Distinct Extraction Behaviors of La/Ce and Sc/Y in the Phosphoric Acidic Leachate of Bauxite Residues and Their Sequential Extraction with Di-(2-Ethylhexyl) Phosphoric Acid as Extractant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Procedure of the Solvent Extraction Process
2.2.2. Indexes in the Solvent Extraction Process
2.2.3. Test Techniques
3. Results and Discussion
3.1. Extraction Behaviors of Various REEs in the Phosphoric Acidic Leachate
3.2. Separation of REEs against Impurities in the Phosphoric Acidic Leachate
3.2.1. Extraction Behaviors of Impurities in the Phosphoric Acidic Leachate
3.2.2. Separation Coefficients of REEs against Impurities
3.3. Mechanism of REEs Extraction from Phosphoric Acidic Leachate with P204
3.3.1. Probable Reactions in the Solvent Extraction Processes
3.3.2. Mechanism of Extraction of Sc and Y from Phosphoric Acidic Leachate
3.3.3. Mechanism of Extraction of La and Ce from Phosphoric Acidic Leachate
3.4. Flowchart of the Extraction of REEs and the Comprehensive Utilization of the Valuable Components in Bauxite Residues
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agrawal, S.; Dhawan, N. Investigation of mechanical and thermal activation on metal extraction from red mud. Sustain. Mater. Technol. 2021, 27, e00246. [Google Scholar] [CrossRef]
- Pan, X.L.; Wu, H.F.; Lv, Z.Y.; Yu, H.Y.; Tu, G.F. Recovery of valuable metals from red mud: A comprehensive review. Sci. Total Environ. 2023, 904, 166686. [Google Scholar] [CrossRef] [PubMed]
- Dramou, A.; Filippov, L.O.; Kanari, N.; Allain, E.; Traore, S.; Filippova, I.V. An overview of the mineralogical characterization and treatment strategies of Bauxite residues for their sustainable management. Miner. Process. Extr. Metall. Rev. 2023, 44, 365–374. [Google Scholar] [CrossRef]
- Tanvar, H.; Mishra, B. Extraction of titanium, aluminum, and rare earth values from upgraded bauxite residue. J. Sustain. Metall. 2023, 9, 665–677. [Google Scholar] [CrossRef]
- Wang, X.P.; Sun, T.C.; Wu, S.C.; Chen, C.; Kou, J.; Xu, C.Y. A novel utilization of Bayer red mud through co-reduction with a limonitic laterite ore to prepare ferronickel. J. Clean. Prod. 2019, 216, 33–41. [Google Scholar] [CrossRef]
- Evans, K. The history, challenges, and new developments in the management and use of bauxite residue. J. Sustain. Metall. 2016, 2, 316–331. [Google Scholar] [CrossRef]
- Borra, C.B.; Blanpain, B.; Pontikes, Y.; Binnemans, K.; Van Gerven, T. Recovery of rare earth elements and other valuable metals from bauxite residue (red mud): A review. J. Sustain. Metall. 2016, 2, 365–386. [Google Scholar] [CrossRef]
- Liu, Y.J.; Naidu, R. Hidden values in bauxite residue (red mud): Recovery of metals. Waste Manag. 2014, 34, 2662–2673. [Google Scholar] [CrossRef]
- Vind, J.; Malfliet, A.; Blanpain, B.; Tsakiridis, P.E.; Tkaczyk, A.H.; Vassiliadou, V.; Panias, D. Rare earth element phases in bauxite residue. Minerals 2018, 2, 77. [Google Scholar] [CrossRef]
- Akcil, A.; Akhmadiyeva, N.; Abdulvaliyev, R.; Abhilash, M. Overview on extraction and separation of rare earth elements from red mud: Focus on scandium. Miner. Process. Extr. Metall. Rev. 2018, 39, 145–151. [Google Scholar] [CrossRef]
- Agrawal, S.; Dhawan, N. Evaluation of red mud as a polymetallic source-A review. Miner. Eng. 2021, 171, 107084. [Google Scholar] [CrossRef]
- Zhang, X.K.; Zhou, K.G.; Lei, Q.Y.; Xing, Y.; Peng, C.H.; Chen, W. Integration of resource recycling with de-alkalization for bauxite residue treatment. Hydrometallurgy 2020, 192, 105263. [Google Scholar] [CrossRef]
- Valeev, D.; Shoppert, A.; Dogadkin, D.; Romashova, T.; Kuz’mina, T.; Salazar-Concha, C. Extraction of Al and rare earth elements via high-pressure leaching of boehmite-kaolinite bauxite using NH4HSO4 and H2SO4. Hydrometallurgy 2023, 215, 105994. [Google Scholar] [CrossRef]
- Rivera, R.M.; Ounoughene, G.; Malfliet, A.; Vind, J.; Panias, D.; Vassiliadou, V.; Binnemans, K.; Van Gerven, T. A Study of the occurrence of selected rare-earth elements in neutralized-leached bauxite residue and comparison with untreated bauxite residue. J. Sustain. Metall. 2019, 5, 57–68. [Google Scholar] [CrossRef]
- Tsakanika, L.A.; Panagiotatos, G.; Lymperopoulou, T.; Chatzitheodoridis, E.; Ochsenkuhn, K.; Ochsenkuhn-Petropoulou, M. Direct phosphoric acid leaching of bauxite residue for selective scandium extraction. Metals 2022, 12, 228. [Google Scholar] [CrossRef]
- Borra, C.R.; Blanpain, B.; Pontikes, Y.; Binnemans, K.; Van Gerven, T. Smelting of bauxite residue (red mud) in view of iron and selective rare earth elements recovery. J. Sustain. Metall. 2016, 2, 28–37. [Google Scholar] [CrossRef]
- Li, G.H.; Liu, M.X.; Rao, M.J.; Jiang, T.; Zhuang, J.Q.; Zhang, Y.B. Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salt. J. Hazard. Mater. 2014, 280, 774–780. [Google Scholar] [CrossRef]
- Borra, C.R.; Blanpain, B.; Pontikes, Y.; Binnemans, K.; Van Gerven, T. Recovery of rare earth elements and major metals from bauxite residue (red mud) by alkali roasting, smelting, and leaching. J. Sustain. Metall. 2017, 33, 93–404. [Google Scholar]
- Rivera, R.; Ulenaers, B.; Ounoughene, G.; Binnemans, K.; Van Gerven, T. Extraction of rare earth elements from bauxite residue (red mud) by dry digestion followed by water leaching. Miner. Eng. 2018, 9, 82–92. [Google Scholar] [CrossRef]
- Alkan, G.; Yagmurlu, B.; Gronen, L.; Dittrich, C.; Ma, Y.; Stopic, S.; Friedrich, B. Selective silica gel-free scandium extraction from Iron-depleted red mud slags by dry digestion. Hydrometallurgy 2019, 185, 266–272. [Google Scholar] [CrossRef]
- Das, S.; Behera, S.S.; Murmu, B.M.; Mohapatra, R.K.; Mandal, D.; Samantray, R.; Parhi, P.K.; Senanayake, G. Extraction of scandium(III) from acidic solutions using organo-phosphoric acid reagents: A comparative study. Sep. Purif. Technol. 2018, 202, 248–258. [Google Scholar] [CrossRef]
- Li, W.; Wang, X.L.; Zhang, H.; Meng, S.L.; Li, D.Q. Solvent extraction of lanthanides and yttrium from nitrate medium with Cyanex 925 in heptane. J. Chem. Technol. Biot. 2007, 82, 376–381. [Google Scholar] [CrossRef]
- Dashti, S.; Sadri, F.; Shakibania, S.; Rashchi, F.; Ghahreman, A. Separation and solvent extraction of rare earth elements (Pr, Nd, Sm, Eu, Tb, and Er) using TBP and Cyanex 572 from a chloride medium. Miner. Eng. 2021, 161, 106694. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Guo, F.Q.; Meng, S.L.; Jia, Q.; Li, H.F.; Li, D.Q. Simultaneous recovery of cerium and fluorine from bastnaesite leach liquor by mixtures of Cyanex 923 and HEH(EHP). Ind. Eng. Chem. Res. 2010, 49, 6184–6188. [Google Scholar] [CrossRef]
- Botelho Junior, A.B.; da Silva, N.O.M.; Tenório, J.A.S.; Espinosa, D.C.R. Structure Investigation of La, Y, and Nd Complexes in solvent extraction process with liquid phosphine oxide, phosphinic acid, and amine extractants. Metals 2023, 13, 1434. [Google Scholar] [CrossRef]
- Habaki, H.; Nakamura, K.; Egashira, R. Extraction equilibrium of valuable metals from NdFeB permanent magnet using carboxylic acid as extractant. J. Chem. Eng. Jpn. 2017, 50, 610–617. [Google Scholar] [CrossRef]
- Liu, Y.; Lee, M.S. Analysis of the interaction between organophosphorus acid and tertiary amine extractants in the binary Mixtures by Fourier Transform Infrared Spectroscopy (FT-IR). Solvent. Extr. Ion. Exch. 2016, 34, 74–85. [Google Scholar] [CrossRef]
- Hung, N.T.; Thuan, L.B.; Thanh, T.C.; Thuy, N.T.; Tra, D.T.T.; Do Van, K.; Watanabe, M.; Minh, P.Q.; Than, H.S.; Vuong, N.D.; et al. Selective recovery of thorium and uranium from leach solutions of rare earth concentrates in continuous solvent extraction mode with primary amine N1923. Hydrometallurgy 2022, 213, 105933. [Google Scholar] [CrossRef]
- Zhu, Z.W.; Zhao, N.; Long, Z.Q.; Li, D.D.; Cui, D.L.; Zhang, G.C. New environment-friendly approach for bastnasite metallurgic treatment (I): Extraction of tetravalent cerium from sulphuric acid medium with di (2-ethylhexyl) phosphoric acid. J. Rare Earths 2005, 23, 78–182. [Google Scholar]
- Zhang, W.J.; Xie, X.; Tong, X.; Du, Y.P.; Song, Q.; Feng, D.X. Study on the effect and mechanism of impurity aluminum on the solvent extraction of rare earth elements (Nd, Pr, La) by P204–P350 in chloride solution. Minerals 2021, 11, 61. [Google Scholar] [CrossRef]
- Pan, J.H.; Zhao, X.D.; Zhou, C.C.; Yang, F.; Ji, W.S. Study on solvent extraction of rare earth elements from leaching solution of coal fly ash by P204. Minerals 2022, 12, 1547. [Google Scholar] [CrossRef]
- Deng, B.N.; Li, G.H.; Luo, J.; Ye, Q.; Liu, M.X.; Rao, M.J.; Peng, Z.W.; Jiang, T. Selective extraction of rare earth elements over TiO2 from bauxite residues after removal of their Fe-, Si-, and Al-bearing constituents. JOM 2018, 70, 2869–2876. [Google Scholar] [CrossRef]
- Deng, B.N.; Li, G.H.; Luo, J.; Ye, Q.; Liu, M.X.; Peng, Z.W.; Jiang, T. Enrichment of Sc2O3 and TiO2 from bauxite ore residues. J. Hazard. Mater. 2017, 331, 71–80. [Google Scholar] [CrossRef]
- Deng, B.N.; Li, G.H.; Luo, J.; Ye, Q.; Liu, M.X.; Jiang, T.; Bauman, L.; Zhao, B.X. Selectively leaching the iron-removed bauxite residues with phosphoric acid for enrichment of rare earth elements. Sep. Purif. Technol. 2019, 227, 115714. [Google Scholar] [CrossRef]
- Li, G.H.; Ye, Q.; Deng, B.N.; Luo, J.; Rao, M.J.; Peng, Z.W.; Jiang, T. Extraction of scandium from scandium-rich material derived from bauxite ore residues. Hydrometallurgy 2018, 176, 62–68. [Google Scholar] [CrossRef]
- Liu, T.C.; Chen, J. Extraction and separation of heavy rare earth elements: A review. Sep. Purif. Technol. 2021, 276, 119263. [Google Scholar] [CrossRef]
Kind of Extractant | Typical Extractants | Medium | Complication on REEs |
---|---|---|---|
neutral phosphorus | CYANEX 925 [22], | HCl | La, Y |
TBP [23] | H2SO4 | Ce | |
acidic phosphorus | Cyanex 272, Cyanex 572 [24] | HNO3 | La, Y, Nd |
D2EHPA [25] | HCl | Sc | |
carboxylic acids | PC-88A [26] | HCl | Dy, Nd |
amines | Aliquat 336 [27] | HNO3 | Y |
N1923 [28] | HCl | Th, U |
Fe2O3 | Al2O3 | SiO2 | Na2O | CaO | TiO2 | La2O3 | Ce2O3 | Sc2O3 | Y2O3 | LOI | |
---|---|---|---|---|---|---|---|---|---|---|---|
BR | 31.6 | 18.7 | 12.2 | 6.6 | 13.3 | 5.2 | 0.0117 | 0.0534 | 0.0086 | 0.0178 | 12.0 |
IBR | 3.4 | 2.0 | 1.8 | 14.1 | 28.0 | 22.3 | 0.0491 | 0.237 | 0.038 | 0.0745 | 22.3 |
La. | Ce | Sc | Y | Al | Fe | Ti | Ca |
---|---|---|---|---|---|---|---|
33.5 | 100.3 | 15.5 | 26.3 | 1690 | 2136 | 820 | 10,470.8 |
Element | lgD-pH | R2 | ] | R2 |
---|---|---|---|---|
Sc | lgD = 2.70pH − 2.0 | 0.99 | lgD = 3lg[] + 4.5 | 0.99 |
Y | lgD = 3.04pH − 2.6 | 0.97 | lgD = 2.8lg[] + 5.5 | 0.99 |
Rare Earth | lgD-pH | R2 | ] | R2 |
---|---|---|---|---|
La | lgD = 1.7pH − 1.4 | 0.99 | lgD = 2.0lg[] + 2.0 | 0.99 |
Ce | lgD = 1.8pH − 1.4 | 0.99 | lgD = 2.0lg[] + 2.3 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Deng, B.; Yao, Y.; Wang, C.; Ruan, Y.; Zhou, F.; Chi, R.; Zhang, H. Distinct Extraction Behaviors of La/Ce and Sc/Y in the Phosphoric Acidic Leachate of Bauxite Residues and Their Sequential Extraction with Di-(2-Ethylhexyl) Phosphoric Acid as Extractant. Minerals 2023, 13, 1345. https://doi.org/10.3390/min13101345
Li B, Deng B, Yao Y, Wang C, Ruan Y, Zhou F, Chi R, Zhang H. Distinct Extraction Behaviors of La/Ce and Sc/Y in the Phosphoric Acidic Leachate of Bauxite Residues and Their Sequential Extraction with Di-(2-Ethylhexyl) Phosphoric Acid as Extractant. Minerals. 2023; 13(10):1345. https://doi.org/10.3390/min13101345
Chicago/Turabian StyleLi, Bowen, Bona Deng, Yuqi Yao, Chuanli Wang, Yaoyang Ruan, Fang Zhou, Ru’an Chi, and Hanquan Zhang. 2023. "Distinct Extraction Behaviors of La/Ce and Sc/Y in the Phosphoric Acidic Leachate of Bauxite Residues and Their Sequential Extraction with Di-(2-Ethylhexyl) Phosphoric Acid as Extractant" Minerals 13, no. 10: 1345. https://doi.org/10.3390/min13101345
APA StyleLi, B., Deng, B., Yao, Y., Wang, C., Ruan, Y., Zhou, F., Chi, R., & Zhang, H. (2023). Distinct Extraction Behaviors of La/Ce and Sc/Y in the Phosphoric Acidic Leachate of Bauxite Residues and Their Sequential Extraction with Di-(2-Ethylhexyl) Phosphoric Acid as Extractant. Minerals, 13(10), 1345. https://doi.org/10.3390/min13101345