Mining Residues Characterization and Sentinel-2A Mapping for the Valorization and Efficient Resource Use by Multidisciplinary Strategy
Abstract
:1. Introduction
- −
- Collection of samples from the mine area for laboratory analysis;
- −
- Characterization of mining residues by XRD, XRF and SEM-EDS in order to individuate the RMs of economic and strategic importance;
- −
- Acquisition of spectral signatures by ASD (analytical spectral device) spectroradiometer in order to associate each spectral feature to characterized mining residue sample (and create the spectral library of mining residues);
- −
- Object-based image analysis (OBIA) in order to test the capacity of Sentinel-2A to correctly classify the characterized mining residue samples;
- −
- Generation of characterized mining residue map in order to valorize the abandoned mining residues with the presence of potential minerals for further efficient resource use from industry.
2. Materials and Methods
2.1. Characterization Analyses of Mining Residues
2.2. Remote Sensing Analysis
3. Results and Discussions
3.1. Mining Residue Sample Characterization
3.2. Mining Residue Map
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EEA. Paving the Way for a Circular Economy: Insights on Status and Potentials; EEA Report No 11/2019; European Environment Agency: Copenhagen, Denmark, 2019. [Google Scholar]
- ERA-MIN Research Agenda-Insu-00917653, version 1; Network on the Industrial Handling of Raw Materials for European Industries; 12 December 2013; Available online: https://www.era-min.org/ (accessed on 12 January 2022).
- European Commission–Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal Brussels, 11.12.2019 COM(2019) 640 Final. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF (accessed on 11 December 2019).
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development 21 October 2015. A/RES/70/1. 2015. Available online: https://www.refworld.org/docid/57b6e3e44.html (accessed on 20 May 2021).
- European Circular Economy Research Alliance (ECERA). White Paper-Digital Circular Economy as a Cornerstone of a Sustainable European Industry Transformation; European Circular Economy Research Alliance (ECERA): Boeretang, Belgium, 2020. [Google Scholar]
- Mathieux, F.; Ardente, F.; Bobba, S.; Nuss, P.; Blengini, G.; Alves Dias, P.; Blagoeva, D.; Torres De Matos, C.; Wittmer, D.; Pavel, C.; et al. Critical Raw Materials and the Circular Economy—Background Report. In JRC Science-for-Policy Report; EUR 28832 EN; Publications Office of the European Union: Luxembourg, 2017; ISBN 978-92-79-74282-8. [Google Scholar]
- Capasso, I.; Lirer, S.; Flora, A.; Ferone, C.; Cioffi, R.; Caputo, D.; Liguori, B. Reuse of mining waste as aggregates in fly ash-based geoplymers. J. Clean. Prod. 2019, 220, 65–73. [Google Scholar] [CrossRef]
- Buzzi, J.; Riaza, A.; García-Meléndez, E.; Weide, S.; Bachmann, M. Mapping changes in a recovering mine site with hyper spectral airborne HyMap imagery (Sotiel, SW Spain). Minerals 2014, 4, 313–329. [Google Scholar] [CrossRef] [Green Version]
- Aznar-Sánchez, J.A.; García-Gómez, J.J.; Velasco-Muñoz, J.F.; Carretero-Gómez, A. Mining Waste and Its Sustainable Management: Advances in Worldwide Research. Minerals 2018, 8, 284. [Google Scholar] [CrossRef] [Green Version]
- Guglietta, D.; Belardi, G.; Passeri, D.; Salvatori, R.; Ubaldini, S.; Casentini, B.; Trapasso, F. Optimising the management of mining waste by means Sentinel-2 imagery: A case study in Joda West Iron and Manganese Mine (India). J. Sustain. Min. 2020, 19, 4. [Google Scholar] [CrossRef]
- Prokop, P. Remote sensing of severly-degraded land: Detection of long-term land-use changes using high-resolution satellite images on the Meghalaya Plateau, northest India. Remote Sens. Appl. Soc. Environ. 2020, 20, 100432. [Google Scholar] [CrossRef]
- Van der Werff, H.M.A.; Van der Meer, F.D. Sentinel-2A MSI and Landsat 8 OLI provide data continuity for geological remote sensing. Remote Sens. 2016, 11, 883. [Google Scholar] [CrossRef] [Green Version]
- Peyghambari, S.; Zhang, Y. Hyperspectral remote sensing in lithological mapping, mineral exploitation, and environmental geology: An updated review. J. Appl. Remote Sens. 2021, 15, 031501. [Google Scholar] [CrossRef]
- Ferrier, G. Application of imaging spectrometer data in identifying environmental pollution caused by mining at Rodaquilar, Spain. Remote Sens. Environ. 1999, 68, 125–137. [Google Scholar] [CrossRef]
- Choe, E.; Van der Meer, F.; Van Ruitenbeek, F.; Van der Werff, H.; Boudewijn de Smeth, B.; Kim, K.W. Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain. Remote Sens. Environ. 2008, 112, 3222–3233. [Google Scholar] [CrossRef]
- Werner, T.T.; Bebbington, A.; Gregory, G. Assessing impacts of mining: Recent contributions from GIS and remote sensing. Extr. Ind. Soc. 2019, 6, 993–1012. [Google Scholar] [CrossRef]
- Bruno, R.; Kasmaeeyazdi, S.; Tinti, F.; Mandanici, E.; Balomenos, E. Spatial component analysis to improve mineral estimation using Sentinel-2 band ratio: Application to a Greek bauxite residue. Minerals 2021, 11, 549. [Google Scholar] [CrossRef]
- Casentini, B.; Lazzazzara, M.; Amalfitano, S.; Salvatori, R.; Guglietta, D.; Passeri, D.; Belardi, G.; Trapasso, F. Mining rock wastes for water treatment: Potential reuse of Fe and Mn rich materials for arsenic removal. Water 2019, 11, 1897. [Google Scholar] [CrossRef] [Green Version]
- Scotti, A.; Milia, S.; Silvani, V.; Cappai, G.; Guglietta, D.; Trapasso, F.; Tempesta, E.; Passeri, D.; Godeas, A.; Gómez, M.; et al. Sustainable Recovery of Secondary and Critical Raw Materials from Classified Mining Residues Using Mycorrhizal-Assisted Phytoextraction. Metals 2021, 11, 1163. [Google Scholar] [CrossRef]
Band | Central Wavelength (nm) | Bandwidth (nm) | Spatial Resolution (m) |
---|---|---|---|
2 | 496.6 | 98 | 10 |
3 | 560.0 | 45 | |
4 | 664.5 | 38 | |
8 | 835.1 | 145 | |
5 | 703.9 | 19 | 20 |
6 | 740.2 | 18 | |
7 | 782.5 | 28 | |
8a | 864.8 | 33 | |
11 | 1613.7 | 143 | |
12 | 2202.4 | 242 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guglietta, D.; Conte, A.M.; Paciucci, M.; Passeri, D.; Trapasso, F.; Salvatori, R. Mining Residues Characterization and Sentinel-2A Mapping for the Valorization and Efficient Resource Use by Multidisciplinary Strategy. Minerals 2022, 12, 617. https://doi.org/10.3390/min12050617
Guglietta D, Conte AM, Paciucci M, Passeri D, Trapasso F, Salvatori R. Mining Residues Characterization and Sentinel-2A Mapping for the Valorization and Efficient Resource Use by Multidisciplinary Strategy. Minerals. 2022; 12(5):617. https://doi.org/10.3390/min12050617
Chicago/Turabian StyleGuglietta, Daniela, Aida Maria Conte, Matteo Paciucci, Daniele Passeri, Francesca Trapasso, and Rosamaria Salvatori. 2022. "Mining Residues Characterization and Sentinel-2A Mapping for the Valorization and Efficient Resource Use by Multidisciplinary Strategy" Minerals 12, no. 5: 617. https://doi.org/10.3390/min12050617
APA StyleGuglietta, D., Conte, A. M., Paciucci, M., Passeri, D., Trapasso, F., & Salvatori, R. (2022). Mining Residues Characterization and Sentinel-2A Mapping for the Valorization and Efficient Resource Use by Multidisciplinary Strategy. Minerals, 12(5), 617. https://doi.org/10.3390/min12050617