Geochronology and Geochemistry of Volcanic and Intrusive Rocks from the Beizhan Iron Deposit, Western Xinjiang, NW China: Petrogenesis and Tectonic Implications
Abstract
:1. Introduction
2. Geological Setting
3. Analytical Methods
4. Results
4.1. Petrography
4.2. Zircon Geochronology
4.3. Whole-Rock Geochemistry
4.4. Sr–Nd Isotopic Geochemistry
Sample | Rock | Rb (ppm) | Sr (ppm) | 87Rb/86Sr | 87Sr/86Sr | 2σ | ISr | Sm (ppm) | Nd (ppm) | 147Sm/144Nd | 143Nd/144Nd | 2σ | INd | εNd(t) | fSm/Nd | TDM2 (Ma) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
12BZ07 | R | 97.2 | 405 | 0.69 | 0.708772 | 15 | 0.7055 | 3.57 | 18.8 | 0.12 | 0.512668 | 7 | 0.512419 | 4.0 | −0.41 | 760 |
12BZ11 | R | 10.4 | 227 | 0.13 | 0.706282 | 14 | 0.7057 | 2.44 | 14 | 0.11 | 0.51264 | 6 | 0.512412 | 3.9 | −0.46 | 772 |
12BZ14 | R | 10 | 319 | 0.09 | 0.706426 | 11 | 0.7060 | 1.98 | 6.73 | 0.18 | 0.512761 | 10 | 0.512376 | 3.1 | −0.09 | 829 |
12BZ16 | R | 11.9 | 286 | 0.12 | 0.706362 | 15 | 0.7058 | 2.55 | 8.72 | 0.18 | 0.512784 | 5 | 0.512401 | 3.6 | −0.10 | 789 |
12BZ35 | R | 33.1 | 428 | 0.22 | 0.707012 | 15 | 0.7060 | 3.11 | 13.5 | 0.14 | 0.512672 | 9 | 0.512370 | 3.0 | −0.29 | 838 |
12BZ62 | G | 109 | 91.7 | 3.44 | 0.716508 | 15 | 0.7012 | 4.52 | 23.5 | 0.12 | 0.512728 | 6 | 0.512489 | 4.9 | −0.41 | 670 |
12BZ68 | G | 102 | 113 | 2.61 | 0.714482 | 15 | 0.7029 | 5.13 | 27.1 | 0.12 | 0.512733 | 6 | 0.512498 | 5.1 | −0.41 | 656 |
12BZ69 | G | 137 | 85.3 | 4.65 | 0.719238 | 14 | 0.6986 | 4.38 | 24.1 | 0.11 | 0.512717 | 6 | 0.512491 | 5.0 | −0.44 | 666 |
12BZ70 | G | 123 | 71.6 | 4.97 | 0.723082 | 14 | 0.7010 | 5.01 | 28.3 | 0.11 | 0.512707 | 10 | 0.512487 | 4.9 | −0.45 | 673 |
12BZ71 | G | 126 | 80.3 | 4.54 | 0.721549 | 13 | 0.7014 | 5.71 | 33.2 | 0.10 | 0.512707 | 5 | 0.512493 | 5.0 | −0.47 | 663 |
12BZ39 | Dia | 43.7 | 535 | 0.24 | 0.70596 | 12 | 0.7049 | 4.79 | 22.6 | 0.13 | 0.512734 | 11 | 0.512478 | 4.5 | −0.34 | 698 |
12BZ46 | Dia | 37.8 | 652 | 0.17 | 0.705606 | 14 | 0.7049 | 4.94 | 23 | 0.13 | 0.512675 | 5 | 0.512416 | 3.3 | −0.34 | 797 |
12BZ58 | Dia | 39.5 | 717 | 0.16 | 0.705074 | 14 | 0.7044 | 6.26 | 30.1 | 0.13 | 0.512867 | 7 | 0.512616 | 7.2 | −0.36 | 478 |
12BZ59 | Dia | 40.4 | 659 | 0.18 | 0.705037 | 15 | 0.7043 | 7.91 | 44.1 | 0.11 | 0.51284 | 8 | 0.512624 | 7.3 | −0.45 | 466 |
12BZ61 | Dia | 41.9 | 699 | 0.17 | 0.705337 | 14 | 0.7046 | 6.81 | 33.6 | 0.12 | 0.512863 | 5 | 0.512618 | 7.2 | −0.37 | 475 |
12BZ361 | Dio | 60.3 | 323 | 0.54 | 0.707616 | 14 | 0.7053 | 6.36 | 32.9 | 0.12 | 0.512602 | 6 | 0.512372 | 2.3 | −0.40 | 872 |
12BZ362 | Dio | 61.4 | 285 | 0.62 | 0.707666 | 13 | 0.7050 | 5.75 | 27.9 | 0.13 | 0.512627 | 10 | 0.512382 | 2.5 | −0.36 | 856 |
12BZ363 | Dio | 43.6 | 294 | 0.43 | 0.707152 | 13 | 0.7053 | 5.62 | 27.9 | 0.12 | 0.512624 | 6 | 0.512384 | 2.6 | −0.38 | 852 |
5. Discussion
5.1. Magmatic Episodes and Speculative Causative Pluton for the Beizhan Iron Deposit
- (1)
- Spatial association: The iron mineralization is spatially associated with diabase and diorite dykes, indicating a potential connection between the two.
- (2)
- Mineral composition: The assemblage of gangue minerals suggests that the fluid responsible for forming the iron ores had a low SiO2 content but high volatile content. This observation contrasts with the expected characteristics of high SiO2 granite but aligns with the properties of mafic diabase and diorite dykes.
- (3)
- Alteration occurrence: The alteration of chlorite and carbonate is common in diabase dyke, but very few are found in its wall-rock rhyolite, suggesting that diabase is rich in water.
- (4)
- Cutting relationship: Several long and straight epidote-magnetite veins were observed along the edge of the granite (Figure 5o), indicating that the iron mineralization is associated with a later structure-hydrothermal event, rather than being part of the granite itself.
- (5)
- Similar mineralization nearby: The Yikaiharenguo iron deposit is located adjacent to the Beizhan iron deposit, occurring specifically at the contact zone between a diabase stock and limestone (Figure 2).
5.2. Petrogenesis and Source Characteristics
5.2.1. Rhyolite and Granite
5.2.2. Diabase and Diorite Dykes
5.3. Implications for Metallogenic Setting
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sengör, A. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, F.Y.; Chen, B. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 2000, 23, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Kovalenko, V.I.; Yarmolyuk, V.V.; Kovach, V.P.; Kotov, A.B.; Kozakov, I.K.; Salnikova, E.B.; Larin, A.M. Isotopic provinces, mechanism of generation and sources of the continental crust in the Central Asian mobile belt: Geological and isotopic evidence. J. Asian Earth Sci. 2004, 23, 605–627. [Google Scholar] [CrossRef]
- Xiao, W.J.; Han, C.M.; Yuan, C.; Sun, M.; Lin, S.F.; Chen, H.L.; Li, Z.L.; Li, J.L.; Sun, S. Middle Cambrian to Permian subduction–related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. J. Asian Earth Sci. 2008, 32, 102–117. [Google Scholar] [CrossRef]
- Xiao, W.J.; Santosh, M. The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth. Gondwana Res. 2014, 25, 1429–1444. [Google Scholar] [CrossRef]
- Yakubchuk, A. Architecture and mineral deposit settings of the Altaid orogenic collage: A revised model. J. Asian Earth Sci. 2004, 23, 761–779. [Google Scholar] [CrossRef]
- Chen, Y.C.; Liu, D.Q.; Tang, Y.L.; Wang, D.H.; Dong, L.H.; Xu, X.; Wang, X.D. Mineral Resources and Mineralization System in Tianshan, China Vol. 1; Geological Publishing House: Beijing, China, 2008; pp. 246–287. [Google Scholar]
- Yang, F.Q.; Liu, F.; Li, Q.; Geng, X.X. In situ LA–MC–ICP–MS U–Pb geochronology of igneous rocks in the Ashele Basin, Altay orogenic belt, northwest China: Constraints on the timing of polymetallic copper mineralization. J. Asian Earth Sci. 2014, 79, 477–496. [Google Scholar] [CrossRef]
- Gao, J.; Klemd, R.; Zhu, M.T.; Wang, X.S.; Li, J.L.; Wan, B.; Xiao, W.J.; Zeng, Q.D.; Shen, P.; Sun, J.G.; et al. Large-scale porphyry-type mineralization in the Central Asian metallogenic domain: A review. J. Asian Earth Sci. 2018, 165, 7–36. [Google Scholar] [CrossRef]
- Hawkins, T.; Smith, M.P.; Herrington, R.J.; Maslennikov, V.; Boyce, A.J.; Jeffries, T.; Creaser, T.A. The geology and genesis of the iron skarns of the Turgai belt, northwestern Kazakhstan. Ore. Geol. Rev. 2017, 85, 216–246. [Google Scholar] [CrossRef]
- Yang, F.Q.; Mao, J.W.; Liu, F.; Chai, F.M.; Geng, X.X.; Zhang, Z.X.; Guo, X.J.; Liu, G.R. A review of the geological characteristics and mineralization history of iron deposits in the Altay orogenic belt of the Xinjiang, Northwest China. Ore. Geol. Rev. 2013, 54, 1–16. [Google Scholar] [CrossRef]
- Yang, F.Q.; Geng, X.X.; Wang, R.; Zhang, Z.X.; Guo, X.J. A synthesis of mineralization styles and geodynamic settings of the Paleozoic and Mesozoic metallic ore deposits in the Altay Mountains, NW China. J. Asian Earth Sci. 2018, 159, 233–258. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Hong, W.; Jiang, Z.S.; Duan, S.G.; Li, F.M.; Shi, F.P. Geological characteristics and metallogenesis of iron deposits in western Tianshan, China. Ore. Geol. Rev. 2014, 57, 425–440. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Taylor, R.D.; Collins, G.S.; Goryachev, N.A.; Orlandini, O.F. Phanerozoic continental growth and gold metallogeny of Asia. Gondwana Res. 2014, 25, 48–102. [Google Scholar] [CrossRef]
- Gao, J.; Zhu, M.T.; Wang, X.S.; Hong, T.; Li, G.M.; Li, J.L.; Xiao, W.J.; Qin, K.Z.; Zeng, Q.D.; Shen, P.; et al. Large scale porphyry type mineralization in the Central Asian metallogenic domain: Tectonic background, fluid feature and metallogenic deep dynamic mechanism. Acta Geol. Sin. 2019, 93, 24–71. [Google Scholar]
- Gao, J.; Qian, Q.; Long, L.L.; Zhang, X.; Li, J.L.; Su, W. Accretionary orogenic process of Western Tianshan, China. Geol. Bull. China 2009, 28, 1804–1816. [Google Scholar]
- Hou, T.; Zhang, Z.; Pirajno, F.; Santosh, M.; Encarnacion, J.; Liu, J.; Zhao, Z.; Zhang, L. Geology, tectonic settings and iron ore metallogenesis associated with submarine volcanism in China: An overview. Ore. Geol. Rev. 2014, 57, 498–517. [Google Scholar] [CrossRef]
- Li, H.M.; Li, L.X.; Yang, X.Q.; Cheng, Y.B. Types and geological characteristics of iron deposits in China. J. Asian Earth Sci. 2015, 103, 2–22. [Google Scholar] [CrossRef]
- Duan, S.G.; Zhang, Z.H.; Jiang, Z.S.; Zhao, J.; Zhang, Y.P.; Li, F.M.; Tian, J.Q. Geology, geochemistry, and geochronology of the Dunde iron–zinc ore deposit in western Tianshan, China. Ore. Geol. Rev. 2014, 57, 441–461. [Google Scholar] [CrossRef]
- Duan, S.G.; Zhang, Z.H.; Jiang, Z.S.; Li, F.M.; Ren, Y.; Xiao, Y.H.; Shi, W.X. Geochronology and rock geochemistry of volcnaic rocks from Songhu iron deposit in West Tianshan Mountains, Xinjiang. Miner. Depos. 2016, 35, 913–932. [Google Scholar]
- Duan, S.G.; Zhang, Z.H.; Wang, D.C.; Jiang, Z.S.; Luo, W.J.; Li, F.M. Pyrite Re–Os and muscovite 40Ar/39Ar dating of the Beizhan iron deposit in the Chinese Tianshan Orogen and its geological significance. Int. Geol. Rev. 2018, 60, 57–71. [Google Scholar] [CrossRef]
- Duan, S.G. Metallogenesis of Iron Ores in the Awulale Mineralization Belt, Western Tianshan, Xinjiang, China; Postdoctoral Research Report; Chang’an University: Xi’an, China, 2015. [Google Scholar]
- Duan, S.G.; Zhang, Z.H.; Wei, M.Y.; Tian, J.Q.; Jiang, Z.S.; Li, F.M.; Zhao, J.; Wang, H.F. Geochemistry and zircon U–Pb geochronology of the diorite associated with the Wuling iron deposit in Western Tianshan Mountains, Xinjiang. Geol. China 2014, 41, 1757–1770. [Google Scholar]
- Hong, W.; Zhang, Z.H.; Li, H.Q.; Li, F.M.; Liu, X.Z. Metallogenic epoch of Chagangnuoer iron deposit in western Tianshan Mountains, Xinjiang: Information for garnet Sm-Nd isochron age. Miner. Depos. 2012, 31, 1067–1074. [Google Scholar]
- Hong, W.; Zhang, Z.H.; Baker, M.J.; Jiang, Z.S.; Duan, S.G. Zircon U-Pb dating and stable isotopic compositions for constraining the genesis of the Chagangnuoer magnetite deposit in western Tianshan, NW China. Ore. Geol. Rev. 2020, 121, 103478. [Google Scholar] [CrossRef]
- Jiang, Z.S.; Zhang, Z.H.; Wang, Z.H.; Duan, S.G.; Li, F.M.; Tian, J.Q. Geology, geochemistry, and geochronology of the Zhibo iron deposit in the Western Tianshan, NWChina: Constraints on metallogenesis and tectonic setting. Ore. Geol. Rev. 2014, 57, 406–424. [Google Scholar] [CrossRef]
- Jiang, Z.S.; Wang, D.C.; Zhang, Z.H.; Duan, S.G.; Kang, Y.J.; Li, F.M. Application of in situ titanite U–Pb geochronology to volcanic-hosted magnetite deposit: New constraints on the timing and genesis of the Zhibo deposit, Western Tianshan, NW China. Ore. Geol. Rev. 2018, 95, 325–341. [Google Scholar] [CrossRef]
- Li, H.X.; Zhang, Z.C.; Liu, B.X.; Jin, Y.L.; Santosh, M. The genetic link between iron oxide-apatite and iron skarn mineralization in the Beizhan deposit, Western Tianshan, NW China: Evidence from magnetite and gangue mineral geochemistry. J. Asian Earth Sci. 2023, 241, 105460. [Google Scholar] [CrossRef]
- Tian, J.Q.; Duan, S.G.; Peng, W.L.; Li, M.; Jiang, Z.S.; Yan, R. Geochemistry of volcanic and intrusive rocks in Zhibo iron ore deposit of western Tianshan Mountains. Miner. Depos. 2015, 34, 119–138. [Google Scholar]
- Kang, Y.J. Ore Genesis of the Dunde Iron-Zinc-Gold Polymetallic Deposit, West Tianshan, Xinjiang. Ph.D. Dissertation, Peking University, Beijing, China, 2018. [Google Scholar]
- Zhang, X.; Tian, J.Q.; Gao, J.; Klemd, R.; Dong, L.H.; Fan, J.J.; Jiang, T.; Hu, C.J.; Qian, Q. Geochronology and geochemistry of granitoid rocks from the Zhibo syngenetic volcanogenic iron ore deposit in the Western Tianshan Mountains NW–China: Constraints on the age of mineralization and tectonic setting. Gondwana Res. 2012, 22, 585–596. [Google Scholar] [CrossRef]
- Ge, S.S.; Zhai, M.G.; Safonova, I.; Li, D.P.; Zhu, X.Y.; Zuo, P.F.; Shan, H.X. Whole-rock geochemistry and Sr–Nd–Pb isotope systematics of the Late Carboniferous volcanic rocks of the Awulale metallogenic belt in the western Tianshan Mountains NW China: Petrogenesis and geodynamical implications. Lithos 2015, 228–229, 62–77. [Google Scholar] [CrossRef]
- Yan, S.; Shan, Q.; Niu, H.C.; Yang, W.B.; Li, N.B.; Zeng, L.J.; Jiang, Y.H. Petrology and geochemistry of late Carboniferous hornblende gabbro from the Awulale Mountains, western Tianshan NW China: Implication for an arc–nascent back–arc environment. J. Asian Earth Sci. 2015, 113, 218–237. [Google Scholar] [CrossRef]
- Wang, C.L.; Zhu, W.N.; Wang, Y.T. Genesis of the Kiruna-type Nixintage iron deposit, Chinese Western Tianshan, NW China: Constrains of ore geology, geochemistry and geochronology. J. Geochem. Explor. 2022, 243, 107094. [Google Scholar] [CrossRef]
- Han, B.F.; He, G.Q.; Wu, T.R.; Li, H.M. Zircon U–Pb dating and geochemical features of early Paleozoic granites from Tianshan, Xinjiang: Implications for tectonic evolution. Xinjiang Geol. 2004, 22, 4–11. [Google Scholar]
- Xia, L.Q.; Xu, X.Y.; Xia, Z.C.; Li, X.M.; Ma, Z.P.; Wang, L.S. Petrogenesis of Carboniferous rift–related volcanic rocks in the Tianshan, northwestern China. Geol. Soc. Am. Bull. 2004, 116, 419–433. [Google Scholar] [CrossRef]
- Xia, L.Q.; Xia, Z.C.; Xu, X.Y.; Li, X.M.; Ma, Z.P. Relative contributions of crust and mantle to the generation of the Tianshan Carboniferous rift–related basic lavas, northwestern China. J. Asian Earth Sci. 2008, 31, 357–378. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Z.H.; Xu, J.F.; Wyman, D.A.; Xiong, X.L.; Zi, F.; Bai, Z.H. Carboniferous adakite–high–Mg andesite–Nb–enriched basaltic rock suites in the Northern Tianshan area: Implications for phanerozoic crustal growth in the Central Asia Orogenic Belt and Cu–Au mineralization. Acta. Petrol. Sin. 2006, 22, 11–30. [Google Scholar]
- Zhu, Y.F.; Zhou, J.; Guo, X. Petrology and Sr–Nd isotopic geochemistry of the Carboniferous volcanic rocks in the western Tianshan Mountains, NW China. Acta. Petrol. Sin. 2006, 22, 1341–1350. [Google Scholar]
- Tang, G.J.; Chung, S.L.; Wang, Q.; Wyman, D.A.; Dan, W.; Chen, H.Y.; Zhao, Z.H. Petrogenesis of a Late Carboniferous mafic dike–granitoid association in the western Tianshan: Response to the geodynamics of oceanic subduction. Lithos 2014, 202–203, 85–99. [Google Scholar] [CrossRef]
- Xing, H.; Xue, C.J.; Zhao, X.B.; Symons, D.T.A.; Niu, P.Q. Petrogenesis and tectonic implications of the Early Carboniferous shoshonitic to calc-alkaline magmatic rocks of the southern Yili terrane, western Tianshan. Geol. Mag. 2023, 160, 855–873. [Google Scholar] [CrossRef]
- Ma, R.S.; Wang, C.Y.; Ye, S.F. Tectonic Framework and Crustal Evolutional of Eastern Tianshan Mountains; Publishing House of Nanjing University: Nanjing, China, 1993; pp. 1–225. [Google Scholar]
- Ma, R.S.; Shu, L.S.; Sun, J.Q. Tectonic Evolution and Metallogeny of Eastern Tianshan Mountains; Geological Publishing House: Beijing, China, 1997; pp. 1–202. [Google Scholar]
- Gao, J.; Long, L.L.; Klemd, R.; Qian, Q.; Liu, D.Y.; Xiong, X.M.; Su, W.; Liu, W.; Wang, Y.T.; Yang, F.Q. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China: Geochemical and age constraints of granitoid rocks. Int. J. Earth. Sci. 2009, 98, 1221–1238. [Google Scholar] [CrossRef]
- Han, B.F.; Guo, Z.J.; Zhang, Z.C.; Zhang, L.; Chen, J.F.; Song, B. Age, geochemistry, and tectonic implications of a late Paleozoic stitching pluton in the North Tian Shan suture zone, western China. Geol. Soc. Am. Bull. 2010, 122, 627–640. [Google Scholar] [CrossRef]
- Windley, B.F.; Allen, M.B.; Zhang, C.; Zhao, Z.Y.; Wang, G.R. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan range, central Asia. Geology 1990, 18, 128–131. [Google Scholar] [CrossRef]
- Allen, M.B.; Windley, B.F.; Zhang, C. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia. Tectonophysics 1992, 220, 89–115. [Google Scholar] [CrossRef]
- Wang, B.; Shu, L.S.; Cluzel, D.; Faure, M.; Charvet, J. Geochemical constraints on Carboniferous volcanic rocks of the Yili Block Xinjiang, NW China: Implication for the tectonic evolution of Western Tianshan. J. Asian Earth Sci. 2007, 29, 148–159. [Google Scholar] [CrossRef]
- Luan, X.D.; Zhang, B.; Gao, Y.L.; Yang, J.Q.; Li, Y.J. New materials of stratigraphic classification and correlation of the carboniferous in Awulale area, Western Tianshan. Xinjiang Geol. 2008, 26, 231–235. [Google Scholar]
- Li, Y.J.; Li, Z.C.; Zhou, J.B.; Gao, Z.H.; Gao, Y.L.; Tong, L.M.; Liu, J. Division of the Carboniferous lithostratigraphic units in Awulale area, wetern Tianshan. Acta. Petrol. Sin. 2009, 25, 1332–1340. [Google Scholar]
- Li, Y.J.; Gao, Y.L.; Tong, L.L.; Guo, W.J.; Tong, L.M. Tempestite of Akeshake Formation in Awulale Area, Western Tianshan and its significance. Earth Sci. Front. 2009, 16, 341–348. [Google Scholar]
- Feng, J.X.; Shi, F.P.; Wang, B.Y.; Hu, J.M.; Wang, J.T.; Tian, J.Q. Volcanogenic Iron Deposits in the Awulale Metallogenic Belt in Western Tianshan; Geological Publishing Hous: Beijing, China, 2010; pp. 16–112. (In Chinese) [Google Scholar]
- No. 11 Geological Party of the Xinjiang Bureau of Geology and Mineral Exploration and Development. Geological survey and evaluation of iron deposits in the Dunde-Beizhan area in Hejing County, Xinjiang province. Internal report. 2011.
- Sun, J.M.; Ma, Z.P.; Xu, X.Y.; Li, X.Y.; Weng, K.; Zhang, T. The formation epoch of the host wall rock of the Beizhan iron deposit in West Tianshan Mountains of Xinjiang and its geological significance. Geol. Bull. China 2012, 31, 1973–1982. [Google Scholar]
- Zhang, Z.H.; Yu, J.J.; Chai, F.M.; Mao, J.W.; Hou, K.J. Metallogenic Regularity and Mechanism of Volcanic Type Rich Iron Ore; Research Report of the National Basic Research Program, Institute of Mineral Resources, Chinese Academy of Geological Sciences: Beijing, China, 2016; pp. 45–48. (In Chinese) [Google Scholar]
- Hou, K.J.; Li, Y.H.; Qu, X.M.; Shi, Y.R.; Xie, G.Q. Laser ablation–MC–ICP–MS technique for Hf isotope microanalysis of zircon and its gelolgical applications. Acta. Petrol. Sin. 2007, 23, 2595–2604. [Google Scholar]
- Hou, K.J.; Li, Y.H.; Tian, Y.R.; Qin, Y.; Xie, G.Q. High precision Cu-Zn isotope measurements by multi–collector ICP–MS. Miner. Depos. 2008, 27, 774–781. [Google Scholar]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation–inductively coupled plasma–mass spectrometry LA–ICPMS to in situ U–Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Nasdala, L.; Hofmeister, W.; Norberg, N.; Martinson, J.M.; Corfu, F.; Dörr, W.; Kamo, S.L.; Kennedy, A.K.; Kronz, A.; Reiners, P.W.; et al. Zircon M257: A homogeneous natural reference material for the ion microprobe U–Pb analysis of zircon. Geostand. Geoanal. Res. 2008, 32, 247–265. [Google Scholar] [CrossRef]
- Hou, K.J.; Li, Y.H.; Tian, Y.R. In situ U–Pb zircon dating using laser ablation–multi ion counting–ICP–MS. Miner. Depos. 2009, 28, 481–492. [Google Scholar]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling–induced melt–peridotite interactions in the Trans–North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel. Berkeley Geochronol. Cent. Spec. Publ. 2003, 4, 37–41. [Google Scholar]
- Sláma, J.; Kosler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plesovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- GB/T14506.28–2010; Methods for Chemical Analysis of Silicate Rocks—Part 28: Determination of 16 Major and Minor Elements Content. Standards Publishing House: Beijing, China, 2010.
- GB/T14506.14–2010; Methods for Chemical Analysis of Silicate Rocks—Part 14: Determination of Ferrous Oxide Content. Standards Publishing House: Beijing, China, 2010.
- LY/T1253–1999; Determination of Mineral Total Elements (Silica, Iron, Aluminium, Titanium, Manganese, Calcium, Magnesium, Phosphorus) Ignition Loss in Forest Soil. Standards Publishing House: Beijing, China, 1999.
- DZ/T 0223–2001; General Rule for Inductively Coupled Plasma Massspectrometry(ICP-MS)Analytical Method. Standards Publishing House: Beijing, China, 2001.
- He, X.X.; Tang, S.H.; Zhu, X.K.; Wang, J.H. Precise measurement of Nd isotopic ratios by means of multi–collector magnetic sector inductively coupled plasma mass spectrometry. Acta Geosci. Sin. 2007, 28, 405–410. [Google Scholar]
- Zhang, Z.Q.; Zhang, G.W.; Tang, S.H. Geochronology of Metamorphic Sequences from the Southern Qinling; Geological Publishing House: Beijing, China, 2002; pp. 1–256. (In Chinese) [Google Scholar]
- Belousova, E.A.; Griffin, W.L.; Suzanne, Y.O.R.; Fisher, N.I. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petr. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Irvine, T.N.; Baragar, W.R.A. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth. Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Peccerillo, R.; Taylor, S.R. Geochemistry of Eocene calc–alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petr. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Magmas and Magmatic Rocks; Longman: London, UK, 1985; p. 266. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics in ocean basalt: Implication for mantle composition and processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society of London Special Publications: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Tang, G.J.; Wang, Q.; Wyman, D.A.; Sun, M.; Li, Z.X.; Zhao, Z.H.; Sun, W.D.; Jia, X.H.; Jiang, Z.Q. Geochronology and geochemistry of Late Paleozoic magmatic rocks in the Lamasu–Dabate area, northwestern Tianshan west China: Evidence for a tectonic transition from arc to post–collisional setting. Lithos 2010, 119, 393–411. [Google Scholar] [CrossRef]
- Steiger, R.H.; Jäger, E. Subcommission on geochronology: Convention on the use of decay constants in geochronology and cosmochronology. Earth. Planet. Sc. Lett. 1977, 36, 359–362. [Google Scholar] [CrossRef]
- Lugmair, G.W.; Harti, K. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth. Planet. Sc. Lett. 1978, 39, 349–357. [Google Scholar] [CrossRef]
- Zindler, A.; Hart, S. Chemical geodynamics. Annu. Rev. Earth. Pl. Sc. 1986, 14, 493–571. [Google Scholar] [CrossRef]
- Xu, X.Y.; Xia, L.Q.; Ma, Z.P.; Wang, Y.B.; Xia, Z.C.; Li, X.M.; Wang, L.S. SHRIMP zircon U–Pb geochronology of the plagiogranites from Bayinggou ophiolite in North Tianshan Mountains and the petrogenesis of the ophiolite. Acta. Petrol. Sin. 2006, 22, 83–94. [Google Scholar]
- Long, L.L.; Wang, Y.W.; Tang, P.Z.; Wang, L.J.; Wang, J.B.; Liao, Z. A debate on the special circumstance of rock-forming and ore-forming of Haladala pluton, a mafic-ultralmafic complex related to CuNi-VTiFe composite mineralization in western Tianshan. Acta. Petrol. Sin. 2012, 28, 2015–2028. [Google Scholar]
- Chen, J.F.; Zhou, T.X.; Xie, Z.; Zhang, X.; Guo, X.S. Formation of positive εNd(t) granitoids from the Alataw Mountains, Xinjiang, China, by mixing and fractional crystallization: Implication for Phanerozoic crustal growth. Tectonophysics 2000, 328, 53–67. [Google Scholar] [CrossRef]
- Hu, A.Q.; Jahn, B.M.; Zhang, G.X.; Chen, Y.B.; Zhang, Q.F. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics 2000, 328, 15–51. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Hong, W.; Jiang, Z.S.; Duan, S.G.; Xu, L.G.; Li, F.M.; Guo, X.C.; Zhao, Z.G. Geological characteristics and zircon U–Pb dating of volcanic rocks from the Beizhan iron deposit in western Tianshan Mountains, Xinjiang, NW China. Acta Geol. Sin.-Engl. 2012, 86, 737–747. [Google Scholar] [CrossRef]
- Luo, W.J.; Zhang, Z.H.; Duan, S.G.; Jiang, Z.S.; Wang, D.C.; Chen, J. Geochronology and geochemistry of the Beizhan basic-ultrabasic pluton in West Tianshan, Xinjiang: Petrogenesis and geodynamical implications. Acta Petrol. Et Mineral. 2018, 37, 733–753. [Google Scholar]
- Eugster, H.P.; Chou, I.M. A model for the deposition of Cornwall-type magnetite deposits. Econ. Geol. 1979, 74, 763–774. [Google Scholar] [CrossRef]
- Rose, A.W.; Herrick, D.C.; Deines, P. An oxygen and sulfur isotope study of skarn-type magnetite deposits of the Cornwall type, Southeastern Pennsylvania. Econ. Geol. 1985, 80, 418–443. [Google Scholar] [CrossRef]
- Hou, T.; Zhang, Z.C.; Santosh, M.; Encarnacion, J.; Wang, M. The Cihai diabase in the Beishan region, NW China: Isotope geochronology, geochemistry and implications for Cornwall-style iron mineralization. J. Asian Earth Sci. 2013, 70–71, 231–249. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. Two contrasting granite types: 25 years later. Aust. J. Earth. Sci. 2001, 48, 489–499. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petr. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Chappell, B.W.; Stephens, W.E. Origin of infracrustal I–type granite magmas. Trans. R. Soc. Edinb. Earth Sci. 1988, 79, 71–86. [Google Scholar] [CrossRef]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Black Well: Oxford, UK, 1985; pp. 1–312. [Google Scholar]
- Green, T.H. Significance of Nb/Ta as an indicator of geochemical processes in the crust–mantle system. Chem. Geol. 1995, 120, 347–359. [Google Scholar] [CrossRef]
- Hofmann, A.W. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth. Planet. Sc. Lett. 1988, 90, 297–314. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Zhang, Z.C.; Encarnacion, J.; Xue, C.J.; Duan, S.G.; Zhao, Z.D.; Liu, J.L. Petrogenesis of the Kekesai composite intrusion, western Tianshan, NW China: Implications for tectonic evolution during late Paleozoic time. Lithos 2012, 146–147, 65–79. [Google Scholar] [CrossRef]
- Sun, L.H.; Wang, Y.J.; Fan, W.M.; Zi, J.W. Post–collisional potassic magmatism in the Southern Awulale Mountain, western Tianshan Orogen: Petrogenetic and tectonic implications. Gondwana Res. 2008, 14, 383–394. [Google Scholar] [CrossRef]
- Zhang, Q.; Pan, G.Q.; Li, C.D.; Jin, W.J.; Jia, X.Q. Does fractional crystallization occur in granitic magma? Some crucial questions on granite study. Acta. Petrol. Sin. 2007, 23, 1239–1251. [Google Scholar]
- Miller, C.F.; McDowell, S.M.; Mapes, R.W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 2003, 31, 529–532. [Google Scholar] [CrossRef]
- Rapp, R.P.; Watson, E.B. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. J. Petrol. 1995, 36, 891–931. [Google Scholar] [CrossRef]
- Watson, E.B. Basalt contamination by continental–crust–some experiments and models. Contrib. Mineral. Petr. 1982, 80, 73–87. [Google Scholar] [CrossRef]
- Hart, W.K.; Gabriel, G.W.; Walter, R.C.; Mertzman, S.A. Basaltic volcanism in Ethiopia: Constraints on continental rifting and mantle interactions. J. Geophys. Res. 1989, 94, 7721–7748. [Google Scholar] [CrossRef]
- Sharma, M. Siberian traps. In Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism; Mahoney, J.J., Coffin, M.F., Eds.; Geophysical Monographs, American Geophysical Union: Washington, DC, USA, 1997; Volume 100, pp. 273–295. [Google Scholar]
- Wilson, M. Igneous Petrogenesis; Harper Collins Academic: London, UK, 1989; p. 466. [Google Scholar]
- McKenzie, D.; O’Nions, R.K. Partial melt distribution from inversion of rare earth element concentrations. J. Petrol. 1991, 32, 1021–1091. [Google Scholar] [CrossRef]
- Aldanmaz, E.; Pearce, J.A.; Thirlwall, M.F.; Mitchell, J.G. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. J. Volcanol. Geoth. Res. 2000, 102, 67–95. [Google Scholar] [CrossRef]
- Zhao, J.H.; Zhou, M.F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction related metasomatism in the upper mantle. Precambrian Res. 2007, 152, 27–47. [Google Scholar] [CrossRef]
- Zhao, J.H.; Zhou, M.F. Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze Block, South China. Lithos 2009, 107, 152–168. [Google Scholar] [CrossRef]
- Zou, H.B.; Zindler, A.; Xu, X.S.; Qu, Q. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: Mantle sources, regional variations, and tectonic significance. Chem. Geol. 2000, 171, 33–47. [Google Scholar] [CrossRef]
- Saunders, A.D.; Storey, M.; Kent, R.W.; Norry, M.J. Consequences of plume–lithosphere interactions. In Magmatism and the Cause of Continental Breakup; Storey, B.C., Alabaster, T., Pankhurst, R.J., Eds.; Geological Society of Special Publication: London, UK, 1992; pp. 41–60. [Google Scholar]
- Su, Y.P.; Zheng, J.P.; Griffin, W.L.; Zhao, J.H.; Tang, H.Y.; Ma, Q.; Lin, X.Y. Geochemistry and geochronology of Carboniferous volcanic rocks in the eastern Junggar terrane, NW China: Implication for a tectonic transition. Gondwana Res. 2012, 22, 1009–1029. [Google Scholar] [CrossRef]
- Wang, K.; Plank, T.; Walker, J.D.; Smith, E.I. A mantle melting profile across the Basin and Range, SW USA. J. Geophys. Res. 2002, 107, ECV 5-1–ECV 5-21. [Google Scholar] [CrossRef]
- Che, Z.C.; Liu, L.; Liu, H.F.; Luo, J.H. Review on the Ancient Yili Rift, Xinjiang, China. Acta. Petrol. Sin. 1996, 12, 478–490. [Google Scholar]
- Feng, W.Y.; Zhu, Y.F. Petrogenesis and tectonic implications of the late Carboniferous calc-alkaline and shoshonitic magmatic rocks in the Awulale mountain, western Tianshan. Gondwana Res. 2019, 76, 44–61. [Google Scholar] [CrossRef]
- Wang, X.S.; Zhang, X.; Gao, J.; Li, J.L.; Jiang, T.; Xue, S.C. A slab break-off model for the submarine volcanic-hosted iron mineralization in the Chinese Western Tianshan: Insights from Paleozoic subduction-related to post-collisional magmatism. Ore. Geol. Rev. 2018, 92, 144–160. [Google Scholar] [CrossRef]
- An, F.; Zhu, Y.F.; Wei, S.N.; Lai, S.C. An Early Devonian to Early Carboniferous volcanic arc in North Tianshan, NW China: Geochronological and geochemical evidence from volcanic rocks. J. Asian Earth Sci. 2013, 78, 100–113. [Google Scholar] [CrossRef]
- Wang, D.C.; Duan, S.G.; Chen, J.; Jiang, Z.S.; Zhang, Z.H.; Jia, J.D. Hf isotopic and geochemistry of volcanic rocks from Tiemulike iron deposit in western Tianshan, Xinjiang, and their geological significance. Acta. Petrol. Sin. 2016, 32, 1391–1408. [Google Scholar]
- An, F.; Zhu, Y.F.; Wei, S.N.; Lai, S.C. The zircon U–Pb and Hf isotope constraints on the basement nature and Paleozoic evolution in northern margin of Yili block, NW China. Gondwana Res. 2017, 43, 41–54. [Google Scholar] [CrossRef]
- Liu, X.; Qian, Q.; Su, W.; Li, J.L. Pluton from Muhanbasitao in the western of Awulale, western Tianshan: Geochemistry, geochronology and geological implications. Acta. Petrol. Sin. 2012, 28, 2401–2413. [Google Scholar]
- Niu, H.C.; Shan, Q.; Yang, W.B.; Luo, Y.; Li, N.B.; Yu, X.Y. The discovery of Fe rich basalt–Rhyolite association in the Chagangnuoer area, western Tianshan, Xinjiang Abstract. Bull. Mineral. Petrol. Geochem. 2011, 30, 85. [Google Scholar]
- Zhu, Z.M.; Zhao, Z.H.; Xiong, X.L.; Han, J.W. Petrogeochemistry of late Paleozoic gabbroic rocks from Tekes County in West Tianshan Mountains. Acta Petrol. Et Mineral. 2010, 29, 675–690. [Google Scholar]
- He, P.L.; Huang, X.L.; Li, H.Y.; Li, J.; Yu, Y.; Li, W.X. Mechanism of Fe-Ti enrichment in the Haladala gabbros: Implication for the tectonic evolution of the western Tianshan orogenic belt. Acta. Petrol. Sin. 2013, 29, 3457–3472. [Google Scholar]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Batchelor, R.A.; Bowden, P. Petrogenetic interpretation of granitoid rock seires using multicationic parameters. Chem. Geol. 1985, 48, 43–55. [Google Scholar] [CrossRef]
- Meschede, M. A method of discriminating between different types of mid ocean ridge basalts and continental tholeiite with the Nb–Zr–Y diagram. Chem. Geol. 1986, 56, 207–218. [Google Scholar] [CrossRef]
- Whalen, J.B.; McNicoll, V.J.; van Staal, C.R.; Lissenberg, C.J.; Longstaffe, F.J.; Jenner, G.A.; van Breeman, O. Spatial, temporal and geochemical characteristics of Silurian collision-zone magmatism, Newfoundland Appalachians: An example of a rapidly evolving magmatic system related to slab break-off. Lithos 2006, 89, 377–404. [Google Scholar] [CrossRef]
- Whalen, J.B.; Wodicka, N.; Taylor, B.E.; Jackson, G.D. Cumberland batholith, Trans-Hudson Orogen, Canada: Petrogenesis and implications for Paleoproterozoic crustal and orogenic processes. Lithos 2010, 117, 99–118. [Google Scholar] [CrossRef]
- Aydin, F.; Karsli, O.; Chen, B. Petrogenesis of the Neogene alkaline volcanics with implications for post-collisional lithospheric thinning of the Eastern Pontides, NE Turkey. Lithos 2008, 104, 249–266. [Google Scholar] [CrossRef]
- Han, B.F.; He, G.Q.; Wang, X.C.; Guo, Z.J. Late Carboniferous collision between the Tarim and Kazakhstan–Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China. Earth-Sci. Rev. 2011, 109, 74–93. [Google Scholar] [CrossRef]
- Davies, J.H.; von Blanckenburg, F. Slab breakoff: Amodel of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth. Planet. Sc. Lett. 1995, 129, 85–102. [Google Scholar] [CrossRef]
- von Blanckenburg, F.; Davies, J.H. Slab-breakoff: A model for syncollisional magmatism and tectonics in the Alps. Tectonics 1995, 14, 120–131. [Google Scholar] [CrossRef]
- Lee, H.Y.; Chung, S.L.; Lo, C.H.; Ji, J.Q.; Lee, T.Y.; Qian, Q.; Zhang, Q. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics 2009, 477, 20–35. [Google Scholar] [CrossRef]
- Ma, X.X.; Shu, L.S.; Meert, J.G. Early Permian slab breakoff in the Chinese Tianshan belt inferred from the post-collisional granitoids. Gondwana Res. 2015, 27, 228–243. [Google Scholar] [CrossRef]
- Zhang, H.C.; Zhu, Y.F.; Fen, W.Y.; Tan, Y.W.; An, F.; Zheng, J.H. Paleozoic intrusive rocks in the Nalati mountain range (NMR), southwest Tianshan: Geodynamic evolution based on petrology and geochemical studies. J. Earth Sci.-China 2017, 28, 196–217. [Google Scholar] [CrossRef]
- Li, N.B.; Niu, H.C.; Shan, Q.; Yang, W.B. Two episodes of Late Paleozoic A-type magmatism in the Qunjisayi area, western Tianshan: Petrogenesis and tectonic implications. J. Asian Earth Sci. 2015, 113, 238–253. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Zhang, L.F.; Gu, L.B.; Guo, X.; Zhou, J. The zircon SHRIMP chronology and trace element geochemistry of the Carboniferous volcanic rocks in western Tianshan Mountains. Chin. Sci. Bull. 2005, 50, 2201–2212. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, S.; Jiang, Z.; Luo, W. Geochronology and Geochemistry of Volcanic and Intrusive Rocks from the Beizhan Iron Deposit, Western Xinjiang, NW China: Petrogenesis and Tectonic Implications. Minerals 2024, 14, 16. https://doi.org/10.3390/min14010016
Duan S, Jiang Z, Luo W. Geochronology and Geochemistry of Volcanic and Intrusive Rocks from the Beizhan Iron Deposit, Western Xinjiang, NW China: Petrogenesis and Tectonic Implications. Minerals. 2024; 14(1):16. https://doi.org/10.3390/min14010016
Chicago/Turabian StyleDuan, Shigang, Zongsheng Jiang, and Wenjuan Luo. 2024. "Geochronology and Geochemistry of Volcanic and Intrusive Rocks from the Beizhan Iron Deposit, Western Xinjiang, NW China: Petrogenesis and Tectonic Implications" Minerals 14, no. 1: 16. https://doi.org/10.3390/min14010016
APA StyleDuan, S., Jiang, Z., & Luo, W. (2024). Geochronology and Geochemistry of Volcanic and Intrusive Rocks from the Beizhan Iron Deposit, Western Xinjiang, NW China: Petrogenesis and Tectonic Implications. Minerals, 14(1), 16. https://doi.org/10.3390/min14010016