# Complexity Phenomena Induced by Novel Symmetry and Symmetry-Breakings with Antiscreening at Cosmological Scales—A Tutorial

## Abstract

**:**

## 1. Introduction

## 2. CILOMAS

## 3. Non-Newtonian Coherent States and Crossovers Based on Fractional Calculus

#### 3.1. Spherical Symmetry

#### 3.2. Anisotropic Situations

#### 3.3. Further Nonlinear Generalizations and Evolution to Complexity

## 4. Summary and Brief Conclusions

## Conflicts of Interest

## References

- Chang, T.T.S. Complexity induced Lifshitz ordering with multifractal antiscreening/screening (CILOMAS). Phys. Lett. A
**2016**, 380, 1566–1569. [Google Scholar] [CrossRef] - Nicoll, J.F.; Chang, T.S. An exact one-particle-irreducible renormalization-group generator for critical phenomena. Phys. Lett.
**1977**, 62A, 287–289. [Google Scholar] [CrossRef] - Chang, T.S.; Nicoll, J.F.; Young, J.E. A closed-form differential renormalization-group generator for critical dynamics. Phys. Lett.
**1978**, 67A, 287–290. [Google Scholar] [CrossRef] - Chang, T.S.; Vvedensky, D.D.; Nicoll, J.F. Differential renormalization-group generators for static and dynamic critical phenomena. Phys. Rep.
**1992**, 217, 279–362. [Google Scholar] [CrossRef] - Wilson, K.G.; Kogut, J. The renormalization group and the ϵ expansion. Phys. Rep.
**1974**, 12, 75–200. [Google Scholar] [CrossRef] - Chang, T.T.S. An Introduction to Space Plasma Complexity; Cambridge University Press: New York, NY, USA, 2015. [Google Scholar]
- Chang, T.; Wu, C.C.; Echim, M.; Lamy, H.; Volgersberger, M.; Hernquist, L.; Sijacki, D. Complexity phenomena and ROMA of the Earth’s magnetospheric cusp, hydrodynamic turbulence, and the cosmic web. Pure Appl. Geophys.
**2014**, 171. [Google Scholar] [CrossRef] - Nicoll, J.F.; Chang, T.S. Exact and approximate differential renormalization-group generators. II. The equations of state. Phys. Rev. A
**1978**, 17, 2083–2098. [Google Scholar] [CrossRef] - Riemann, B. Versuch einer allgemeinen Auffasung der Integration und Differentiation. In The Collected Works of Bernhard Riemann; Weber, H., Ed.; Dover Publications: New York, NY, USA, 1953. [Google Scholar]
- Liouville, J. Mémoire: Sur le calcul des differentielles à indices quelconques. J. Ecole Polytech.
**1832**, 13, 71–162. [Google Scholar] - Rousan, A.A.; Malkawi, E.; Rabei, E.M.; Widyan, H. Application of fractional calculus to gravity. Frac. Calc. Appl. Anal.
**2002**, 5, 155–168. [Google Scholar] - Malkawi, E. Functional integral and derivative of the 1/r potential. Univ. J. Phys. Appl.
**2016**, 10, 84–89. [Google Scholar] [CrossRef] - Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Kleidis, K.; Spyrou, N.K. Geodesic motions versus hydrodynamic flows in a gravitating perfect fluid: Dynamical equivalence and consequences. Class. Quantum Grav.
**2000**, 17, 2965–2982. [Google Scholar] [CrossRef]

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chang, T.T.S.
Complexity Phenomena Induced by Novel Symmetry and Symmetry-Breakings with Antiscreening at Cosmological Scales—A Tutorial. *Symmetry* **2017**, *9*, 306.
https://doi.org/10.3390/sym9120306

**AMA Style**

Chang TTS.
Complexity Phenomena Induced by Novel Symmetry and Symmetry-Breakings with Antiscreening at Cosmological Scales—A Tutorial. *Symmetry*. 2017; 9(12):306.
https://doi.org/10.3390/sym9120306

**Chicago/Turabian Style**

Chang, Tom T. S.
2017. "Complexity Phenomena Induced by Novel Symmetry and Symmetry-Breakings with Antiscreening at Cosmological Scales—A Tutorial" *Symmetry* 9, no. 12: 306.
https://doi.org/10.3390/sym9120306