Parameters for the Formation of the Dobroe Gold Deposit (Yenisei Ridge, Russia): Evidence from Fluid Inclusions and S–C Isotopes
Abstract
:1. Introduction
2. Geology and Mineralogy of the Deposit
3. Samples and Methods
4. Results
4.1. Fluid Inclusion Types
4.2. Homogenization Temperatures, Salinity, and Pressure of Fluid
4.3. Composition of Fluid Inclusions in Quartz and Sulfides
4.4. Carbon Isotopic Composition (δ13C) of Carbon Dioxide in Fluid Inclusions
4.5. Sulfur Isotopic Composition of Sulfides
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Borisenko, A.S.; Sazonov, A.M.; Nevolko, P.A.; Naumov, E.A.; Tessalina, S.; Kovalev, K.R.; Sukhorukov, V.P. Gold Deposits of the Yenisei Ridge (Russia) and Age of Its Formation. Acta Geol. Sin. 2014, 88 (Suppl. 2), 686–687. [Google Scholar] [CrossRef] [PubMed]
- Goryachev, N.A. Gold deposits in the Earth’s history. Geol. Ore Depos. 2019, 61, 495–511. [Google Scholar] [CrossRef]
- Serdyuk, S.S.; Zabiyaka, A.I.; Gusarov, Y.V. Gold. In Tectonics and Metallogeny of Lower Angara Region; KNIIGGiMS: Krasnoyarsk, Russia, 2004; pp. 203–221. (In Russian) [Google Scholar]
- Serdyuk, S.S.; Komorovsky, Y.E.; Zverev, A.I.; Oyaber, V.K.; Vlasov, V.S.; Babushkin, V.E.; Kirillenko, V.A.; Zemlyansky, S. Models of Gold Deposits in Yenisei Siberia, Krasnoyarsk; Siberian Federal University: Krasnoyarsk, Russia, 2010; 584p. (In Russian) [Google Scholar]
- Poleva, T.V.; Sazonov, A.M. Geology of the Blagodatnoye Gold Deposit in the Yenisei Ridge; ITKOR: Moscow, Russia, 2012; p. 292. (In Russian) [Google Scholar]
- Sazonov, A.M.; Zvyagina, E.A.; Silyanov, S.A.; Lobanov, K.V.; Leontiev, S.I.; Kalinin, Y.A.; Savichev, A.A.; Tishin, P.A. Ore genesis of the Olimpiada gold deposit (Yenisei Ridge, Russia). Geospheric Res. 2019, 1, 17–43. [Google Scholar] [CrossRef]
- Sazonov, A.M.; Ananyev, A.A.; Poleva, T.V.; Khokhlov, A.N.; Vlasov, V.S.; Zvyagina, E.A.; Fedorova, A.V.; Tishin, P.A.; Leontiev, S.I. Gold ore metallogeny of the Yenisei ridge: Geological-structural position, structural types of ore fields. Tekhnika I Tekhnologii Zh. Sib. Federal. Univ. 2010, 4, 371–395. [Google Scholar]
- Polyakov, A.V. Assessment of efficiency of development of the group of gold deposits by the example of Razdolinsky ore cluster. In State and Problems of Geological Study of Subsoil and Development of Mineral and Raw Material Base of Krasnoyarsk Region; KNIIGiMS: Krasnoyarsk, Russia, 2003; pp. 239–241. (In Russian) [Google Scholar]
- Silyanov, S.A.; Sazonov, A.M.; Tishin, P.A.; Nekrasova, N.A.; Lobastov, B.M.; Zvyagina, E.A.; Ryabukha, M.A. Geochemical indicators of the genesis of the Panimba gold deposit at the Yenisei Ridge (Siberia, Russia). Geospheric Res. 2018, 3, 6–21. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Groves, D.I.; Goldfarb, R.J.; Santosh, M. The conjunction of factors that lead to formation of giant gold provinces and deposits in non–arc settings. Geosci. Front. 2016, 7, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Petrov, V.G. Gold Conditions in the Northern Part of the Yenisei Ridge; Nauka: Novosibirsk, Russia, 1974; 96p. (In Russian) [Google Scholar]
- Buryak, V.A. Metamorphism and Ore Formation; Nedra: Moscow, Russia, 1982; 256p. (In Russian) [Google Scholar]
- Novozhilov, Y.I.; Gavrilov, A.M. Gold-Sulfide Deposits in Carbon-Terrigenous Strata; TsNIGRI: Moscow, Russia, 1999; 175p. (In Russian) [Google Scholar]
- Tomilenko, A.A.; Gibsher, N.A. Composition of Fluids in Mineralized and Barren Zones of the Sovetskoe Quartz-Gold Deposit, Yenisei Ridge as Deduced from Fluid Inclusions Study. Geochem. Int. 2001, 39, 167–177. [Google Scholar]
- Li, L.V. Olimpiadinskoe Deposit of Disseminated Gold-Sulfide Ores; KNIIGiMS: Krasnoyarsk, Russia, 2003; 120p. (In Russian) [Google Scholar]
- Kryazhev, S.G.; Grinenko, V.A. The isotopic composition and sources of sulfur in gold-sulphide deposits of the Yenisei Ridge. In Abstracts of the XVIII Symposium on Geochemistry of Isotopes; GEOKhI RAN: Moscow, Russia, 2007; p. 37. (In Russian) [Google Scholar]
- Kryazhev, S.G. Modern problems of the theory and practice of thermobarogeochemistry. Rudy Met. 2010, 2, 38–46. (In Russian) [Google Scholar]
- Kryazhev, S.G. Genetic Models and Criteria for Prediction of Gold Deposits in Carbon-Terrigenous Complexes. Ph.D. Thesis, TsNIGRI, Moscow, Russia, 2017. (In Russian). [Google Scholar]
- Tomilenko, A.A.; Gibsher, N.A.; Dublaynsky, Y.V.; Dallai, I. Geochemical and isotopic properties of fluid from gold–bearing and barren quartz veins of the Sovetskoye deposit (Siberia, Russia). Econ. Geol. 2010, 105, 375–394. [Google Scholar] [CrossRef]
- Gibsher, N.A.; Tomilenko, A.A.; Sazonov, A.M.; Ryabukha, M.A.; Timkina, A.L. The Gerfed gold deposit: Fluids and PT–conditions for quartz vein formation (Yenisei Ridge, Russia). Russ. Geol. Geophys. 2011, 52, 1461–1473. [Google Scholar] [CrossRef]
- Gibsher, N.A.; Ruabukha, M.A.; Tomilenko, A.A.; Sazonov, A.M.; Khomenko, M.O.; Bul’bak, T.A.; Nekrasova, N.A. Metal–bearing fluids and the age of the Panimba gold deposits (Yenisei Ridge, Russia). Russ. Geol. Geophys. 2017, 58, 1366–1383. [Google Scholar] [CrossRef]
- Gibsher, N.A.; Tomilenko, A.A.; Bul’bak, T.A.; Ryabukha, M.A.; Khomenko, M.O.; Shaparenko, E.O.; Sazonov, A.V.; Sil’yanov, S.A.; Nekrasova, N.A. The Olimpiadinskoe gold deposit (Yenisei ridge): Temperature, pressure, composition of ore–forming fluids, δ34S in sulfides, 3He/4He of fluids, Ar–Ar age, and duration of formation. Russ. Geol. Geophys. 2019, 60, 1043–1059. [Google Scholar] [CrossRef]
- Gibsher, N.A.; Sazonov, A.M.; Travin, A.V.; Tomilenko, A.A.; Ponomarchuk, A.V.; Sil’yanov, S.A.; Nekrasova, N.A.; Shaparenko, E.O.; Ryabukha, M.A.; Khomenko, M.O. Age and Duration of the Formation of the Olimpiada Gold Deposit (Yenisei Ridge, Russia). Geochem. Int. 2019, 57, 593–599. [Google Scholar] [CrossRef]
- Novozhilov, Y.; Gavrilov, A.M.; Yablokova, S.V.; Aref’eva, V.A. Unique economic Olimpiada gold–sulfide deposits in the Upper Proterozoic terrigenous sediments. Rudy Met. 2014, 3, 51–64. [Google Scholar]
- Ryabukha, M.A.; Gibsher, N.A.; Tomilenko, A.A.; Bul’bak, T.A.; Khomenko, M.O.; Sazonov, A.M. PTX—Parameters of metamorphogene and hydrothermal fluids; isotopy and age of formation of the Bogunai gold deposit, southern Yenisei ridge (Russia). Russ. Geol. Geophys. 2015, 56, 1153–1172. [Google Scholar] [CrossRef]
- Shaparenko, E.; Gibsher, N.; Tomilenko, A.; Sazonov, A.; Bul’bak, T.; Ryabukha, M.; Khomenko, M.; Silyanov, S.; Nekrasova, N.; Petrova, M. Ore–Bearing Fluids of the Blagodatnoye Gold Deposit (Yenisei Ridge, Russia): Results of Fluid Inclusion and Isotopic Analyses. Minerals 2021, 11, 1090. [Google Scholar] [CrossRef]
- Prokof’ev, V.Y.; Afanasyeva, Z.B.; Ivanova, G.F.; Boiron, M.K.; Marignyak, H. Study of fluid inclusions in minerals of the Olympiada Au- (Sb-W) deposit (Yenisei ridge) (In Russian). Geochemistry 1994, 7, 1012–1029. [Google Scholar]
- Afanas’eva, Z.B.; Ivanova, G.F.; Miklishanskiy, A.Z.; Romashova, T.V.; Kolesov, G.M. Geochemical characteristics of tungsten mineralization of the Olimpiada gold-sulfide deposit (Yenisei ridge). Geochemistry 1995, 1, 29–47. (In Russian) [Google Scholar]
- Baranova, N.N.; Afanas’eva, Z.B.; Ivanova, G.F.; Mironova, O.F.; Kolpakova, N.N. Character of ore-forming processes at the Olimpiada Au (Sb, W) deposit (based on the study of mineral paragenesis and fluid inclusions). Geochemistry 1997, 3, 282–293. (In Russian) [Google Scholar]
- Genkin, A.D.; Wagner, F.E.; Krylova, T.L.; Tsepina, A.I. Gold-bearing arsenopyrite and its formation condition at the Olimpiada and Veduga gold deposits (Yenisei ridge, Siberia) (In Russian). Geol. Ore Depos. 2002, 44, 59–76. [Google Scholar]
- Gertner, I.; Tishin, P.; Vrublevskii, V.; Sazonov, A.; Zvyagina, E.; Kolmakov, Y. Neoproterozoic alkaline igneous rocks, carbonatites and gold deposits of the Yenisei ridge, Central Siberia: Evidence of mantle plume activity and late collision shear tectonics associated with orogenic gold mineralization. Resour. Geol. 2011, 61, 316–343. [Google Scholar] [CrossRef]
- Vernikovsky, V.A.; Vernikovskaya, A.E. Tectonics and evolution of granitoid magmatism in the Yenisei Ridge. Russ. Geol. Geophys. 2006, 47, 32–50. [Google Scholar]
- Goldfarb, R.J.; Groves, D.I. Orogenic gold: Common vs. evolving fluid and metal sources through time. Lithos 2015, 223, 2–26. [Google Scholar] [CrossRef]
- Groves, D.I.; Santosh, M.; Deng, J.; Wang, Q.; Yang, L.; Zhang, L. A holistic model for the origin of orogenic gold deposits and its implications for exploration. Miner. Depos. 2020, 55, 275–292. [Google Scholar] [CrossRef]
- Groves, D.I.; Santosh, M.; Müller, D.; Zhang, L.; Deng, J.; Yang, L.-Q.; Wang, Q.-F. Mineral systems: Their advantages in terms of developing holistic genetic models and for target generation in global mineral exploration. Geosystems Geoenvironment 2022, 1, 100001. [Google Scholar] [CrossRef]
- Bul’bak, T.A.; Tomilenko, A.A.; Gibsher, N.A.; Sazonov, A.M.; Shaparenko, E.O.; Ryabukha, M.A.; Khomenko, M.O.; Sil’yanov, S.A.; Nekrasova, N.A. Hydrocarbons in Fluid Inclusions from Native Gold, Pyrite, and Quartz of the Sovetskoe Deposit (Yenisei Ridge, Russia) According to Pyrolysis-Free Gas Chromatography-Mass Spectrometry Data. Russ. Geol. Geophys. 2020, 61, 1260–1282. [Google Scholar] [CrossRef]
- Brovkov, G.N.; Li, L.V.; Sherman, M.L. Geology and Metallogeny of the Yenisei Ore Belt; SNIIGGiMS; Ministerstvo Geologii SSSR: Krasnoyarsk, Russia, 1985; 289p. (In Russian) [Google Scholar]
- Bernstein, P.S. Conditions of localization of different types of gold deposits of the Yenisei Ridge. Proc. NIGRI Gold 1951, 18, 26–31. (In Russian) [Google Scholar]
- Bernstein, P.S.; Petrovskaya, N.V. Sovetskoe Gold-Ore Deposit (Yenisei Ridge); Geology of the Major Gold-Ore Deposits of the USSR; Nauka: Moscow, Russia, 1954; Volume 6, 162p. (In Russian) [Google Scholar]
- Brown, P.E.; Lamb, W.M. P-V-T properties of fluids in the system H2O±CO2±NaCl: New graphical presentations and implications for fluid inclusion studies. Geochim. Cosmochim. Acta 1989, 53, 1209–1231. [Google Scholar] [CrossRef]
- Duan, Z.; Moller, N.; Weare, J.H. A general equation of state for supercritical fluid mixtures and molecular dynamics simulation of mixture PVTX properties. Geochim. Cosmochim. Acta 1996, 60, 1209–1216. [Google Scholar] [CrossRef]
- Bakker, R.J. Fluids: New software package to handle microthermometric data and to calculate isochors. Memoir Geol. Soc. 2001, 7, 23–25. [Google Scholar]
- Steele-MacInnis, M.; Lecumberri-Sanchez, P.; Bodnar, R.J. HokieFlincs_H2O-NaCl: A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O–NaCl. Comput. Geosci. 2012, 49, 334–337. [Google Scholar] [CrossRef]
- Kirgintsev, A.N.; Trushnikova, L.I.; Lavrentieva, V.G. Water Solubility of Inorganic Compounds; A Handbook; Khimiya: Leningrad, Russia, 1972. (In Russian) [Google Scholar]
- Borisenko, A.S. A Study of Salt Composition of Solutions Trapped in Vapor–Liquid Inclusions Using Cryometric Method. Russ. Geol. Geophys. 1977, 8, 16–27. (In Russian) [Google Scholar]
- Dubessy, J.; Poty, B.; Ramboz, C. Advances in C-O-H-N-S fluid geochemistry based on micro-Raman spectrometric analysis of fluid inclusions. Eur. J. Miner. 1989, 1, 517–534. [Google Scholar] [CrossRef] [Green Version]
- Burke, E.A.J. Raman microspectrometry of fluid inclusions. Lithos 2001, 55, 139–158. [Google Scholar] [CrossRef]
- Frezzotti, M.L.; Tecce, F.; Casagli, A. Raman spectroscopy for fluid inclusion analysis. J. Geochem. Exp. 2012, 112, 1–20. [Google Scholar] [CrossRef]
- Tomilenko, A.; Sonin, V.; Bul’bak, T.; Chepurov, A. Composition of volatile components in the polycrystalline CVD diamond (by coupled gas chromatographic–mass spectrometric analysis). Carbon Lett. 2019, 29, 327–336. [Google Scholar] [CrossRef]
- Pal’yanova, G.A.; Reutsky, V.N.; Sobolev, E.S.; Bortnikov, N.S. Upper Triassic pyritized bivalve mollusks from the Sentachan orogenic gold–antimony deposit, Eastern Yakutia: Mineralogy and sulfur isotopic composition. Geol. Ore Depos. 2016, 58, 513–521. [Google Scholar] [CrossRef]
- Ohmoto, H.; Rye, R.O. Isotopes of Sulfur and Carbon. In Geochemistry of Hydrothermal Ore Deposits; Wiley: New York, NY, USA, 1979; pp. 509–567. [Google Scholar]
- Bortnikov, N.S.; Prokof’ev, V.Y.; Razdolina, N.V. Origin of the Charmitan gold-quartz deposit (Uzbekistan). Geol. Ore Depos. 1996, 38, 208–226. (In Russian) [Google Scholar]
- Eirish, L.V. Metallogeny of Gold of Priamurye (Amur region, Russia); Dalnauka: Vladivostok, Russia, 2002; 194p. (In Russian) [Google Scholar]
- Kryazhev, S.G. Isotope-Geochemical Regime of the Formation of the Gold Ore Deposit Muruntau; TsNIGRI: Moscow, Russia, 2002. (In Russian) [Google Scholar]
- Safonov, Y.G.; Prokof’ev, V.Y. Model of cosedimentation hydrothermal formation of gold-bearing reefs of the Witwatersrand basin. Geol. Ore Depos. 2006, 48, 475–511. [Google Scholar] [CrossRef]
- Robert, F.; Kelly, W.C. Ore-forming fluids in Archean gold-bearing quartz veins at the Sigma Mine, Abitibi greenstone belt, Quebec, Canada. Econ. Geol. 1987, 82, 1464–1482. [Google Scholar] [CrossRef]
- Jia, Y.; Li, X.; Kerrich, R. A Fluid Inclusion Study of Au-Bearing Quartz Vein Systems in the Central and North Deborah Deposits of the Bendigo Gold Field, Central Victoria, Australia. Econ. Geol. 2000, 95, 467–494. [Google Scholar] [CrossRef]
- Ronde, C.E.J.; Faure, K.; Bray, C.J.; Whitford, D.J. Round Hill shear zone–hosted gold deposit, Macraes Flat, Otago, New Zealand; evidence of a magmatic ore fluid. Econ. Geol. 2000, 95, 1025–1048. [Google Scholar] [CrossRef]
- Norman, D.I.; Blamey, N.; Moore, J.N. Interpreting geothermal processes and fluid sources from fluid inclusion organic compounds and CO2/N2 ratios. In Proceedings of the 27th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 28–30 January 2002; pp. 234–241. [Google Scholar]
- Blamey, N.J.F. Composition and evolution of crustal geothermal and hydrothermal fluids interpreted using quantitative fluid inclusion gas analysis. J. Geochem. Exp. 2012, 116–117, 17–27. [Google Scholar] [CrossRef]
- Shaparenko, E.O. Physico-Chemical Conditions of the Blagodantnoye and Dobroe Gold Deposits Formation (Yenisei Ridge). Ph.D. Thesis, V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia, 2022. (In Russian). [Google Scholar]
- Gaboury, D.; Genna, D.; Trottier, J.; Bouchard, M.; Augustin, J.; Malcolm, K. The Perron Gold Deposit, Archean Abitibi Belt, Canada: Exceptionally High-Grade Mineralization Related to Higher Gold-Carrying Capacity of Hydrocarbon-Rich Fluids. Minerals 2021, 11, 1066. [Google Scholar] [CrossRef]
- Puddephatt, R.J. The Chemistry of Gold; Elsevier: Amsterdam, The Netherlands, 1980; 274p. [Google Scholar]
- Marchuk, M.V. Transport of Major Elements and Metals in Reduced Fluids: An Experimental Study. Author’s Abstract. Ph.D. Thesis, Institute of the Earth’s Crust SB RAS, Irkutsk, Russia, 2008. (In Russian). [Google Scholar]
- Mironova, O.F.; Naumov, V.B.; Salazkin, A.N. Nitrogen in Mineral–Forming Fluids. Gas Chromatography Determination on Fluid Inclusions in Minerals. Geochem. Int. 1992, 7, 979–991. [Google Scholar]
- Bottrell, S.H.; Miller, M.F. The geochemical behaviour of nitrogen compounds during the formation of black shale hosted quartz-vein gold deposits, North Wales. Appl. Geochem. 1990, 5, 289–296. [Google Scholar] [CrossRef]
- Kol’tsov, A.B. Hydrothermal mineralization in the fields of temperature and pressure gradients. Geochem. Int. 2010, 11, 1097–1111. [Google Scholar] [CrossRef]
- Zubkov, V.S. Composition and speciation of fluids in the system C–H–N–O–S at P–T conditions of the upper mantle. Geochem. Int. 2001, 39, 131–145. [Google Scholar]
- Sorokhtin, O.G.; Ushakov, S.A. Evolution of Earth; Moscow State University: Moscow, Russia, 2002; 560p. [Google Scholar]
- Prokofiev, V.Y.; Naumov, V.B.; Mironova, O.F. Physicochemical parameters and geochemical features of fluids of Precamrbian gold deposits. Geochem. Int. 2017, 55, 1047–1065. (In Russian) [Google Scholar] [CrossRef]
- Galimov, E.M. Geochemistry of Stable Carbon Isotopes; Nedra: Moscow, Russia, 1968; 300p. (In Russian) [Google Scholar]
- Hoefs, I. Geochemistry of Stable Isotopes; Mir: Moscow, Russia, 1983; 200p. (In Russian) [Google Scholar]
- Kuleshov, V.N. Isotopic Composition and Origin of Deep Carbonates. Proc. GIN AS USSR 1986, 409, 128. (In Russian) [Google Scholar]
- Avgenko, O.V.; Alexandrov, N.A.; Khudalozhkin, O.V. Degree of reduction, genesis and volumes of metamorphogenic fluid. In Geology, Geochemistry and Geophysics at the Turn of XX and XXI Centuries; IZK: Irkutsk, Russia, 2002; pp. 146–147. (In Russian) [Google Scholar]
FI Type | Th Total, °C | Type of Homogenization | Teut, °C | Tm, °C | Salinity, wt.%, NaCl-eq. | Tm of CO2±CH4±N2, °C | Partial Th, °C | Type of Homogenization | P, kbar |
---|---|---|---|---|---|---|---|---|---|
Gold-bearing zone, Au > 1.4 g/t | |||||||||
P, PS LH2O + V | (44) | L, V | (9) | −2.0 ÷ −10.0 (8) | 4.5–15.0 | −63.8 ± −80.4 | −3.1 ± −28.4 | L, V | 0.8–1.3 |
PS, S L(V)CO2±CH4±N2 | – | – | – | – | – | −69.8 ± −89.6 | −8.2 ± −93.6 | L, V | |
S LH2O + V | (16) | L | (5) | −0.5 ÷ −1.5 (5) | 1.5–2.5 | – | – | – | |
Barren zone, Au < 0.1 g/t | |||||||||
S LH2O + V | (15) | L, V | (7) | −0.7 ÷ −5.0 (5) | 1.5–9.0 | −57.6 ± −71.2 | −1.5 ± −8.3 | L, V | 0.2–0.8 |
S L(V)CO2±CH4±N2 | – | – | – | – | – | −72.6 ± −83.0 | −10.5 ± 140.6 | L, V | |
S LH2O + V | (11) | L | (5) | −0.3 ÷ −1.5 (5) | 0.5–3.0 | – | – | – |
No. | Tm, °C | Th, °C | Type of Homogenization | Content, mol.% | CO2/CH4 | ||
---|---|---|---|---|---|---|---|
CO2 | CH4 | N2 | |||||
FI type A (LH2O+L(V)CO2±CH4±N2) | |||||||
D–1–1/18 | −71.3 | −28.4 | V | 82.0 | 17.0 | 1.0 | 48.0 |
D–1–1/20 | −70.8 | −5.0 | L | 53.0 | 10.0 | 37.0 | 5.3 |
D–1–1/21 | −69.3 | −6.1 | V | 50.0 | 10.0 | 40.0 | 5.0 |
D–1–1/22 | −74.3 | −6.9 | V | 47.0 | 11.0 | 42.0 | 4.3 |
D–6/1 | −75.4 | −7.8 | L | 47.0 | 7.6 | 45.4 | 6.2 |
D–6/2 | −80.4 | −9.3 | V | 94.2 | 1.3 | 4.5 | 72.5 |
D–6/3 | −69.8 | −7.4 | V | 62.6 | 22.6 | 14.8 | 2.8 |
D–6/4 | −58.4 | −9.3 | L | 80.0 | 1.2 | 18.8 | 66.7 |
D–6/5 | −63.8 | −3.1 | V | 60.7 | 3.7 | 35.6 | 16.4 |
D–2–5–a | – | – | – | 39.6 | 7.3 | 53.1 | 5.4 |
D–2–5–f | – | – | – | 22.8 | 1.4 | 75.8 | 16.3 |
D–6–d | – | – | – | 98.8 | 0.3 | 0.9 | 329.3 |
D–1–3/2 | −62.5 | −3.6 | L | 71.5 | 22.9 | 5.6 | 3.1 |
D–1–3/3 | −59.8 | −8.3 | V | 54.1 | 14.1 | 31.8 | 3.8 |
D–1–3/4 | −57.6 | −11 | V | 91.4 | 8.6 | – | 10.3 |
D–1–3/7 | −66.3 | −4.2 | L | 78.0 | 20.0 | 2.0 | 3.9 |
D–1–3/9 | −71.2 | −1.5 | L | 94.0 | 4.0 | 2.0 | 23.5 |
D–1–3/10 | −63.6 | −4.5 | V | 76.4 | 23.2 | 0.4 | 3.3 |
D–1–5/1 | −59.9 | −3.8 | L | 81.7 | 6.7 | 11.6 | 12.2 |
D–1–5/2 | −65.8 | −5.1 | V | 91.3 | 7.3 | 1.4 | 12.5 |
D–1–5/3 | −63.4 | −4.9 | V | 93.0 | 5.9 | 1.1 | 15.8 |
D–1–5/4 | – | – | – | 93.8 | 2.3 | 3.9 | 40.8 |
D–1–5/6 | −61.3 | −6.1 | L | 98 | 0.7 | 1.3 | 140 |
D–1–5/7 | – | −7.3 | V | 45.9 | 6.0 | 48.1 | 7.6 |
D–1–5/11 | −64.1 | −4.3 | V | 41.0 | 24.0 | 35.0 | 1.7 |
D–1–5/13 | −66.5 | −6.3 | L | 43.8 | 16.2 | 40.0 | 2.7 |
D–1–5/14 | −69.8 | −5.1 | V | 72.0 | 14.0 | 14.0 | 5.1 |
D–1–5/15 | −68.3 | −6.5 | V | 75.9 | 23.0 | 1.1 | 3.3 |
FI type B (L(V)CO2±CH4±N2) | |||||||
D–1–9/4 | – | −93.6 | V | 3.6 | 5.7 | 90.7 | 0.6 |
D–1–8/19 | −89.6 | −8.2 | V | 9.0 | 89.0 | 2.0 | 0.1 |
D–1–8/29 | – | −122.1 | V | 15.0 | 16.0 | 69.0 | 0.9 |
D–2–5/3 | −69.8 | −14.8 | L | 35.8 | 17.5 | 32.1 | 2.0 |
D–6/7 | −72.3 | −15 | L | 43.6 | 36.8 | 19.6 | 1.2 |
D–6/8 | – | −89.3 | V | 16.3 | 8.1 | 75.6 | 2.0 |
D–6/9 | – | −91.4 | L | 15.2 | 8.7 | 76.1 | 1.7 |
D–2–5–b | – | – | – | 17.7 | 2.8 | 79.5 | 6.3 |
D–2–5–e | – | – | – | 13.1 | 2.6 | 84.3 | 5.0 |
D–6–b | – | – | – | 39.7 | 1.9 | 58.4 | 20.9 |
D–6–c | – | – | – | 54.9 | 1.8 | 43.3 | 30.5 |
D–1–3/1 | – | −123.5 | V | 4.0 | 15.0 | 81.0 | 0.3 |
D–1–3/2 | – | −140.6 | V | 13.0 | 15.0 | 72.0 | 0.9 |
D–1–3/4 | – | −135.2 | L | 12.0 | 18.0 | 70.0 | 0.7 |
D–1–3/5 | – | −93.0 | V | 15.0 | 29.0 | 56.0 | 0.5 |
D–1–3/8 | – | −89.0 | V | 4.0 | 90.0 | 6.0 | 0.04 |
D–1–3/16 | −83.0 | −13.0 | L | 35.0 | 65.0 | – | 0.5 |
D–1–3/17 | −82.6 | −10.5 | L | 37.0 | 63.0 | – | 0.6 |
Component | Gold-Bearing Zone, Au > 1.4 g/t | Barren Zone, Au < 0.1 g/t | |||||
---|---|---|---|---|---|---|---|
D–10 | D–2–12 | D–1–2 | D–1–3 | ||||
Arsenopyrite | Quartz 2 | Quartz 1 | Arsenopyrite | Quartz 1 | Quartz 2 | Quartz 1 | |
Aliphatic hydrocarbons | |||||||
Paraffins (alkanes) | 6.31 (13) | 0.30 (11) | 2.03 (16) | 2.31 (13) | 1.49 (13) | 1.57 (19) | 4.40 (16) |
Olefins (alkenes) | 0.20 (16) | 0.07 (15) | 0.55 (14) | 0.27 (20) | 0.36 (17) | 1.28 (31) | 0.12 (24) |
Cyclic hydrocarbons | |||||||
Cycloalkanes, cycloalkenes, arenes, PAH | 0.43 (12) | 0.06 (10) | 0.57 (9) | 0.25 (15) | 0.42 (12) | 0.23 (21) | 0.15 (19) |
Oxygenated hydrocarbons | |||||||
Alcohols, ethers, and esters | 0.51 (16) | 0.81 (18) | 1.82 (18) | 1.49 (14) | 2.90 (20) | 0.27 (24) | 2.12 (26) |
Aldehydes | 0.79 (20) | 0.18 (22) | 4.62 (23) | 0.30 (2) | 0.99 (23) | 0.43 (22) | 0.65 (23) |
Ketones | 0.75 (17) | 0.26 (16) | 2.21 (17) | 0.30 (16) | 1.09 (18) | 0.29 (21) | 0.43 (20) |
Carboxylic acids | 0.17 (13) | 0.78 (11) | 1.71 (9) | 1.44 (19) | 3.18 (12) | 0.62 (13) | 0.56 (13) |
Heterocyclic compounds | |||||||
Dioxanes, furans | 0.14 (6) | 0.01 (8) | 0.18 (11) | 0.09 (8) | 0.11 (11) | 0.02 (10) | 0.01 (7) |
Nitrogenated compounds | |||||||
N2, ammonia, nitriles | 0.96 (9) | 12.31 (10) | 13.48 (12) | 0.89 (10) | 46.9 (13) | 37.58 (22) | 34.07 (23) |
Sulfonated compounds | |||||||
H2S, SO2, CS2, COS, thiophenes | 2.19 (9) | 0.03 (8) | 2.30 (10) | 0.08 (9) | 0.34 (8) | 0.75 (16) | 0.71 (15) |
Inorganic compounds | |||||||
CO2 | 52.34 | 58.13 | 32.85 | 26.36 | 38.80 | 10.75 | 45.77 |
H2O | 34.16 | 27.09 | 37.68 | 66.23 | 3.38 | 47.21 | 10.96 |
Ar | – | – | – | – | – | 0.02 | 0.03 |
Number of components | 133 | 131 | 141 | 128 | 149 | 202 | 188 |
Alkanes/alkenes | 31.5 | 3.0 | 3.3 | 7.7 | 3.8 | 1.2 | 36.7 |
CO2/(CO2 + H2O) | 0.6 | 0.7 | 0.5 | 0.3 | 0.9 | 0.2 | 0.8 |
Σ(C5–C17)/Σ(C1–C4) | 0.02 | 0.28 | 1.24 | 0.04 | 0.34 | 1.27 | 0.03 |
H/(H + O) | 0.58 | 0.44 | 0.60 | 0.63 | 0.44 | 0.65 | 0.50 |
Sample No. | δ13CCO2, ‰ (VPDB) | |
---|---|---|
Gold-bearing zone | ||
D–1 | −6.7 | |
D–2 | −7.2 | |
D–4 | −6.4 | |
D–10 | −4.9 | |
D–2–3 | −8.3 | |
D–2–12 | −7.4 | |
D–2–13 | −7.7 | |
D–2–17 | −7.1 | |
Barren zone | ||
D–1–2 | −7.5 | |
D–1–3 | −11.3 | |
D–1–17 | −3.6 |
Sample No. | Mineral | δ34S, ‰ |
---|---|---|
Gold-bearing zone | ||
D–10 | Arsenopyrite | 1.9 |
D–4 | Arsenopyrite | 3.8 |
D–2–12 | Arsenopyrite | 4.2 |
D–2 | Pyrrhotite | 6.0 |
D–2–13 | Pyrrhotite | 9.0 |
D–1 | Pyrite | 3.2 |
Barren zone | ||
D–1–2 | Pyrite | 10.5 |
D–1–17 | Pyrite | 15.2 |
D–1–12 | Pyrite | 17.0 |
D–1–3 | Pyrrhotite | 8.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaparenko, E.; Gibsher, N.; Khomenko, M.; Tomilenko, A.; Sazonov, A.; Bul’bak, T.; Silyanov, S.; Petrova, M.; Ryabukha, M. Parameters for the Formation of the Dobroe Gold Deposit (Yenisei Ridge, Russia): Evidence from Fluid Inclusions and S–C Isotopes. Minerals 2023, 13, 11. https://doi.org/10.3390/min13010011
Shaparenko E, Gibsher N, Khomenko M, Tomilenko A, Sazonov A, Bul’bak T, Silyanov S, Petrova M, Ryabukha M. Parameters for the Formation of the Dobroe Gold Deposit (Yenisei Ridge, Russia): Evidence from Fluid Inclusions and S–C Isotopes. Minerals. 2023; 13(1):11. https://doi.org/10.3390/min13010011
Chicago/Turabian StyleShaparenko, Elena, Nadezhda Gibsher, Margarita Khomenko, Anatoly Tomilenko, Anatoly Sazonov, Taras Bul’bak, Sergey Silyanov, Marina Petrova, and Maria Ryabukha. 2023. "Parameters for the Formation of the Dobroe Gold Deposit (Yenisei Ridge, Russia): Evidence from Fluid Inclusions and S–C Isotopes" Minerals 13, no. 1: 11. https://doi.org/10.3390/min13010011
APA StyleShaparenko, E., Gibsher, N., Khomenko, M., Tomilenko, A., Sazonov, A., Bul’bak, T., Silyanov, S., Petrova, M., & Ryabukha, M. (2023). Parameters for the Formation of the Dobroe Gold Deposit (Yenisei Ridge, Russia): Evidence from Fluid Inclusions and S–C Isotopes. Minerals, 13(1), 11. https://doi.org/10.3390/min13010011