# Boundary Value Problems for Some Important Classes of Recurrent Relations with Two Independent Variables

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Main Results

#### 2.1. Solving Equation (17)

**Theorem**

**1.**

**Corollary**

**1.**

#### 2.2. Partial Difference Equations with an Interchanged Coefficient

**Theorem**

**2.**

#### 2.3. An Extension to Equation (17)

**Theorem**

**3.**

**Proof.**

**Corollary**

**2.**

## 3. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Krechmar, V.A. A Problem Book in Algebra; Mir Publishers: Moscow, Russia, 1974. [Google Scholar]
- Mitrinović, D.S. Mathematical Induction, Binomial Formula, Combinatorics; Gradjevinska Knjiga: Beograd, Serbia, 1980. (In Serbian) [Google Scholar]
- Mitrinović, D.S.; Kečkić, J.D. Methods for Calculating Finite Sums; Naučna Knjiga: Beograd, Serbia, 1984. (In Serbian) [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series; Nauka: Moscow, Russian, 1981. (In Russian) [Google Scholar]
- Riordan, J. Combinatorial Identities; John Wiley & Sons Inc.: New York, NY, USA; London, UK; Sydney, Australia, 1968. [Google Scholar]
- Yablonskiy, S.V. Introduction to Discrete Mathematics; Mir Publishers: Moscow, Russia, 1989. [Google Scholar]
- Stević, S. Note on the binomial partial difference equation. Electron. J. Qual. Theory Differ. Equ.
**2015**, 2015. Article 96. [Google Scholar] - Brand, L. Differential and Difference Equations; John Wiley & Sons, Inc.: New York, NY, USA, 1966. [Google Scholar]
- Jordan, C. Calculus of Finite Differences; Chelsea Publishing Company: New York, NY, USA, 1956. [Google Scholar]
- Levy, H.; Lessman, F. Finite Difference Equations; Dover Publications: New York, NY, USA, 1992. [Google Scholar]
- Stević, S. On the difference equation x
_{n}=x_{n−k}/(b+cx_{n−1}⋯x_{n−k}). Appl. Math. Comput.**2012**, 218, 6291–6296. [Google Scholar] - Stević, S.; Diblik, J.; Iričanin, B.; Šmarda, Z. On the difference equation x
_{n}=a_{n}x_{n−k}/(b_{n}+c_{n}x_{n−1}⋯x_{n−k}). Abstr. Appl. Anal.**2012**, 2012. Article 409237. [Google Scholar] - Stević, S.; Diblik, J.; Iričanin, B.; Šmarda, Z. On a third-order system of difference equations with variable coefficients. Abstr. Appl. Anal.
**2012**, 2012. Article 508523. [Google Scholar] - Papaschinopoulos, G.; Stefanidou, G. Asymptotic behavior of the solutions of a class of rational difference equations. Int. J. Differ. Equ.
**2010**, 5, 233–249. [Google Scholar] - Stević, S.; Diblik, J.; Iričanin, B.; Šmarda, Z. On some solvable difference equations and systems of difference equations. Abstr. Appl. Anal.
**2012**, 2012. Article 541761. [Google Scholar] - Stević, S.; Diblik, J.; Iričanin, B.; Šmarda, Z. Solvability of nonlinear difference equations of fourth order. Electron. J. Differ. Equ.
**2014**, 2014. Article 264. [Google Scholar] - Berg, L.; Stević, S. On some systems of difference equations. Appl. Math. Comput.
**2011**, 218, 1713–1718. [Google Scholar] [CrossRef] - Stević, S.; Iričanin, B.; Šmarda, Z. On a close to symmetric system of difference equations of second order. Adv. Differ. Equ.
**2015**, 2015. Article 264. [Google Scholar] - Fotiades, N.; Papaschinopoulos, G. On a system of difference equations with maximum. Appl. Math. Comput.
**2013**, 221, 684–690. [Google Scholar] - Papaschinopoulos, G.; Schinas, C.J. On a system of two nonlinear difference equations. J. Math. Anal. Appl.
**1998**, 219, 415–426. [Google Scholar] [CrossRef] - Papaschinopoulos, G.; Schinas, C.J. On the behavior of the solutions of a system of two nonlinear difference equations. Commun. Appl. Nonlinear Anal.
**1998**, 5, 47–59. [Google Scholar] - Papaschinopoulos, G.; Schinas, C.J. Invariants for systems of two nonlinear difference equations. Differ. Equ. Dyn. Syst.
**1999**, 7, 181–196. [Google Scholar] [CrossRef] - Papaschinopoulos, G.; Schinas, C.J. Invariants and oscillation for systems of two nonlinear difference equations. Nonlinear Anal. Theory Methods Appl.
**2001**, 46, 967–978. [Google Scholar] [CrossRef] - Papaschinopoulos, G.; Schinas, C.J. On the dynamics of two exponential type systems of difference equations. Comput. Math. Appl.
**2012**, 64, 2326–2334. [Google Scholar] [CrossRef] - Papaschinopoulos, G.; Schinas, C.J.; Stefanidou, G. On a k-order system of Lyness-type difference equations. Adv. Differ. Equ.
**2007**, 2007. Article 31272. [Google Scholar] [CrossRef] - Stević, S.; Diblik, J.; Iričanin, B.; Šmarda, Z. On a solvable system of rational difference equations. J. Differ. Equ. Appl.
**2014**, 20, 811–825. [Google Scholar] [CrossRef] - Berezansky, L.; Braverman, E. On impulsive Beverton-Holt difference equations and their applications. J. Differ. Equ. Appl.
**2004**, 10, 851–868. [Google Scholar] [CrossRef] - Diblik, J.; Halfarová, H. Explicit general solution of planar linear discrete systems with constant coefficients and weak delays. Adv. Differ. Equ.
**2013**, 2013. Article 50. [Google Scholar] [CrossRef] - Iričanin, B.; Stević, S. Eventually constant solutions of a rational difference equation. Appl. Math. Comput.
**2009**, 215, 854–856. [Google Scholar] [CrossRef] - Stević, S.; Diblik, J.; Iričanin, B.; Šmarda, Z. On the difference equation x
_{n+1}=x_{n}x_{n−k}/(x_{n−k+1}(a+bx_{n}x_{n−k})). Abstr. Appl. Anal.**2012**, 2012. Article 108047. [Google Scholar] - Stević, S. First-order product-type systems of difference equations solvable in closed form. Electron. J. Differ. Equ.
**2015**, 2015. Article 308. [Google Scholar] - Stević, S.; Iričanin, B.; Šmarda, Z. On a product-type system of difference equations of second order solvable in closed form. J. Inequal. Appl.
**2015**, 2015. Article 327. [Google Scholar] - Stević, S.; Iričanin, B.; Šmarda, Z. Solvability of a close to symmetric system of difference equations. Electron. J. Differ. Equ.
**2016**, 2016. Article 159. [Google Scholar] - Stević, S.; Iričanin, B.; Šmarda, Z. Two-dimensional product-type system of difference equations solvable in closed form. Adv. Differ. Equ.
**2016**, 2016. Article 253. [Google Scholar] - Stević, S. Solvability of boundary value problems for a class of partial difference equations on the combinatorial domain. Adv. Differ. Equ.
**2016**, 2016. Article 262. [Google Scholar] - Stević, S. Solvability of boundary-value problems for a linear partial difference equation. Electron. J. Differ. Equ.
**2017**, 2017. Article 17. [Google Scholar] - Mitrinović, D.S.; Adamović, D.D. Sequences and Series; Naučna Knjiga: Beograd, Serbia, 1980. (In Serbian) [Google Scholar]
- Polya, G.; Szegö, G. Aufgaben Und Lehrsätze Aus Der Analysis; Verlag von Julius Springer: Berlin, Germany, 1925. [Google Scholar]
- Ašić, M.D.; Adamović, D.D. Limit points of sequences in metric spaces. Am. Math. Mon.
**1970**, 77, 613–616. [Google Scholar] [CrossRef] - Cheng, S.S. Partial Difference Equations; Taylor & Francis: London, UK; New York, NY, USA, 2003. [Google Scholar]
- Musielak, A.; Popenda, J. On the hyperbolic partial difference equations and their oscillatory properties. Glas. Mat.
**1998**, 33, 209–221. [Google Scholar]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Stević, S.; Iričanin, B.; Šmarda, Z.
Boundary Value Problems for Some Important Classes of Recurrent Relations with Two Independent Variables. *Symmetry* **2017**, *9*, 323.
https://doi.org/10.3390/sym9120323

**AMA Style**

Stević S, Iričanin B, Šmarda Z.
Boundary Value Problems for Some Important Classes of Recurrent Relations with Two Independent Variables. *Symmetry*. 2017; 9(12):323.
https://doi.org/10.3390/sym9120323

**Chicago/Turabian Style**

Stević, Stevo, Bratislav Iričanin, and Zdeněk Šmarda.
2017. "Boundary Value Problems for Some Important Classes of Recurrent Relations with Two Independent Variables" *Symmetry* 9, no. 12: 323.
https://doi.org/10.3390/sym9120323