High-Pressure Synthesis, Synchrotron Single-Crystal XRD and Raman Spectroscopy of Synthetic K–Ba Minerals of Magnetoplumbite, Crichtonite and Hollandite Group Indicatory of Mantle Metasomatism
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Methods
2.2. Analytical Methods
2.2.1. Microprobe Analyses
2.2.2. Raman Spectroscopy
2.2.3. X-ray Diffraction Analysis
3. Results
3.1. Synthesis of Ba High-Ti Oxides
3.2. Synthesis of K High-Titanium Oxides
3.3. Raman Spectra of Synthetic K–Ba High-Titanium Oxides
3.3.1. Phases of the Crichtonite Group
3.3.2. Phases of the Hollandite Group
3.3.3. Phases of the Magnetoplumbite Group
3.4. X-ray Diffraction Analysis of Synthetic Yimengite
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Haggerty, S.E. Oxide mineralogy of the upper mantle. In Oxide Minerals: Petrologic and Magnetic Significance; Lindsley, D.H., Ed.; Reviews in Mineralogy; De Gruyter: Berlin, Germany, 1991; Volume 25, pp. 355–416. [Google Scholar]
- Lloyd, F.E.; Bailey, D.K. Light element metasomatism of the continental mantle: The evidence and the consequences. Phys. Chem. Earth 1975, 9, 389–416. [Google Scholar] [CrossRef]
- Harte, B.; Gurney, J.J. Ore mineral and phlogopite mineralization within ultramafic nodules from the Matsoku kimberlite pipe, Lesotho. Carnegie Inst. Wash. Yearb. 1975, 74, 528–536. [Google Scholar]
- Bailey, D.K. Mantle metasomatism—Continued chemical change within the earth. Nature 1982, 296, 525–580. [Google Scholar] [CrossRef]
- Bailey, D.K. Mantle metasomatism—Perspective and prospect. In Alkaline Igneous Rocks; Fitton, J.G., Upton, B.G.J., Eds.; Geological Society Special Publication: London, UK, 1987; Volume 30, pp. 1–13. [Google Scholar]
- Menzies, M.A.; Hawkesworth, C.J. Mantle Metasomatism; Academic Press: London, UK, 1987; p. 472. [Google Scholar]
- Harte, B. Continental Basalts and Mantle Xenoliths; Hawkesworth, C.J., Norry, M.J., Eds.; Shiva: Nantwich, Cheshire, UK, 1983; pp. 46–91. [Google Scholar]
- Dawson, J.B.; Smith, J.V. The MARID (mica-amphibole-rutile-ilmenite-diopside) suite of xenoliths in kimberlite. Geochim. Cosmochim. Acta 1977, 41, 309–323. [Google Scholar] [CrossRef]
- O’Reilly, S.Y.; Griffin, W.L. Mantle metasomatism. In Metasomatism and the Chemical Transformation of Rock; Harlov, D.E., Austerheim, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 471–533. [Google Scholar]
- Safonov, O.G.; Butvina, V.G. Indicator reactions of K and Na activities in the upper mantle: Natural mineral assemblages, experimental data, and thermodynamic modeling. Geochem. Intern. 2016, 54, 858–872. [Google Scholar] [CrossRef]
- Ionov, D.A.; Gregoire, M.; Prikhod’ko, V.S. Feldspar–Ti-oxide metasomatism in off-cratonic continental and oceanic upper mantle. Earth Planet. Sci. Lett. 1999, 165, 37–44. [Google Scholar] [CrossRef]
- Foley, S.; Höfer, H.; Brey, G. High-pressure synthesis of priderite and members of the lindsleyite-mathiasite and hawthorneite-yimengite series. Contrib. Mineral. Petrol. 1994, 117, 164–174. [Google Scholar] [CrossRef]
- Konzett, J.; Yang, H.; Frost, D.J. Phase relations and stability of magnetoplumbite- and crichtoniteseries phases under upper-mantle P-T conditions: An experimental study to 15 GPa with implications for LILE metasomatism in the lithospheric mantle. J. Petrol. 2005, 46, 749–781. [Google Scholar] [CrossRef]
- Butvina, V.G.; Vorobey, S.S.; Safonov, O.G.; Varlamov, D.A.; Bondarenko, G.V.; Shapovalov, Y.B. Experimental Study of the Formation of Chromium-Bearing Priderite and Yimengite as Products of Modal Mantle Metasomatism. Dokl. Earth Sci. 2019, 486, 711–715. [Google Scholar] [CrossRef]
- Butvina, V.G.; Vorobey, S.S.; Safonov, O.G.; Bondarenko, G.V. Formation of K-Cr titanates from reactions of chromite and ilmanite/rutile with potassic aqueous-carbonic fluid: Experiment at 5 GPa and applications to the mantle metasomatism. Adv. Exp. Genet. Mineral. 2020, 11, 201–222. [Google Scholar] [CrossRef]
- Butvina, V.G.; Safonov, O.G.; Bondarenko, G.V.; Shapovalov, Y.B. Experimental Study of the Formation of Ba–Cr Titanates in the Fluid-Bearing Chromite–Rutile/Ilmenite System at T = 1000–1200 °C and P = 1.8–5.0 GPa. Dokl. Earth Sci. 2022, 504, 248–253. [Google Scholar] [CrossRef]
- Biagioni, C.; Capalbo, C.; Pasero, M. Nomenclature tunings in the hollandite supergroup. Eur. J. Mineral. 2013, 25, 85–90. [Google Scholar] [CrossRef]
- Svetogorov, R.D.; Dorovatovskii, P.V.; Lazarenko, V.A. Belok/XSA Diffraction Beamline for Studying Crystalline Samples at Kurchatov Synchrotron Radiation Source. Cryst. Res. Technol. 2020, 55, 1900184. [Google Scholar] [CrossRef]
- CrysAlisPro. 1.171.41.118a; Rigaku Oxford Diffraction: Oxford, UK, 2019.
- CrysAlisPro, Agilent Technologies; Version 1 171.37.33 (release 27 March 2014 CrysAlis171.NET); Oxford Diffraction Ltd.: Abingdon, UK, 2014.
- Alekseev, A.B. Usov “Problems on Geology and Mineral Resources Development”. In Proceedings of the 7th International Science Symposium Named after Academy M.A, Wuhan, China, 23–25 October 2006; Tomsk Polytechnic University: Tomsk, Russia, 2003; pp. 80–82. (In Russian). [Google Scholar]
- Guggenheim, S.; Frimmel, H.E. Ferrokinoshitalite, a new species of brittle mica from the, Broken Hill Mine, South Africa: Structural and mineralogical, characterization, Locality: Broken Hill Mine, South Africa. Can. Mineral. 1999, 37, 1445–1452. [Google Scholar]
- Haggerty, S.E.; Smyth, J.R.; Erlank, A.J.; Danchin, R.V.; Rickard, R.S. Lindsleyite (Ba) and mathiasite (K): Two new chromium-titanates in the crichtonite series from the upper mantle. Am. Mineral. 1983, 68, 494–505. [Google Scholar]
- Almeida, V.; Janasi, V.; Svisero, D.; Nannini, F. Mathiasite-loveringite and priderite in mantle xenoliths from the Alto Paranaíba Igneous Province, Brazil: Genesis and constraints on mantle metasomatism. Open Geosci. 2014, 6, 614–632. [Google Scholar] [CrossRef]
- Naemura, K.; Shimizu, I.; Svojtka, M.; Hirajima, T. Accessory priderite and burbankite in multiphase solid inclusions in the orogenic garnet peridotite from the Bohemian Massif, Czech Republic. J. Mineral. Petrol. Sci. 2015, 110, 20–28. [Google Scholar] [CrossRef]
- Konzett, J.; Wirth, R.; Hauzenberger, C.; Whitehouse, M. Two episodes of fluid migration in the Kaapvaal Craton lithospheric mantle associated with Cretaceous kimberlite activity: Evidence from a harzburgite containing a unique assemblage of metasomatic zirconium-phases. Lithos 2013, 182, 165–184. [Google Scholar] [CrossRef]
- Nixon, P.; Condliffe, E. Yimengite of K–Ti metasomatic origin in kimberlitic rocks from Venezuela. Mineral. Mag. 1989, 53, 305–309. [Google Scholar] [CrossRef]
- Holtstam, D.; Hålenius, U. Nomenclature of the magnetoplumbite group. Mineral. Mag. 2020, 84, 376–380. [Google Scholar] [CrossRef]
- Peng, Z.; Lu, Q. The crystal structure of yimengite. Sci. China Ser. B 1985, 28, 882–887. [Google Scholar]
- Haggerty, S.E.; Grey, I.E.; Madsen, I.C.; Criddle, A.J.; Stanley, C.J.; Erlank, A.J. Hawthorneite, Ba[Ti3Cr4Fe4Mg]O19; a new metasomatic magnetoplumbite-type mineral from the upper mantle. Am. Mineral. 1989, 74, 668–675. [Google Scholar]
- Grey, I.E.; Velde, D.; Criddle, A.J. Haggertyite, a new magnetoplumbite-type titanate mineral from the Prairie Creek (Arkansas) lamproite. Am. Mineral. 1998, 83, 1323–1329. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butvina, V.; Spivak, A.; Setkova, T.; Safonov, O. High-Pressure Synthesis, Synchrotron Single-Crystal XRD and Raman Spectroscopy of Synthetic K–Ba Minerals of Magnetoplumbite, Crichtonite and Hollandite Group Indicatory of Mantle Metasomatism. Minerals 2023, 13, 292. https://doi.org/10.3390/min13020292
Butvina V, Spivak A, Setkova T, Safonov O. High-Pressure Synthesis, Synchrotron Single-Crystal XRD and Raman Spectroscopy of Synthetic K–Ba Minerals of Magnetoplumbite, Crichtonite and Hollandite Group Indicatory of Mantle Metasomatism. Minerals. 2023; 13(2):292. https://doi.org/10.3390/min13020292
Chicago/Turabian StyleButvina, Valentina, Anna Spivak, Tatiana Setkova, and Oleg Safonov. 2023. "High-Pressure Synthesis, Synchrotron Single-Crystal XRD and Raman Spectroscopy of Synthetic K–Ba Minerals of Magnetoplumbite, Crichtonite and Hollandite Group Indicatory of Mantle Metasomatism" Minerals 13, no. 2: 292. https://doi.org/10.3390/min13020292
APA StyleButvina, V., Spivak, A., Setkova, T., & Safonov, O. (2023). High-Pressure Synthesis, Synchrotron Single-Crystal XRD and Raman Spectroscopy of Synthetic K–Ba Minerals of Magnetoplumbite, Crichtonite and Hollandite Group Indicatory of Mantle Metasomatism. Minerals, 13(2), 292. https://doi.org/10.3390/min13020292