0.02283 | 0.05360 | 0.00399 | 265 | 5 | 274 | 18 |
YQ81-37 | 77 | 58 | 0.76 | 0.04211 | 0.00073 | 0.30065 | 0.02180 | 0.05178 | 0.00379 | 266 | 5 | 267 | 17 |
YQ81-39 | 129 | 105 | 0.82 | 0.04163 | 0.00066 | 0.29548 | 0.01465 | 0.05147 | 0.00258 | 263 | 4 | 263 | 11 |
YQ81-40 | 133 | 106 | 0.80 | 0.04243 | 0.00067 | 0.31463 | 0.01978 | 0.05378 | 0.00340 | 268 | 4 | 278 | 15 |
YQ81-41 | 167 | 158 | 0.95 | 0.04050 | 0.00063 | 0.29041 | 0.01346 | 0.05200 | 0.00243 | 256 | 4 | 259 | 11 |
YQ81-42 | 45 | 20 | 0.45 | 0.04111 | 0.00081 | 0.28552 | 0.05593 | 0.05037 | 0.00989 | 260 | 5 | 255 | 44 |
YQ81-43 | 128 | 108 | 0.85 | 0.04167 | 0.00066 | 0.29561 | 0.01395 | 0.05144 | 0.00245 | 263 | 4 | 263 | 11 |
YQ81-44 | 290 | 334 | 1.15 | 0.04080 | 0.00061 | 0.29106 | 0.01125 | 0.05173 | 0.00201 | 258 | 4 | 259 | 9 |
YQ89-01 | 96 | 68 | 0.71 | 0.04075 | 0.00065 | 0.28996 | 0.01582 | 0.05161 | 0.00284 | 33 | 4 | 259 | 12 |
YQ89-02 | 153 | 135 | 0.88 | 0.04133 | 0.00060 | 0.29282 | 0.01196 | 0.05138 | 0.00211 | 261 | 4 | 261 | 9 |
YQ89-03 | 158 | 198 | 1.25 | 0.04029 | 0.00060 | 0.28692 | 0.01443 | 0.05164 | 0.00261 | 255 | 4 | 256 | 11 |
YQ89-04 | 70 | 43 | 0.62 | 0.04014 | 0.00067 | 0.28873 | 0.02078 | 0.05217 | 0.00378 | 254 | 4 | 258 | 16 |
YQ89-05 | 75 | 56 | 0.75 | 0.04080 | 0.00077 | 0.28745 | 0.02053 | 0.05110 | 0.00370 | 258 | 5 | 257 | 16 |
YQ89-06 | 92 | 75 | 0.81 | 0.04123 | 0.00066 | 0.29329 | 0.01421 | 0.05159 | 0.00253 | 260 | 4 | 261 | 11 |
YQ89-07 | 154 | 134 | 0.87 | 0.04044 | 0.00062 | 0.29230 | 0.01215 | 0.05242 | 0.00220 | 256 | 4 | 260 | 10 |
YQ89-08 | 79 | 74 | 0.94 | 0.04265 | 0.00071 | 0.30072 | 0.01687 | 0.05113 | 0.00290 | 269 | 4 | 267 | 13 |
YQ89-09 | 101 | 124 | 1.24 | 0.04169 | 0.00065 | 0.28222 | 0.01242 | 0.04909 | 0.00218 | 263 | 4 | 252 | 10 |
YQ89-10 | 86 | 72 | 0.83 | 0.04121 | 0.00070 | 0.29268 | 0.01854 | 0.05151 | 0.00329 | 260 | 4 | 261 | 15 |
YQ89-11 | 112 | 109 | 0.97 | 0.03968 | 0.00061 | 0.28116 | 0.01389 | 0.05139 | 0.00256 | 251 | 4 | 252 | 11 |
YQ89-12 | 133 | 157 | 1.19 | 0.04169 | 0.00063 | 0.30397 | 0.01298 | 0.05288 | 0.00227 | 263 | 4 | 269 | 10 |
YQ89-13 | 107 | 88 | 0.82 | 0.04228 | 0.00066 | 0.29920 | 0.01478 | 0.05133 | 0.00256 | 267 | 4 | 266 | 12 |
YQ89-14 | 120 | 112 | 0.94 | 0.04158 | 0.00064 | 0.29572 | 0.01355 | 0.05157 | 0.00238 | 263 | 4 | 263 | 11 |
YQ89-15 | 71 | 69 | 0.97 | 0.04040 | 0.00075 | 0.28671 | 0.01988 | 0.05147 | 0.00362 | 255 | 5 | 256 | 16 |
YQ89-16 | 50 | 25 | 0.49 | 0.04174 | 0.00077 | 0.29940 | 0.02315 | 0.05202 | 0.00406 | 264 | 5 | 266 | 18 |
YQ89-18 | 277 | 332 | 1.20 | 0.04179 | 0.00060 | 0.29723 | 0.01035 | 0.05158 | 0.00180 | 264 | 4 | 264 | 8 |
YQ89-19 | 110 | 98 | 0.89 | 0.04258 | 0.00068 | 0.29946 | 0.01645 | 0.05100 | 0.00282 | 269 | 4 | 266 | 13 |
YQ89-20 | 130 | 102 | 0.78 | 0.04169 | 0.00064 | 0.29648 | 0.01480 | 0.05158 | 0.00259 | 263 | 4 | 264 | 12 |
YQ89-21 | 156 | 94 | 0.60 | 0.04102 | 0.00061 | 0.29012 | 0.01148 | 0.05129 | 0.00204 | 259 | 4 | 259 | 9 |
YQ89-22 | 150 | 132 | 0.88 | 0.04170 | 0.00064 | 0.29589 | 0.01280 | 0.05145 | 0.00224 | 263 | 4 | 263 | 10 |
YQ89-23 | 137 | 120 | 0.88 | 0.04067 | 0.00063 | 0.28716 | 0.01239 | 0.05120 | 0.00223 | 257 | 4 | 256 | 10 |
YQ89-24 | 159 | 151 | 0.95 | 0.04117 | 0.00063 | 0.29021 | 0.01297 | 0.05112 | 0.00230 | 260 | 4 | 259 | 10 |
YQ89-25 | 220 | 238 | 1.08 | 0.04086 | 0.00060 | 0.29023 | 0.01096 | 0.05151 | 0.00195 | 258 | 4 | 259 | 9 |
YQ89-27 | 148 | 134 | 0.90 | 0.04272 | 0.00063 | 0.30245 | 0.01298 | 0.05134 | 0.00221 | 270 | 4 | 268 | 10 |
YQ89-28 | 122 | 111 | 0.91 | 0.04204 | 0.00064 | 0.29958 | 0.01387 | 0.05168 | 0.00241 | 265 | 4 | 266 | 11 |
YQ89-30 | 94 | 90 | 0.96 | 0.04198 | 0.00067 | 0.29843 | 0.01473 | 0.05155 | 0.00257 | 265 | 4 | 265 | 12 |
YQ89-31 | 97 | 77 | 0.80 | 0.04149 | 0.00065 | 0.29636 | 0.01567 | 0.05180 | 0.00276 | 262 | 4 | 264 | 12 |
YQ89-32 | 88 | 66 | 0.75 | 0.04180 | 0.00068 | 0.29623 | 0.01546 | 0.05139 | 0.00271 | 264 | 4 | 263 | 12 |
YQ89-34 | 58 | 18 | 0.31 | 0.04209 | 0.00074 | 0.29816 | 0.01956 | 0.05137 | 0.00341 | 266 | 5 | 265 | 15 |
YQ89-35 | 83 | 81 | 0.98 | 0.04170 | 0.00068 | 0.29736 | 0.01812 | 0.05172 | 0.00318 | 263 | 4 | 264 | 14 |
YQ89-36 | 58 | 29 | 0.50 | 0.04095 | 0.00078 | 0.28665 | 0.02375 | 0.05076 | 0.00425 | 259 | 5 | 256 | 19 |
YQ89-37 | 47 | 30 | 0.64 | 0.04207 | 0.00086 | 0.31336 | 0.04643 | 0.05402 | 0.00808 | 266 | 5 | 277 | 36 |
YQ89-38 | 253 | 264 | 1.04 | 0.04198 | 0.00060 | 0.30187 | 0.01175 | 0.05215 | 0.00203 | 265 | 4 | 268 | 9 |
YQ89-39 | 107 | 88 | 0.82 | 0.04285 | 0.00067 | 0.30212 | 0.01287 | 0.05113 | 0.00220 | 270 | 4 | 268 | 10 |
YQ89-40 | 183 | 139 | 0.76 | 0.04186 | 0.00062 | 0.29311 | 0.01096 | 0.05078 | 0.00191 | 264 | 4 | 261 | 9 |
YQ89-41 | 167 | 210 | 1.26 | 0.04140 | 0.00061 | 0.29503 | 0.01168 | 0.05168 | 0.00206 | 262 | 4 | 263 | 9 |
YQ89-42 | 210 | 211 | 1.01 | 0.04211 | 0.00061 | 0.28727 | 0.01011 | 0.04947 | 0.00175 | 266 | 4 | 256 | 8 |
YQ89-43 | 218 | 219 | 1.00 | 0.04169 | 0.00061 | 0.29750 | 0.01151 | 0.05175 | 0.00201 | 263 | 4 | 264 | 9 |
YQ89-44 | 106 | 114 | 1.08 | 0.04212 | 0.00068 | 0.31096 | 0.03124 | 0.05354 | 0.00539 | 266 | 4 | 275 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chen, W.; Wang, J.; Jia, Z.; Tang, Q.; Di, P. Petrogenesis and Tectonic Evolution of Huashigou Granitoids in the South Qilian Orogen, NW China: Constraints from Geochronology, Geochemistry, and Sr–Nd–Hf–O Isotopes. Minerals 2024, 14, 71. https://doi.org/10.3390/min14010071
Wang Y, Chen W, Wang J, Jia Z, Tang Q, Di P. Petrogenesis and Tectonic Evolution of Huashigou Granitoids in the South Qilian Orogen, NW China: Constraints from Geochronology, Geochemistry, and Sr–Nd–Hf–O Isotopes. Minerals. 2024; 14(1):71. https://doi.org/10.3390/min14010071
Chicago/Turabian StyleWang, Yuxi, Wanfeng Chen, Jinrong Wang, Zhilei Jia, Qingyan Tang, and Pengfei Di. 2024. "Petrogenesis and Tectonic Evolution of Huashigou Granitoids in the South Qilian Orogen, NW China: Constraints from Geochronology, Geochemistry, and Sr–Nd–Hf–O Isotopes" Minerals 14, no. 1: 71. https://doi.org/10.3390/min14010071
APA StyleWang, Y., Chen, W., Wang, J., Jia, Z., Tang, Q., & Di, P. (2024). Petrogenesis and Tectonic Evolution of Huashigou Granitoids in the South Qilian Orogen, NW China: Constraints from Geochronology, Geochemistry, and Sr–Nd–Hf–O Isotopes. Minerals, 14(1), 71. https://doi.org/10.3390/min14010071