Genesis of the Daliuhang Gold Deposit, Jiaodong Peninsula, Eastern China: Constraints from H-O-S-Pb-He-Ar Isotopes, and Geochronology
Abstract
:1. Introduction
2. Regional Geology
3. Ore Deposit Geology
4. Sampling and Analytical Methods
4.1. Isotopes Analysis
4.2. Zircon U-Pb Dating
4.3. Rb-Sr Dating
5. Results
5.1. Hydrogen and Oxygen Isotopes
5.2. In Situ Sulfur Isotopic Compositions
5.3. Lead Isotope Compositions
5.4. Helium-Ar Isotopes of Pyrite
5.5. Zircon U-Pb Age of Granodiorite
5.6. Pyrite Rb-Sr Age
6. Discussion
6.1. Evolution of Ore-Forming Fluid
6.2. Sources of Ore-Forming Material
6.3. Relationship between Gold Mineralization and Ore-Hosting Intrusions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tian, R.C.; Li, D.P.; Zhang, W.; Tian, J.X.; Yu, X.W.; Geng, K.; Zhang, Y. The mixing of Mesozoic crust-mantle magma is the key to the source of large amounts of gold deposits in the Jiaobei uplift, China. Acta Pet. Sin. 2022, 38, 23–40. [Google Scholar] [CrossRef]
- Li, J.J.; Luo, Z.K.; Liu, X.Y.; Xu, W.D.; Luo, H. Geodynamic setting for formation of large-superlarge gold deposits and Mesozoic granites in Jiaodong area. Miner. Depos. 2005, 24, 361–372. (In Chinese) [Google Scholar]
- Deng, J.; Yang, L.Q.; Ge, L.S.; Wang, Q.F.; Zhang, J.; Gao, B.F.; Zhou, Y.F.; Jiang, S.Q. Research advances in the Mesozoic tectonic regimes during the formation of Jiaodong ore cluster area. Prog. Nat. Sci. 2006, 16, 777–784. [Google Scholar]
- Deng, J.; Wang, C.M.; Bagas, L.; Carranza, E.J.M.; Lu, Y.J. Cretaceous-Cenozoic tectonic history of the Jiaojia Fault and gold mineralization in the Jiaodong Peninsula, China: Constraints from zircon U-Pb, illite K-Ar, and apatite fission track thermochronometry. Min. Depos. 2015, 50, 987–1006. [Google Scholar] [CrossRef]
- Li, S.R.; Santosh, M. Metallogeny and craton destruction: Records from the North China Craton. Ore Geol. Rev. 2014, 56, 376–414. [Google Scholar] [CrossRef]
- Yang, L.Q.; Deng, J.; Wang, Z.L.; Zhang, L.; Guo, L.N.; Song, M.C.; Zheng, X.L. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China. Acta Pet. Sin. 2014, 30, 2447–2467. (In Chinese) [Google Scholar]
- Goldfarb, R.J.; Santosh, M. The dilemma of the Jiaodong gold deposits: Are they unique? Geosci. Front. 2014, 5, 139–153. [Google Scholar] [CrossRef]
- Fan, H.R.; Feng, K.; Li, X.H.; Hu, F.F.; Yang, K.F. Mesozoic gold mineralization in the Jiaodong and Korean peninsulas. Acta Pet. Sin. 2016, 32, 3225–3238. (In Chinese) [Google Scholar]
- Song, M.C.; Ding, Z.J.; Zhang, J.J.; Song, Y.X.; Bo, J.W.; Wang, Y.Q.; Liu, H.B.; Li, S.Y.; Li, J.J.; Li, R.X. Geology and mineralization of the Sanshandao supergiant gold deposit (1200 t) in the Jiaodong Peninsula, China: A review. China Geol. 2021, 4, 686–719. [Google Scholar] [CrossRef]
- Song, M.C.; Song, Y.X.; Ding, Z.Z.; Li, S.Y. Jiaodong Gold Deposits:Essential Characteristics and Major Controversy. Gold Sci. Technol. 2018, 26, 406–422. (In Chinese) [Google Scholar]
- Zhu, R.X.; Fan, H.R.; Li, J.W.; Meng, Q.R.; Li, S.R.; Zeng, Q.D. Decratonic gold deposits. Sci. China Earth Sci. 2015, 58, 1523–1537. (In Chinese) [Google Scholar] [CrossRef]
- Zheng, Y.F.; Xu, Z.; Zhao, Z.F.; Dai, L.Q. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Sci. China Earth Sci. 2018, 61, 353–385. (In Chinese) [Google Scholar] [CrossRef]
- Chen, Y.J.; Pirajno, F.; Lai, Y.; Li, C. Metallogenic time and tectonic setting of the Jiaodong gold province, eastern China. Acta Pet. Sin. 2004, 20, 907–922. [Google Scholar]
- Wang, T.J.; Yan, F. Ore fluid evolution and ore prediction of magmatic hydrothermal gold deposits in Jiaodong area. Conributions Geol. Miner. Resour. Res. 2002, 17, 169–174. (In Chinese) [Google Scholar]
- Goldfarb, R.J.; Hart, C.; Davis, G.; Groves, D. East Asian gold: Deciphering the anomaly of phanerozoic gold in precambrian cratons. Econ. Geol. 2007, 102, 341–345. [Google Scholar] [CrossRef]
- Yang, M.Z. The Geochemistry of Wallrock Alteration Zone of Gold Deposits—As Exemplified by Jiaodong Gold Deposits; Geology Press: Beijing, China, 1998; pp. 109–122. (In Chinese) [Google Scholar]
- Zhai, M.G.; Fan, H.R.; Yang, J.H.; Miao, L.C. Large-scale cluster of gold deposits in east shandong: Anorogenic metallogenes. Earth Sci. Front. 2004, 11, 85–98. (In Chinese) [Google Scholar]
- Li, L.; Santosh, M.; Li, S.R. The ‘Jiaodong type’ gold deposits: Characteristics, origin and prospecting. Ore Geol. Rev. 2015, 65, 589–611. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.F. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework. Gondwana Res. 2016, 36, 219–274. [Google Scholar] [CrossRef]
- Song, M.C.; Song, Y.X.; Li, J.; Liu, H.B.; Li, J.; Dong, L.L.; He, C.Y.; Wang, R.S. Thermal doming-extension metallogenic system of Jiaodong type gold deposits. Acta Pet. Sin. 2023, 39, 1241–1260. (In Chinese) [Google Scholar] [CrossRef]
- Miao, L.C.; Luo, Z.K.; Guan, K.; Huang, J.Z. The implication of the SHRIMP U-Pb age in zircon to the petrogenesis of the Linglong granite, East Shangdong Province. Acta Pet. Sin. 1998, 14, 198–206. (In Chinese) [Google Scholar]
- Qiu, L.G.; Ren, F.L.; Cao, Z.X.; Zhang, Y.Q. Late mesozoic magmatic activities and their constraints on geotectonics of jiaodong region. Geotecton. Metallog. 2008, 1, 117–123. (In Chinese) [Google Scholar] [CrossRef]
- Song, M.C.; Song, Y.X.; Li, J.; Li, S.Y. Metallogenic series of gold and nonferrous metal deposits related to cretaceous granites in eastern Shandong Peninsula, China. Geotecton. Metallog. 2015, 39, 828–843. (In Chinese) [Google Scholar] [CrossRef]
- Tian, J.P. The Mesozoic Gold Polymetallic Regional Metallogeny in Qipengfu Ore Concentration Area, Jiaodong Peninsula. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2020. (In Chinese). [Google Scholar]
- Wan, D.F.; Fan, T.Y.; Tian, S.H. The chromium analytical technique for hydrogen isotopes. Acta Geosci. Sin. 2005, 26, 35–38. (In Chinese) [Google Scholar]
- Liu, G.Q.; Zhao, K.D.; Jiang, S.Y.; Chen, W. In-situ sulfur isotope and trace element analysis of pyrite from the Xiwang uranium ore deposit in South China: Implication for ore genesis. J. Geochem. Explor. 2018, 195, 49–65. [Google Scholar] [CrossRef]
- Fu, J.L.; Hu, Z.C.; Zhang, W.; Yang, L.; Liu, Y.S.; Li, M.; Zong, K.Q.; Gao, S.; Hu, S.H. In situ sulfur isotopes (δ34S and δ33S) analyses in sulfides and elemental sulfur using high sensitivity cones combined with the addition of nitrogen by laser ablation MC-ICP-MS. Anal. Chim. Acta 2016, 911, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.Y.; Cook, N.J.; Yang, T.; Ciobanu, C.L.; Zhao, K.D.; Jiang, S.Y. Mapping of Sulfur Isotopes and Trace Elements in Sulfides by LA-(MC)-ICP-MS: Potential Analytical Problems, Improvements and Implications. Minerals 2016, 6, 110. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Slama, J.; Kosler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plesovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Zong, K.Q.; Gao, C.G.; Gao, S.; Xu, J.A.; Chen, H.H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Andersen, T. Correction of common lead in U–Pb analyses that do not report 204 Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot 3.75, A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2012; Volume 5, pp. 1–75. [Google Scholar]
- Liu, W.G.; Liu, H.B.; Li, G.Z.; Xiao, Z.B.; Tu, J.R.; Li, H.M. The Application of Ion Exchange Resins in Sr-Nd Isotopic Assay of Geological Samples. Acta Geol. Sin. 2017, 91, 2584–2592. (In Chinese) [Google Scholar]
- Clayton, R.N.; O’Neil, J.R.; Mayeda, T.K. Oxygen isotope exchange between quartz and water. J. Geophys. Res. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- Hou, M.L.; Jiang, S.Y.; Jiang, Y.H.; Ling, H.F. S-Pb isotope geochemistry and Rb-Sr geochronology of the Penglai gold field in the eastern Shangdong province. Acta Pet. Sin. 2006, 22, 2525–2533. (In Chinese) [Google Scholar]
- Lu, Y.F. GeoKit—A geochemical toolkit for Microsoft Excel. Geochimica 2004, 33, 459–464. (In Chinese) [Google Scholar]
- Simmons, S.F.; Sawkins, F.J.; Schlutter, D.J. Mantle-derived helium in two Peruvian hydrothermal ore deposits. Nature 1987, 329, 429–432. [Google Scholar] [CrossRef]
- Hugh, P.; Taylor, J.R. The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition. Econ. Geol. 1974, 69, 843–883. [Google Scholar]
- Ohmoto, H. Stable isotope geochemistry of ore deposits. Rev. Mineral. 1986, 16, 491–559. [Google Scholar]
- Sheppard, S.M.F. Characterization and isotopic variations in natural waters. Reviews of Mineralogy. Rev. Mineral. 1986, 16, 165–183. [Google Scholar]
- Mao, J.W.; Li, H.M.; Wang, Y.T.; Zhang, C.Q.; Wang, R.T. The relationship between mantle-drived fluid gold ore-formation in the eastern Shandong peninsula: Evidences from D-O-C-S isotopes. Acta Pet. Sin. 2005, 79, 839–857. (In Chinese) [Google Scholar]
- Baptiste, P.J.; Fouquet, Y. Abundance and isotopic composition of helium in hydrothermal sulfides from the East Pacific Rise at 13 °N. Geochim. Cosmochim. Acta 1996, 60, 87–93. [Google Scholar] [CrossRef]
- Trull, T.W.; Kurz, M.D.; Jenkins, W.J. Diffusion of cosmogenic 3He in olivine and quartz: Implications for surface exposure dating. Earth Planet. Sci. Lett. 1991, 103, 241–251. [Google Scholar] [CrossRef]
- Podosek, K.A.; Bernatowica, T.J.; Kramer, F.E. Absorption of xenon and krypton on shales. Geochim. Cosmochim. Acta 1980, 45, 2401–2415. [Google Scholar] [CrossRef]
- Turner, G.; Stuart, F. Helium/heat ratios and deposition temperatures of sulphides from the ocean floor. Nature 1992, 375, 581–583. [Google Scholar] [CrossRef]
- Tolstikhin, I.N. A Review—Some Recent Advances in Isotope Geochemistry of Light Rare Gases. Adv. Earth Planet. Sci. 1978, 3, 33–62. [Google Scholar]
- Mamyrin, B.A.; Tolstikhin, I.N. Helium Isotopes in Nature; Elsevier: Amsterdam, The Netherlands, 1984; pp. 1–273. [Google Scholar]
- Ballentine, C.J.; Burgess, R.; Marty, B. Tracing fluid origin, transport and interaction in the crust. Rev. Mineral. Geochem. 2002, 47, 539–614. [Google Scholar] [CrossRef]
- Burnard, P.G.; Hu, R.Z.; Turner, G.; Bi, X.W. Mantle, crustal and atmospheric noble gases in Ailaoshan Gold deposits, Yunnan Province, China. Geochim. Cosmochim. Acta J. Geochem. Soc. Meteorit. Soc. 1999, 63, 1595–1604. [Google Scholar] [CrossRef]
- Lai, Y.; Liu, Y.L.; Huang, B.L.; Chen, Y.J. The characteristics of noble gases in mantle-derived xenoliths in Wudalianchi and Kuandian, NE China: MORB-like mantle and metasomated mantle. Acta Pet. Sin. 2005, 21, 1373–1381. (In Chinese) [Google Scholar]
- Kendrick, M.A.; Burgess, R.; Pattrick, R.A.D.; Turner, G. Fluid inclusion noble gas and halogen evidence on the origin of Cu-Porphyry mineralising fluids. Geochim. Cosmochim. Acta 2001, 65, 2651–2668. [Google Scholar] [CrossRef]
- Matsumoto, T.; Chen, Y.l.; Matsuda, J.I. Concomitant occurence of primordial and recycled noble gasesin the Earth’s mantle. Earth Planet Sci. Lett. 2001, 185, 35–47. [Google Scholar] [CrossRef]
- Gautheron, C.; Moreira, M.; Allegre, C. He, Ne and Ar composition of the European lithospheric mantle. Chem. Geol. 2005, 217, 97–112. [Google Scholar] [CrossRef]
- Hopp, J.; Ionov, D.A. Tracing partial melting and subduction-related metasomatism in the Kamchatkan mantle wedge using noble gas compositions. Earth Planet Sci. Lett. 2011, 302, 121–131. [Google Scholar] [CrossRef]
- Broadley, M.W.; Ballentine, C.J.; Chavrit, D.; Dallai, L.; Burgess, R. Sedimentary halogens and noble gases within Western Antarctic xenoliths: Implications of extensive volatile recycling to the sub continental lithospheric mantle. Geochim. Cosmochim. Acta 2016, 176, 139–156. [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry, 6th ed.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 72. [Google Scholar]
- Gao, T.Z.; Zhao, L.S.; Yang, M.Z. Gold mineralization and its evolution in the Muping-Rushan gold deposits, Shandong province. Geotecton. Metallog. 2001, 25, 155–160. (In Chinese) [Google Scholar]
- Wang, Y.W.; Zhu, F.S.; Gong, R.T. Tectonic isotope geochemistry--Further study on sulphur isotope of Jiaodong Gold Concentration Area. Gold 2002, 23, 1–16. (In Chinese) [Google Scholar]
- Deng, J.; Liu, X.F.; Wang, Q.F.; Pan, R.G. Origin of the Jiaodong-type Xinli gold deposit, Jiaodong Peninsula, China: Constraints from fluid inclusion and C-D-O-S-Sr isotope compositions. Ore Geol. Rev. 2015, 65, 674–686. [Google Scholar] [CrossRef]
- Li, Z.L.; Yang, M.Z. The Geology-Geochemistry of Gold Deposits in Jiaodong Region; Tianjin Science and Technology Press: Tianjin, China, 1993; pp. 1–300. (In Chinese) [Google Scholar]
- Huang, D.Y. Sulfur isotope studies of the metallogenic series of gold deposits in Jiaodong area. Miner. Depos. 1994, 13, 75–86. (In Chinese) [Google Scholar]
- Wu, K.X.; Hu, R.Z.; Bi, X.W.; Peng, J.T.; Tang, Q.L. Ore lead isotopes as a tracer for ore-forming material sources: A review. Geol.-Geochem. 2002, 30, 73–81. [Google Scholar]
- Stacey, J.S.; Kramers, J.D. Approximation of terrestrial lead isotope evolution by a two stage model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Doe, B.R.; Zartman, R.E. Plumbotectonics, the Phanerozoic. In Geochemistry of Hydrothermal Ore Deposits; Barnes, H.L., Ed.; Wiley: Hoboken, NJ, USA, 1979; pp. 22–70. [Google Scholar]
- Zartman, R.E.; Doe, B.R. Plumbotectonics—The model. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Faure, M.; Caridroit, M.; Charvet, J. The Late Jurassic oblique collisional orogen of SW Japan: New structural data and synthesis. Tectonics 1986, 5, 1089–1114. [Google Scholar] [CrossRef]
- Sun, X.L. Sr and O Isotopic Characteristics of Porphyries in the Qinling Molybdenum Deposit Belt and Their Implication to Genetic Mechanism and Type. Ph.D. Thesis, Chengdu University of Technology, Chengdu, China, 2001. (In Chinese). [Google Scholar]
- Hou, M.L.; Jiang, Y.H.; Jiang, S.Y.; Ling, H.F.; Zhao, K.D. Contrasting origins of late Mesozoic adakitic granitoids from the northwestern Jiaodong Peninsula, east China: Implications for crustal thickening to delamination. Geol. Mag. 2007, 144, 619–631. [Google Scholar] [CrossRef]
- Yang, K.F.; Fan, H.R.; Santosh, M.; Hu, F.F.; Wilde, S.A.; Lan, T.G.; Lu, L.N.; Liu, Y.S. Reactivation of the Archean lower crust: Implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton. Lithos 2012, 146, 112–127. [Google Scholar] [CrossRef]
- Li, X.H.; Fan, H.R.; Zhang, Y.W.; Hu, F.F.; Yang, K.F.; Liu, X.; Cai, Y.C.; Zhao, K.D. Rapid exhumation of the northern Jiaobei Terrane, North China Craton in the Early Cretaceous: Insights from Al-in-hornblende barometry and U-Pb geochronology. J. Asian Earth Sci. 2018, 160, 365–379. [Google Scholar] [CrossRef]
- Deng, J.; Qiu, K.F.; Wang, Q.F.; Goldfarb, R.; Yang, L.Q.; Zi, J.W.; Geng, J.Z.; Ma, Y. In Situ Dating of Hydrothermal Monazite and Implications for the Geodynamic Controls on Ore Formation in the Jiaodong Gold Province, Eastern China. Econ. Geol. 2020, 115, 671–685. [Google Scholar] [CrossRef]
- Yang, K.F.; Jiang, P.; Fan, H.R.; Zuo, Y.B.; Yang, Y.H. Tectonic transition from a compressional to extensional metallogenic environment at similar to 120 Ma revealed in the Hushan gold deposit, Jiaodong, North China Craton. J. Asian Earth Sci. 2018, 160, 408–425. [Google Scholar] [CrossRef]
- Zhang, L.; Weinberg, R.F.; Yang, L.Q.; Groves, D.I.; Sai, S.X.; Matchan, E.; Phillips, D.; Kohn, B.P.; Miggins, D.P.; Liu, Y.; et al. Mesozoic Orogenic Gold Mineralization in the Jiaodong Peninsula, China: A Focused Event at 120 +/− 2 Ma During Cooling of Pregold Granite Intrusions. Econ. Geol. 2020, 115, 415–441. [Google Scholar] [CrossRef]
- Fan, H.R.; Zhai, M.G.; Xie, Y.H.; Yang, J.H. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China. Min. Depos. 2003, 38, 739–750. [Google Scholar] [CrossRef]
- Wen, B.J.; Fan, H.R.; Santosh, M.; Hu, F.F.; Pirajno, F.; Yang, K.F. Genesis of two different types of gold mineralization in the Linglong gold field, China: Constrains from geology, fluid inclusions and stable isotope. Ore Geol. Rev. 2015, 65, 643–658. [Google Scholar] [CrossRef]
- Li, J.W.; Vasconcelos, P.M.; Zhang, J.; Zhou, M.F.; Zhang, X.J.; Yang, F.H. 40Ar/39Ar constraints on a temporal link between gold mineralization, magmatism, and continental margin transtension in the Jiaodong Gold Province, eastern China. J. Geol. 2003, 111, 741–751. [Google Scholar] [CrossRef]
- Charles, N.; Augier, R.; Gumiaux, C.; Monie, P.; Chen, Y.; Faure, M.; Zhu, R.X. Timing, duration and role of magmatism in wide rift systems: Insights from the Jiaodong Peninsula (China, East Asia). Gondwana Res. 2013, 24, 412–428. [Google Scholar] [CrossRef]
- Feng, K.; Fan, H.R.; Groves, D.I.; Yang, K.F.; Hu, F.F.; Liu, X.; Cai, Y.C. Geochronological and sulfur isotopic evidence for the genesis of the post-magmatic, deeply sourced, and anomalously gold-rich Daliuhang orogenic deposit, Jiaodong, China. Min. Depos. 2020, 55, 293–308. [Google Scholar] [CrossRef]
- Qu, X.M.; Wang, H.M.; Rao, B. Partial melting experiments of Jiaodong Group and their implication for the origin of the granites. Geochimica 2000, 2, 153–161. (In Chinese) [Google Scholar]
- Yang, J.H.; Zhou, X.H. The Rb-Sr isochron of ore and pyrite sub-samples from Linglong gold deposit, Jiaodong Peninsula, eastern China and their geological significance. Chin. Sci. Bull. 2000, 45, 2272–2277. (In Chinese) [Google Scholar] [CrossRef]
- Yang, J.H.; Chu, M.F.; Liu, W.; Zhai, M.G. Geochemistry and petrogenesis of Guojialing granodiorites from the northwestern Jiaodong Peninsula, eastern China. Acta Pet. Sin. 2003, 19, 692–700. (In Chinese) [Google Scholar]
- Maruyama, S.; Isozaki, Y.; Kimura, G.; Terabayashi, M. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. Isl. Arc. 1997, 6, 121–142. [Google Scholar] [CrossRef]
- Zhu, G.; Niu, M.L.; Xie, C.L.; Wang, Y.S. Sinistral to Normal Faulting along the Tan-Lu Fault Zone: Evidence for Geodynamic Switching of the East China Continental Margin. J. Geol. 2010, 118, 277–293. [Google Scholar] [CrossRef]
Stage | Mineral | δDSMOW (‰) | δ18OSMOW (‰) | δ18OH2O (‰) | Th-TOT (°C) | Source |
---|---|---|---|---|---|---|
Stage III | Quartz | −87 | 15.90 | 7.63 | 265 | This study |
Quartz | −87 | 16.20 | 7.93 | 265 | ||
Quartz | −84 | 16.10 | 7.83 | 265 | ||
Quartz | −101 | 16.60 | 8.40 | 280 | [32] | |
Quartz | −88 | 18.30 | 10.90 | 300 | ||
Quartz | −87 | 15.80 | 8.40 | 300 |
Stage | Sample Serial Number | Mineral | δ34SCDT (‰) |
---|---|---|---|
Stage II | SD45B1-1 | Pyrite | 6.81 |
SD45B1-2 | Pyrite | 5.08 | |
Stage III (Py3a) | SD44B1-5 | Pyrite | 6.78 |
SD44B1-6 | Pyrite | 6.76 | |
SD44B1-7 | Pyrite | 6.52 | |
SD44B1-8 | Pyrite | 5.78 | |
SD46B1-3 | Pyrite | 6.64 | |
SD46B1-4 | Pyrite | 6.59 | |
SD47B1-1 | Pyrite | 4.87 | |
SD47B1-2 | Pyrite | 4.82 | |
SD47B1-3 | Pyrite | 4.97 | |
Stage III (Py3b) | SD44B1-1 | Pyrite | 6.39 |
SD44B1-2 | Pyrite | 6.79 | |
SD44B1-3 | Pyrite | 6.81 | |
SD44B1-4 | Pyrite | 5.93 | |
SD46B1-1 | Pyrite | 7.04 | |
SD46B1-2 | Pyrite | 6.49 | |
SD47B1-4 | Pyrite | 5.10 | |
SD47B1-5 | Pyrite | 6.05 |
Sample Serial Number | Mineral | 206Pb/204Pb | 207Pb/204Pb | 208Pb/204Pb | 206Pb/207Pb | t (Ma) | μ | ω | Th/U | V1 | V2 | ∆β | ∆γ | Source |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SD44B1-1 | Pyrite | 17.560 | 15.573 | 38.462 | 1.1276 | 741 | 9.53 | 41.53 | 4.22 | 84.65 | 41.4 | 15.85127 | 28.39572 | This study |
SD44B1-1a | Galena | 17.516 | 15.515 | 38.272 | 1.1290 | 708 | 9.41 | 40.34 | 4.15 | 76.1 | 38.1 | 12.06784 | 23.31551 | This study |
SD44B1-2 | Galena | 17.577 | 15.600 | 38.548 | 1.1267 | 758 | 9.58 | 42.10 | 4.25 | 88.62 | 42.89 | 17.61252 | 30.69519 | This study |
SD44B1-2a | Galena | 17.532 | 15.542 | 38.361 | 1.1280 | 726 | 9.47 | 40.92 | 4.18 | 80.18 | 39.55 | 13.82909 | 25.69519 | This study |
SD46B1a | Pyrite | 17.533 | 15.576 | 38.340 | 1.1256 | 763 | 9.54 | 41.18 | 4.18 | 82.70 | 42.75 | 16.04697 | 25.13369 | This study |
SD46B1b | Pyrite | 17.510 | 15.545 | 38.248 | 1.1264 | 745 | 9.48 | 40.58 | 4.14 | 78.34 | 40.87 | 14.02479 | 22.67380 | This study |
SD46B1-1 | Pyrite | 17.465 | 15.527 | 38.118 | 1.1248 | 757 | 9.45 | 40.09 | 4.11 | 74.89 | 40.32 | 12.85062 | 19.19786 | This study |
SD46B1-2 | Pyrite | 17.566 | 15.535 | 38.307 | 1.1307 | 695 | 9.45 | 40.37 | 4.13 | 77.26 | 39.98 | 13.37247 | 24.25134 | This study |
SD46B1-3 | Pyrite | 17.513 | 15.522 | 38.245 | 1.1283 | 718 | 9.43 | 40.31 | 4.14 | 76.16 | 38.98 | 12.52446 | 22.59358 | This study |
SD46B1-4 | Pyrite | 17.532 | 15.520 | 38.258 | 1.1296 | 702 | 9.42 | 40.22 | 4.13 | 75.70 | 38.85 | 12.39400 | 22.94118 | This study |
DL-9-1 | Pyrite | 17.477 | 15.527 | 38.267 | 1.1256 | 749 | 9.45 | 40.70 | 4.17 | 78.24 | 38.79 | 12.85714 | 23.17647 | [36] |
DL-9-1 | Galena | 17.503 | 15.536 | 38.314 | 1.1266 | 740 | 9.46 | 40.84 | 4.18 | 79.36 | 39.24 | 13.40509 | 24.42781 | [36] |
DL-9-3 | Pyrite | 17.398 | 15.522 | 38.172 | 1.1209 | 798 | 9.45 | 40.75 | 4.17 | 77.76 | 38.51 | 12.51142 | 20.65241 | [36] |
DL-3-5 | Pyrite | 17.504 | 15.532 | 38.296 | 1.1269 | 736 | 9.45 | 40.72 | 4.17 | 78.63 | 39.19 | 13.20287 | 23.95989 | [36] |
DL-8-6 | Pyrite | 17.365 | 15.514 | 38.125 | 1.1193 | 813 | 9.44 | 40.67 | 4.17 | 76.93 | 38.08 | 12.01566 | 19.38235 | [36] |
Deposit | Mineral | 36Ar/38Ar | 40Ar (10−8 cm3STP/g) | 4He (10−8 cm3STP/g) | 40Ar/4He | 40Ar/36Ar | 3He/4He (10−6) | R/Ra | 40Ar* (%) | 40Ar*/4He | Mantle 4He (Rm: 6)/% | Mantle 4He (Rm: 9)/% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Daliuhang | Pyrite | 5.33 | 0.05 | 0.28 | 19.57 | 753.80 | 1.92 | 1.37 | 60.80 | 11.90 | 21.55 | 14.29 |
Pyrite | 5.35 | 0.29 | 7.51 | 3.89 | 473.10 | 1.53 | 1.09 | 37.54 | 1.46 | 16.79 | 11.13 | |
Pyrite | 5.36 | 0.28 | 7.87 | 3.53 | 461.20 | 1.58 | 1.13 | 35.93 | 1.27 | 17.48 | 11.59 | |
Pyrite | 5.39 | 0.38 | 8.63 | 4.40 | 446.30 | 1.43 | 1.02 | 33.79 | 1.49 | 15.67 | 10.39 | |
Magnanimity | (Rare gases in saturated air rainwater [38]) | 295.5 | 1 | |||||||||
Mantle | (Rare gases in the mantle [38]) | >40,000 | 6~9 | |||||||||
Crust | (Radiogenic rare gases in the Earth’s crust [38]) | >45,000 | ≤0.1 |
Sample Serial Number | Ore Type | Rb (ppm) | Sr (ppm) | 87Rb/86Sr | 87Sr/86Sr | StdErr (%) | |
---|---|---|---|---|---|---|---|
SD44B1-1 | Coarse-grained pyrite | 0.1369 | 8.8797 | 0.0446 | 0.5 | 0.71340 | 0.0006 |
SD44B1-2 | Coarse-grained pyrite | 6.2452 | 12.5817 | 1.4373 | 0.5 | 0.71571 | 0.0010 |
SD44B1-4 | Coarse-grained pyrite | 2.3568 | 19.8666 | 0.3435 | 0.5 | 0.71390 | 0.0012 |
SD46B1-1 | Coarse-grained pyrite | 1.8323 | 0.9369 | 5.6666 | 0.5 | 0.72280 | 0.0010 |
SD46B1-2 | Coarse-grained pyrite | 1.1963 | 0.9697 | 3.5734 | 0.5 | 0.71930 | 0.0012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Li, J.; Wu, X.; Fu, C.; Dang, Z.; Zhang, P.; He, J.; Tang, W.; Tian, R. Genesis of the Daliuhang Gold Deposit, Jiaodong Peninsula, Eastern China: Constraints from H-O-S-Pb-He-Ar Isotopes, and Geochronology. Minerals 2023, 13, 1339. https://doi.org/10.3390/min13101339
Tian J, Li J, Wu X, Fu C, Dang Z, Zhang P, He J, Tang W, Tian R. Genesis of the Daliuhang Gold Deposit, Jiaodong Peninsula, Eastern China: Constraints from H-O-S-Pb-He-Ar Isotopes, and Geochronology. Minerals. 2023; 13(10):1339. https://doi.org/10.3390/min13101339
Chicago/Turabian StyleTian, Jiepeng, Junjian Li, Xuan Wu, Chao Fu, Zhicai Dang, Pengpeng Zhang, Jiangtao He, Wenlong Tang, and Ruicong Tian. 2023. "Genesis of the Daliuhang Gold Deposit, Jiaodong Peninsula, Eastern China: Constraints from H-O-S-Pb-He-Ar Isotopes, and Geochronology" Minerals 13, no. 10: 1339. https://doi.org/10.3390/min13101339
APA StyleTian, J., Li, J., Wu, X., Fu, C., Dang, Z., Zhang, P., He, J., Tang, W., & Tian, R. (2023). Genesis of the Daliuhang Gold Deposit, Jiaodong Peninsula, Eastern China: Constraints from H-O-S-Pb-He-Ar Isotopes, and Geochronology. Minerals, 13(10), 1339. https://doi.org/10.3390/min13101339