Advances on Exploration Indicators of Mineral VNIR-SWIR Spectroscopy and Chemistry: A Review
Abstract
:1. Introduction
2. Research Advances and Problems of MEIs
2.1. Exploration Indicator of Sericite
2.2. Exploration Indicator of Chlorite
2.3. Exploration Indicator of Epidote
2.4. Exploration Indicator of Alunite
2.5. Exploration Indicator of REE-Bearing Minerals
2.6. Other MEIs
2.7. Integrated MEIs from Multiple Alteration Minerals
3. Controlling Factors for the Behaviors of “The Pathfinder Elements”
3.1. Temperature
3.2. The pH Value
3.3. Other Controlling Factors
4. Research Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, S.; Herrmann, W.; Gemmell, J.B. Short wavelength infrared spectral characteristics of the HW Horizon: Implications for exploration in the Myra Falls volcanic-hosted massive sulfide camp, Vancouver Island, British Columbia, Canada. Econ. Geol. 2005, 2, 273–294. [Google Scholar] [CrossRef]
- Yang, Z.M.; Hou, Z.Q.; Yang, Z.S.; Qu, H.C.; Li, Z.Q.; Liu, Y.F. Application of short wavelength infrared (SWIR) technique in exploration of poorly eroded porphyry Cu district: A case study of Niancun ore district, Tibet. Min. Depos. 2012, 31, 699–717, (In Chinese with English Abstract). [Google Scholar]
- Chang, Z.S.; Hedenquist, J.W.; White, N.C.; Cooke, D.R.; Roach, M.; Deyell, C.L.; Garcia, J.; Gemmell, J.B.; McKnight, S.; Cuison, A.L. Exploration tools for linked porphyry and epithermal deposits: Example from the Mankayan Intrusion-centered Cu-Au district, Luzon, Philippines. Econ. Geol. 2011, 106, 1365–1398. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.Y.; Zhang, S.T.; Chu, G.B.; Zhang, Y.; Cheng, J.M.; Tian, J.; Han, J.S. The short-wave infrared (SWIR) spectral characteristics of alteration minerals and applications for ore exploration in the typical skarn-porphyry deposits, Edong ore district, eastern China. Acta Petrol. Sin. 2019, 35, 3629–3643, (In Chinese with English Abstract). [Google Scholar]
- Turner, D.J.; Rivard, B.; Groat, L.A. Visible and short-wave infrared reflectance spectroscopy of REE fluorocarbonates. Am. Mineral. 2014, 99, 1335–1346. [Google Scholar] [CrossRef]
- Turner, D.J.; Rivard, B.; Groat, L.A. Visible and short-wave infrared reflectance spectroscopy of REE phosphate minerals. Am. Mineral. 2016, 101, 2264–2278. [Google Scholar] [CrossRef]
- Turner, D.J.; Rivard, B.; Groat, L.A. Visible and short-wave infrared reflectance spectroscopy of selected REE-bearing silicate minerals. Am. Mineral. 2018, 103, 927–943. [Google Scholar] [CrossRef]
- Tan, W.; Qin, X.; Liu, J.; Zhou, M.F.; He, H.; Yan, W.C.; Huang, J.; Zhu, J.; Yao, Y.; Cudahy, T. Feasibility of visible short-wave infrared reflectance spectroscopy to characterize regolith-hosted rare earth element mineralization. Econ. Geol. 2022, 117, 495–508. [Google Scholar] [CrossRef]
- Wilkinson, J.J.; Chang, Z.; Cooke, D.R.; Baker, M.J.; Wilkinson, C.C.; Inglis, S.; Chen, H.; Bruce Gemmell, J. The chlorite proximitor: A new tool for detecting porphyry ore deposits. J. Geochem. Explor. 2015, 152, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Maryono, A.; Harrison, R.L.; Rompo, I.; Priowasono, E.; Norris, M. Successful techniques in exploring the lithcaps environment of Sunda magmatic arc, Indonesia. In Proceedings of the 8th MGEI Annual Convention, Bandung, Indonesia, 21 June 2016; pp. 7–13. [Google Scholar]
- Izawa, E.; Hayashi, T. Potential for Porphyry Copper Mineralization Below the Kasuga Lithocap, Nansatsu District, Japan: Potential for porphyry Cu below Kasuga lithocap. Resour. Geol. 2018, 68, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Cooke, D.R.; Agnew, P.; Hollings, P.; Baker, M.; Chang, Z.; Wilkinson, J.J.; Ahmed, A.; White, N.C.; Zhang, L.; Thompson, J.; et al. Recent advances in the application of mineral chemistry to exploration for porphyry copper–gold–molybdenum deposits: Detecting the geochemical fingerprints and footprints of hypogene mineralization and alteration. Geochem. Explor. Environ. Anal. 2020, 20, 176–188. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Taran, Y.A. Modeling the Formation of Advanced Argillic Lithocaps: Volcanic Vapor Condensation Above Porphyry Intrusions. Econ. Geol. 2013, 108, 1523–1540. [Google Scholar] [CrossRef]
- Lecumberri-Sanchez, P.; Newton, M.C.; Westman, E.C.; Kamilli, R.J.; Canby, V.M.; Bodnar, R.J. Temporal and spatial distribution of alteration, mineralization and fluid inclusions in the transitional high-sulfidation epithermal–porphyry copper system at Red Mountain, Arizona. J. Geochem. Explor. 2013, 125, 80–93. [Google Scholar] [CrossRef]
- Cooke, D.R.; White, N.C.; Zhang, L.J.; Chang, Z.S.; Chen, H.Y. Lithcaps: Characteristics, origins and significance for porphyry and epithermal exploration. In Proceedings of the 14th SGA Biennial Meeting, Quebec City, QC, Canada, 20–23 August 2017; Australian Research Council: Lancaster, Australia, 2017; Volume 1, pp. 291–294. [Google Scholar]
- Chen, H.Y. Meditations on the future development of ore deposit science in China. Earth Sci. Front. 2020, 27, 99–105, (In Chinese with English Abstract). [Google Scholar]
- Holliday, R.J.; Cooke, D. Advances in geological models and exploration methods for copper ± gold porphyry deposits. Ore Depos. Expl. Techn. 2007, 7, 791–809. [Google Scholar]
- Sillitoe, R.H. Porphyry copper systems: An invited paper. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Sillitoe, R.H. Geological criteria for porphyry copper exploration. Acta Geol. Sin. Engl. Ed. 2014, 88, 597–598. [Google Scholar] [CrossRef]
- Zadeh, M.H.; Tangestani, M.H.; Roldan, F.V.; Yusta, I. Spectral characteristics of minerals in alteration zones associated with porphyry copper deposits in the middle part of Kerman copper belt, SE Iran. Ore Geol. Rev. 2014, 62, 191–198. [Google Scholar] [CrossRef]
- Zhang, T.J.; Chen, Y.; Zhang, C.J. Discussion on Changdagou porphyry copper deposits mineralization model in Dege, Sichuan Province. Acta Geol. Sin. Engl. Ed. 2014, 88, 651–652. [Google Scholar]
- Li, Y.; Su, C.; Wang, X.; Huang, Z.; Zhang, X. Extraction of alteration information and establishment of prospecting model for porphyry copper-gold deposits in Luzon. Rem. Sens. Techn. Appl. 2017, 32, 1151–1160. [Google Scholar]
- Testa, F.J.; Villanueva, C.; Cooke, D.R.; Zhang, L.J. Lithological and hydrothermal alteration mapping of epithermal, porphyry and tourmaline breccia districts in the Argentine Andes using ASTER imagery. Rem. Sens. 2018, 10, 203. [Google Scholar] [CrossRef] [Green Version]
- Yazdi, Z.; Rad, A.J.; Aghazadeh, M.; Afzal, P. Alteration Mapping for Porphyry Copper Exploration Using ASTER and QuickBird Multispectral Images, Sonajeel Prospect, NW Iran. J. Indian Soc. Remote 2018, 46, 1581–1593. [Google Scholar] [CrossRef]
- Mao, J.W.; Zhou, T.F.; Xie, G.Q.; Yuan, F.; Duan, C. Metallogeny in Middle-Lower Yangtze River Ore Belt: Advances and problems remained. Min. Depos. 2020, 39, 547–558, (In Chinese with English Abstract). [Google Scholar]
- Halley, S.; Dilles, J.; Tosdal, R. Footprints: Hydrothermal alteration and geochemical dispersion around porphyry copper deposits. SEG Newsl. 2015, 100, 11–17. [Google Scholar] [CrossRef]
- Xiu, L.C.; Zheng, Z.Z.; Yin, L.; Chen, C.X.; Yu, Z.K.; Huang, B.; Zhang, Q.N.; Xiu, X.X.; Gao, Y. Research on assessment methods of spectrum data quality of core scan. Spectr. Spectr. Anal. 2015, 35, 2352–2356, (In Chinese with English Abstract). [Google Scholar]
- Cooke, D.R.; Hollings, P.; Wilkinson, J.J.; Tosdal, R.M. Geochemistry of Porphyry Deposits. In Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2014; pp. 357–381. [Google Scholar]
- Lu, Y.; Zhou, Y.; Zhang, H.L.; Yang, K.; Chen, S.Z.; Xi, W.W.; Xiu, L.C.; Xing, G.F. Hydrothermal alteration and its significance for exploration at the Dongji gold-silver deposit in Zhenghe, Fujian province. Geol. Expl. 2017, 53, 1039–1050, (In Chinese with English Abstract). [Google Scholar]
- Wang, R.; Cudahy, T.; Laukamp, C.; Walshe, J.L.; Bath, A.; Mei, Y.; Young, C.; Roache, T.J.; Jenkins, A.; Roberts, M.; et al. White Mica as a Hyperspectral Tool in Exploration for the Sunrise Dam and Kanowna Belle Gold Deposits, Western Australia. Econ. Geol. 2017, 112, 1153–1176. [Google Scholar]
- Guo, N.; Huang, Y.L.; Zheng, L.; Tang, N.; Fu, Y.; Wang, C. Alteration zoning and prospecting model of epithermal deposit revealed by shortwave infrared technique: A case study of Tiegelongnan and Sinongduo deposits. Acta Geosci. Sin. 2017, 38, 767–778, (In Chinese with English Abstract). [Google Scholar]
- Guo, N.; Shi, W.X.; Huang, Y.R.; Zheng, L.; Tang, N.; Wang, C.; Fu, Y. Alteration mapping and prospecting model construction in the Tiegelongnan ore deposit of the Duolong ore concentration area, northern Tibet, based on shortwave infrared technique. Geol. Bull. China 2018, 37, 446–457, (In Chinese with English Abstract). [Google Scholar]
- Huang, J.; Chen, H.; Han, J.; Deng, X.; Lu, W.; Zhu, R. Alteration zonation and short wavelength infrared (SWIR) characteristics of the Honghai VMS Cu-Zn deposit, Eastern Tianshan, NW China. Ore Geol. Rev. 2018, 100, 263–279. [Google Scholar]
- Tian, F.; Leng, C.B.; Zhang, X.C.; Tian, Z.D.; Zhang, W.; Guo, J.H. Application of short-wave infrared spectroscopy in the Gangjiang porphyry Cu-Mo deposit in the Nimu ore field, Tibet. Earth Sci. 2019, 44, 2143–2154, (In Chinese with English Abstract). [Google Scholar]
- Zhou, Y.; Xiu, L.C.; Yang, K.; Zhang, H.L.; Chen, S.Z.; Fan, F.P.; Xiao, F. Development and application of infrared spectrum mineral mapping technique. East China Geol. 2019, 40, 289–298, (In Chinese with English Abstract). [Google Scholar]
- Zhou, Y.; Li, L.M.; Yang, K.; Xing, G.F.; Xiao, W.J.; Zhang, H.L.; Xiu, L.C.; Yao, Z.Y.; Xie, Z.J. Hydrothermal alteration characteristics of the Chating Cu-Au deposit in Xuancheng City, Anhui Province, China: Significance of sericite alteration for Cu-Au exploration. Ore Geol. Rev. 2020, 127, 103844. [Google Scholar] [CrossRef]
- Cao, Y.; Li, S.R.; Shen, J.F.; Yao, M.J.; Li, Q.K.; Mao, F.L. Application of portable infrared mineral analyzer (PIMA) in the Qianhe gold mine, Henan province. Geol. Prospect. 2008, 44, 82–86, (In Chinese with English Abstract). [Google Scholar]
- Huang, Y.; Guo, N.; Zheng, L.; Yang, Z.; Fu, Y. 3D geological alteration mapping based on remote sensing and shortwave infrared technology: A case study of the Sinongduo low-sulfidation epithermal deposit. Acta Geosci. Sin. 2017, 38, 779–789. [Google Scholar]
- Xiao, B.; Chen, H.; Wang, Y.; Han, J.; Xu, C.; Yang, J. Chlorite and epidote chemistry of the Yandong Cu deposit, NW China: Metallogenic and exploration implications for Paleozoic porphyry Cu systems in the Eastern Tianshan. Ore Geol. Rev. 2018, 100, 168–182. [Google Scholar] [CrossRef]
- Xiao, B.; Chen, H. Elemental behavior during chlorite alteration: New insights from a combined EMPA and LA-ICPMS study in porphyry Cu systems. Chem. Geol. 2020, 543, 119604. [Google Scholar] [CrossRef]
- Tang, N.; Tang, J.X.; Guo, N.; Lin, B.; Wang, Q.; Yang, C. Application of short-wave infrared spectrometer in the study of alteration zoning of ore deposits: A case study of Tiegelongnan porphyry-epithermal hydrothermal deposit in Tibet. Acta Miner. Sin. 2015, 35, 925–926. (In Chinese) [Google Scholar]
- Tan, W.; Qin, X.; Liu, J.; Michalski, J.; He, H.; Yao, Y.; Yang, M.; Huang, J.; Lin, X.; Zhang, C.; et al. Visible/near infrared reflectance (VNIR) spectral features of ion-exchangeable rare earth elements hosted by clay minerals: Potential use for exploration of regolith-hosted REE deposits. Appl. Clay Sci. 2021, 215, 106320. [Google Scholar] [CrossRef]
- He, G.H.; Zhou, T.F.; Fan, Y.; Wang, S.W.; Xiao, Q.L. Geochemical characteristics and exploration implications of chlorite in Shaxi porphyry copper gold deposit, Lujiang. Min. Depos. 2018, 37, 1247–1259, (In Chinese with English Abstract). [Google Scholar]
- Zhang, S.; Xiao, B.; Long, X.; Chu, G.; Cheng, J.; Zhang, Y.; Tian, J.; Xu, G. Chlorite as an exploration indicator for concealed skarn mineralization: Perspective from the Tonglushan Cu–Au–Fe skarn deposit, Eastern China. Ore Geol. Rev. 2020, 126, 103778. [Google Scholar] [CrossRef]
- Wilkinson, J.J.; Baker, M.J.; Cooke, D.R.; Wilkinson, C.C. Exploration Targeting in Porphyry Cu Systems Using Propylitic Mineral Chemistry: A Case Study of the El Teniente Deposit, Chile. Econ. Geol. 2020, 115, 771–791. [Google Scholar] [CrossRef]
- Baker, M.J.; Wilkinson, J.J.; Wilkinson, C.C.; Cooke, D.R.; Ireland, T. Epidote Trace Element Chemistry as an Exploration Tool in the Collahuasi District, Northern Chile. Econ. Geol. 2020, 115, 749–770. [Google Scholar] [CrossRef]
- Xiao, B.; Chu, G.; Feng, Y. Short-wave infrared (SWIR) spectral and geochemical characteristics of hydrothermal alteration minerals in the Laowangou Au deposit: Implications for ore genesis and vectoring. Ore Geol. Rev. 2021, 139, 104463. [Google Scholar] [CrossRef]
- Alva-Jimenez, T.; Tosdal, R.M.; Dilles, J.H.; Dipple, G.; Kent, A.J.R.; Halley, S. Chemical Variations in Hydrothermal White Mica Across the Highland Valley Porphyry Cu-Mo District, British Columbia, Canada. Econ. Geol. 2020, 115, 903–926. [Google Scholar] [CrossRef]
- Ahmed, A.D.; Fisher, L.; Pearce, M.; Escolme, A.; Cooke, D.R.; Howard, D.; Belousov, I. A Microscale Analysis of Hydrothermal Epidote: Implications for the Use of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Mineral Chemistry in Complex Alteration Environments. Econ. Geol. 2020, 115, 793–811. [Google Scholar] [CrossRef]
- Tang, P.; Tang, J.; Lin, B.; Wang, L.; Zheng, W.; Leng, Q.; Gao, X.; Zhang, Z.; Tang, X. Mineral chemistry of magmatic and hydrothermal biotites from the Bangpu porphyry Mo (Cu) deposit, Tibet. Ore Geol. Rev. 2019, 115, 103122. [Google Scholar] [CrossRef]
- Tian, F.; Leng, C.B.; Zhang, X.C.; Tian, Z.D.; Zhang, W.; Guo, J.H. Application of short wavelength infrared technique in exploration of mineral deposit: A review. Bull. Mineral. Petrol. Geochem. 2019, 38, 1–9, (In Chinese with English Abstract). [Google Scholar]
- Qiao, X.; Li, W.; Zhang, L.; White, N.C.; Zhang, F.; Yao, Z. Chemical and boron isotope compositions of tourmaline in the Hadamiao porphyry gold deposit, Inner Mongolia, China. Chem. Geol. 2019, 519, 39–55. [Google Scholar] [CrossRef]
- Li, W.; Qiao, X.; Zhang, F.; Zhang, L. Tourmaline as a potential mineral for exploring porphyry deposits: A case study of the Bilihe gold deposit in Inner Mongolia, China. Miner. Depos. 2022, 57, 61–82. [Google Scholar] [CrossRef]
- Kübler, B. La cristallinité de l’illite et les zones tout á fait supécieures du mètamorphisme. La Cristallinité de L’illite et les Zones Tout À Fait Supécieures du Mètamorphisme. Etages tectoniques, In Proceedings of Colloque de Neuchâtel, Neuchâtel, Switzerland, 18–21 April 1966; pp. 105–121. [Google Scholar]
- McLeod, R.L.; Gabell, A.R.; Green, A.A.; Gardavsky, V. Chlorite infrared spectral data as proximity indicators of volcanogenic massive sulfide mineralization. In Proceedings of the Pacific Rim Congress, Auckland, New Zealand, 26–29 August 1987; pp. 321–324. [Google Scholar]
- Scott, K.M.; Yang, K. Spectral reflectance studies of white micas. In CSIRO Exploration and Mining Report 439R; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Sydney, Australia, 1997. [Google Scholar]
- Yang, K.; Lian, C.; Huntington, J.F.; Peng, Q.; Wang, Q. Infrared spectral reflectance characterization of the hydrothermal alteration at the Tuwu Cu-Au deposit, Xinjiang, China. Miner. Depos. 2005, 40, 324–336. [Google Scholar] [CrossRef]
- Thompson, A.J.B.; Hauff, P.; Robitaille, A.J. Alteration mapping in exploration: Application of short-wave infrared (SWIR) spectroscopy. SEG Newsl. 1999, 39, 16–27. [Google Scholar] [CrossRef]
- Duke, E.F. Near infrared spectra of muscovite, Tschermak substitution, and metamorphic reaction progress: Implications for remote sensing. Geology 1994, 22, 621. [Google Scholar] [CrossRef]
- Chaffee, M.A. A. A geochemical study of the Kalamazoo porphyry copper deposit, Pinal County, Arizona. In Advances in Geology of the Porphyry Copper Deposits; Titley, S.R., Ed.; The University of Arizona Press: Tucson, AZ, USA, 1982; pp. 211–225. [Google Scholar]
- Herrmann, W.; Blake, M.; Doyle, M.; Huston, D.; Kamprad, J.; Merry, N.; Pontual, S. Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland. Econ. Geol. 2001, 96, 939–955. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Seccombe, P.K.; Yang, K. Application of short-wave infrared spectroscopy to define alteration zones associated with the Elura zinc-lead-silver deposit, NSW, Australia. J. Geochem. Explor. 2001, 73, 11–26. [Google Scholar] [CrossRef]
- Thompson, A.J.B.; Scott, K.; Huntington, J.; Yang, K. Mapping mineralogy with reflectance spectroscopy: Examples from volcanogenic massive sulfide deposits. Rev. Econ. Geol. 2009, 16, 25–40. [Google Scholar]
- Howard, N. Geochemistry and hydrothermal alteration at the Mount Rawdon gold deposit. In New England Orogen Geology, Tectonics, Economics; Australian Institute of Geoscientists Seminar Series; Australian Institute of Geoscientists: Brisbane, Australia, 2015; pp. 1–8. [Google Scholar]
- Laakso, K.; Peter, J.M.; Rivard, B.; White, H.P. Short-wave infrared spectral and geochemical characteristics of hydrothermal alteration at the Archean Izok Lake Zn-Cu-Pb-Ag volcanogenic massive sulfide deposit, Nunavut, Canada: Application in exploration target vectoring. Econ. Geol. 2016, 111, 1223–1239. [Google Scholar] [CrossRef]
- Xu, C.; Chen, H.Y.; Noel, W.; Qi, J.P.; Zhang, L.J.; Zhang, S.; Duan, G. Alteration and mineralization of Xinan Cu-Mo ore deposit in Zijinshan orefield, Fujian Province, and application of short wavelength infra-red technology (SWIR) to exploration. Min. Depos. 2017, 36, 1013–1038, (In Chinese with English Abstract). [Google Scholar]
- Yang, K.; Huntington, J.F.; Scott, K.M. Spectral characterization of the hydrothermal alteration at Hishikari, Japan. In Proceedings of the Water-Rock Interaction, Taupo, New Zealand, 30 March–3 April 1998; Balkema: Rotterdam, The Netherlands; Brookfield, VT, USA, 1998; pp. 587–590. [Google Scholar]
- Simpson, M.P. Reflectance spectrometry (SWIR) of alteration minerals surrounding the Favona epithermal vein, Waihi vein system, Hauraki Goldfield. In Proceedings of the Australasian Institute of Mining and Metallurgy New Zealand Branch Conference, Dunedin, New Zealand, 31 August 2015; pp. 409–418. [Google Scholar]
- Han, J.S.; Chu, G.B.; Chen, H.Y.; Hollings, P.; Sun, S.Q.; Chen, M. Hydrothermal alteration and short wavelength infrared (SWIR) characteristics of the Tongshankou porphyry-skarn Cu-Mo deposit, Yangtze craton, Eastern China. Ore Geol. Rev. 2018, 101, 143–164. [Google Scholar] [CrossRef]
- Pacey, A.; Wilkinson, J.J.; Cooke, D.R. Chlorite and Epidote Mineral Chemistry in Porphyry Ore Systems: A Case Study of the Northparkes District, New South Wales, Australia. Econ. Geol. 2020, 115, 701–727. [Google Scholar] [CrossRef]
- Wilkinson, J.J.; Pacey, A.; Hart-Madigan, L.A.; Longridge, J.; Cooke, D.R.; Baker, M.J.; Boyce, A.J.; Wilkinson, C.C. A new paradigm for the origin of propylitic alteration in porphyry ore systems. Appl. Earth Sci. 2019, 128, 64–65. [Google Scholar] [CrossRef]
- Cooke, D.R.; Wilkinson, J.J.; Baker, M.; Agnew, P.; Phillips, J.; Chang, Z.; Chen, H.; Wilkinson, C.C.; Inglis, S.; Hollings, P.; et al. Using Mineral Chemistry to Aid Exploration: A Case Study from the Resolution Porphyry Cu-Mo Deposit, Arizona. Econ. Geol. 2020, 115, 813–840. [Google Scholar] [CrossRef]
- Zhang, S.T.; Chen, H.Y.; Zhang, X.B.; Zhang, W.F.; Xu, C. Application of short wavelength infrared (SWIR) technique in exploration of skarn deposit: A case study of the Tonglvshan Cu-Fe-Au deposit, Edongnan ore district, Hubei Province. Min. Depos. 2017, 36, 1263–1288, (In Chinese with English Abstract). [Google Scholar]
- Sillitoe, R.H. Exploration of porphyry copper lithocaps. Proc. Pac. Rim Congr. 1995, 9, 527–532. [Google Scholar]
- Stoffregen, R.E.; Cygan, G.L. An experimental study of Na-K exchange between alunite and aqueous sulfate solutions. Am. Mineral. 1990, 75, 209–220. [Google Scholar]
- Li, R.C.; Chen, H.Y.; Li, G.H.; Feng, Y.Z.; Xiao, B.; Han, J.S.; Deng, C.Z.; Shi, H.L. Geological characteristics and application of short wavelength infra-red technology (SWIR) in the Fukeshan porphyry copper deposit in the Great Xing’an Range area. Earth Sci. 2020, 45, 1517–1530, (In Chinese with English Abstract). [Google Scholar]
- Moshefi, P.; Hosseinzadeh, M.R.; Moayyed, M.; Lentz, D.R. Comparative study of mineral chemistry of four biotite types as geochemical indicators of mineralized and barren intrusions in the Sungun porphyry Cu-Mo deposit, northwestern Iran. Ore Geol. Rev. 2018, 97, 1–20. [Google Scholar] [CrossRef]
- You, F.H.; Jiang, J.J.; Zhang, J.Z.; Lai, X.D. Application of short-wave infrared technique in exploration of Ashele Cu-Zn deposit in Xinjiang. Acta Petrol. Mineral. 2021, 40, 1010–1022, (In Chinese with English Abstract). [Google Scholar]
- Yang, K.; Huntington, J.F.; Gemmell, J.B.; Scott, K.M. Variation in composition and abundance of white mica in the hydrothermal alteration system at Hellyer, Tasmania, as revealed by infrared reflectance spectroscopy. J. Geochem. Explor. 2011, 108, 143–156. [Google Scholar]
- Biel, C.; Subías, I.; Acevedo, R.D.; Yusta, I.; Velasco, F. Mineralogical, IR-spectral and geochemical monitoring of hydrothermal alteration in a deformed and metamorphosed Jurassic VMS deposit at Arroyo Rojo, Tierra del Fuego, Argentina. J. S. Am. Earth Sci. 2012, 35, 62–73. [Google Scholar]
- Chang, Z.S.; Yang, Z.M. Evolution of inter-instrument variation among short wavelength infrared (SWIR) devices. Econ. Geol. 2012, 107, 1479–1488. [Google Scholar] [CrossRef]
- Yang, K.; Huntington, J.F.; Boardman, J.W.; Mason, P. Mapping hydrothermal alteration in the Comstock mining district, Nevada, using simulated satellite-borne hyperspectral data. J. Geol. Soc. Aust. 2001, 46, 915–922. [Google Scholar] [CrossRef]
- Feng, Y.; Xiao, B.; Li, R.; Deng, C.; Han, J.; Wu, C.; Li, G.; Shi, H.; Lai, C. Alteration mapping with short wavelength infrared (SWIR) spectroscopy on Xiaokelehe porphyry Cu-Mo deposit in the Great Xing’an Range, NE China: Metallogenic and exploration implications. Ore Geol. Rev. 2019, 112, 103062. [Google Scholar] [CrossRef]
- Seedorff, E.; Dilles, J.H.; Proffett, J.M.; Einaudi, M.T.; Zurcher, L.; Stavast, W.J.A.; Barton, M.D.; Johnson, D.A. Porphyry-related deposits: Characteristics and origin of hypogene features. In Economic Geology 100th Anniversary Volume; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 251–298. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Wang, T.; Fan, F.; Chen, S.; Guo, W.; Xing, G.; Sun, J.; Xiao, F. Advances on Exploration Indicators of Mineral VNIR-SWIR Spectroscopy and Chemistry: A Review. Minerals 2022, 12, 958. https://doi.org/10.3390/min12080958
Zhou Y, Wang T, Fan F, Chen S, Guo W, Xing G, Sun J, Xiao F. Advances on Exploration Indicators of Mineral VNIR-SWIR Spectroscopy and Chemistry: A Review. Minerals. 2022; 12(8):958. https://doi.org/10.3390/min12080958
Chicago/Turabian StyleZhou, Yan, Tiangang Wang, Feipeng Fan, Shizhong Chen, Weimin Guo, Guangfu Xing, Jiandong Sun, and Fan Xiao. 2022. "Advances on Exploration Indicators of Mineral VNIR-SWIR Spectroscopy and Chemistry: A Review" Minerals 12, no. 8: 958. https://doi.org/10.3390/min12080958
APA StyleZhou, Y., Wang, T., Fan, F., Chen, S., Guo, W., Xing, G., Sun, J., & Xiao, F. (2022). Advances on Exploration Indicators of Mineral VNIR-SWIR Spectroscopy and Chemistry: A Review. Minerals, 12(8), 958. https://doi.org/10.3390/min12080958