Spatio-Temporal Recursive Method for Traffic Flow Interpolation
Abstract
1. Introduction
- A spatio-temporal model for interpolating traffic monitoring data. The TSFNN architecture incorporates dedicated temporal and spatial components, enabling the extraction of spatio-temporal features and their subsequent integration within a unified framework.
- A spatial module based on Multilayer Perception. TSFNN uses an MLP with self-masking parameters for spatial information mining.
- High interpolation accuracy has been demonstrated on real traffic monitoring datasets with different missing rates.
2. Related Work
2.1. Traditional Machine Learning and Statistical Methods
2.2. Deep Learning-Based Methods
3. Framework and Methodology
3.1. Problem Formalization and Preliminaries
3.2. Framework of TSFNN
3.2.1. Temporal Module
3.2.2. Spatial Module
3.2.3. Spatial–Temporal Fusion Module
3.2.4. Loss Function
3.3. Evaluation Metrics
4. Experiment
4.1. Datasets
4.1.1. Dataset Missing Value Manufacturing
4.1.2. Data Normalization
4.2. Experimental Settings
4.2.1. Reproducibility
4.2.2. Baselines
- (1)
- Mean [1]: This method replaces missing values (with 0 for observations that are missing) by averaging the preceding and succeeding observations.
- (2)
- This approach identifies the k-nearest neighbors of a given sample and computes their mean value to perform interpolation. For the dataset used in this study, the best performance was obtained with .
- (3)
- MissRandomForest (MRF) [10]: This method is a widely adopted strategy for handling missing data, leveraging the random forest algorithm to predict and impute missing values iteratively.
- (1)
- RNN [14]: This method utilizes an LSTM-based architecture to model temporal dependencies, with the specific aim of imputing missing values.
- (2)
- Bi-RNN [27]: This method extends the RNN method to bidirectional and uses bidirectional LSTM for more complete learning of temporal information.
- (3)
- TIDER [22]: A deep learning model for multivariate time series imputation, which enhances the imputation effect by decoupling time dynamic factors such as trend, periodicity, and residual.
- (4)
- GRIN [23]: A bidirectional graph Recurrent Neural Network consisting of two unidirectional GRIN sub-modules that perform two-stage interpolation for each direction, thereby processing the input sequence progressively in both forward and backward directions over time.
- (5)
- TimesNet [24]: This model employs a modular architecture to decompose complex temporal dynamics into multiple cycles and achieves unified modeling of both intra-cycle and inter-cycle variations by transforming the original one-dimensional time series into a two-dimensional representation.
- (6)
- Transformer: Directly uses an attention mechanism for imputation.
- (7)
- DLinear [25]: Decomposes the original sequence into two parts, trend and seasonality, typically through simple methods such as moving averages. It models the trend and seasonal components separately using independent linear layers and then combines the output results to obtain the final prediction value.
4.3. Main Result
4.4. Ablation Experiment
- TSFNN-t: This variant removes the temporal module from TSFNN, thereby relying solely on the spatial module to capture spatial dependencies without modeling temporal correlations.
- TSFNN-s: This variant removes the spatial interpolation module from TSFNN, thereby relying solely on the temporal module to capture temporal dependencies without modeling spatial correlations.
- TSFNN-bi: This variant modifies the temporal module by replacing the bidirectional structure with a unidirectional structure, thereby capturing temporal dependencies in only one direction.
5. Conclusions
- By utilizing time and space modules aimed at capturing temporal and spatial correlations, we effectively alleviate the traditional challenges outlined earlier. The temporal module integrates a bidirectional LSTM architecture, which helps to enhance the capture of temporal dependencies. Meanwhile, the spatial module utilizes MLP to proficiently capture spatial correlations.
- The experimental results show that the TSFNN achieves improvements in the RMSE compared to benchmark approaches, including MEAN, KNN, MRF, RNN, and Bi-RNN. This demonstrates the framework’s advantage in interpolation accuracy.
- From the ablation experiment, it can be seen that each module of the TSFNN has a unique role and is indispensable.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kreindler, D.M.; Lumsden, C.J. The Effects of the Irregular Sample and Missing Data in Time Series Analysis. Nonlinear Dyn. Psychol. Life Sci. 2006, 10, 187–214. [Google Scholar]
- Benesty, J.; Chen, J.; Huang, Y. Time-delay estimation via linear interpolation and cross correlation. IEEE Trans. Speech Audio Process. 2004, 12, 509–519. [Google Scholar] [CrossRef]
- Gasca, M.; Sauer, T. Polynomial interpolation in several variables. Adv. Comput. Math. 2000, 12, 377–410. [Google Scholar] [CrossRef]
- McKinley, S.; Levine, M. Cubic spline interpolation. Coll. Redwoods 1998, 45, 1049–1060. [Google Scholar]
- Luo, X.; Meng, X.; Gan, W.; Chen, Y. Traffic data imputation algorithm based on improved low-rank matrix decomposition. J. Sens. 2019, 2019, 7092713. [Google Scholar] [CrossRef]
- Mazumder, R.; Hastie, T.; Tibshirani, R. Spectral regularization algorithms for learning large incomplete matrices. J. Mach. Learn. Res. 2010, 11, 2287–2322. [Google Scholar]
- Yu, H.-F.; Rao, N.; Dhillon, I.S. Temporal regularized matrix factorization for high-dimensional time series prediction. Adv. Neural Inf. Process. Syst. 2016, 29, 847–855. [Google Scholar]
- Schnabel, T.; Swaminathan, A.; Singh, A.; Chandak, N.; Joachims, T. Recommendations as treatments: Debiasing learning and evaluation. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016. [Google Scholar]
- Al-Douri, Y.K.; Hamodi, H.; Lundberg, J. Time series forecasting using a two-level multi-objective genetic algorithm: A case study of maintenance cost data for tunnel fans. Algorithms 2018, 11, 123. [Google Scholar] [CrossRef]
- Stekhoven, D.J.; Bühlmann, P. MissForest—Non-parametric missing value imputation for mixed-type data. Bioinformatics 2012, 28, 112–118. [Google Scholar] [CrossRef]
- Qian, C.; Chen, J.; Luo, Y.; Dai, L. Random forest based operational missing data imputation for highway tunnel. J. Transp. Syst. Eng. Inf. Technol. 2016, 16, 81. [Google Scholar]
- Zhang, J.; Li, D.; Wang, Y. Predicting tunnel squeezing using a hybrid classifier ensemble with incomplete data. Bull. Eng. Geol. Environ. 2020, 79, 3245–3256. [Google Scholar] [CrossRef]
- Kim, B.; Lee, D.-E.; Preethaa, K.R.S.; Hu, G.; Natarajan, Y.; Kwok, K.C.S. Predicting wind flow around buildings using deep learning. J. Wind. Eng. Ind. Aerodyn. 2021, 219, 104820. [Google Scholar] [CrossRef]
- Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y. Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 2018, 8, 6085. [Google Scholar] [CrossRef]
- Guo, D.; Li, J.; Li, X.; Li, Z.; Li, P.; Chen, Z. Advance prediction of collapse for TBM tunneling using deep learning method. Eng. Geol. 2022, 299, 106556. [Google Scholar] [CrossRef]
- Adeyemi, O.; Grove, I.; Peets, S.; Domun, Y.; Norton, T. Dynamic neural network modelling of soil moisture content for predictive irrigation scheduling. Sensors 2018, 18, 3408. [Google Scholar] [CrossRef]
- Liang, Y.; Jiang, K.; Gao, S.; Yin, Y. Prediction of tunnelling parameters for underwater shield tunnels, based on the GA-BPNN method. Sustainability 2022, 14, 13420. [Google Scholar] [CrossRef]
- Wang, Y.; Pang, Y.; Song, X.; Sun, W. Tunneling Operational Data Imputation with Radial Basis Function Neural Network. In Proceedings of the International Joint Conference on Energy, Electrical and Power Engineering, Melbourne, VIC, Australia, 22–24 November 2023. [Google Scholar]
- González-Vidal, A.; Rathore, P.; Rao, A.S.; Mendoza-Bernal, J.; Palaniswami, M.; Skarmeta-Gómez, A.F. Missing data imputation with bayesian maximum entropy for internet of things applications. IEEE Internet Things J. 2020, 8, 16108–16120. [Google Scholar] [CrossRef]
- Wang, G.; Deng, Z.; Choi, K.S. Tackling missing data in community health studies using additive LS-SVM classifier. IEEE J. Biomed. Health Inform. 2016, 22, 579–587. [Google Scholar] [CrossRef]
- Erhan, L.; Di Mauro, M.; Anjum, A.; Bagdasar, O.; Song, W.; Liotta, A. Embedded data imputation for environmental intelligent sensing: A case study. Sensors 2021, 21, 7774. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Cong, G.; Chen, Y.; Jiang, Y. Multivariate time-series imputation with disentangled temporal representations. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Cini, A.; Marisca, I.; Alippi, C. Filling the g_ap_s: Multivariate time series imputation by graph neural networks. arXiv 2021, arXiv:2108.00298. [Google Scholar]
- Wu, H.; Hu, T.; Liu, Y.; Zhou, H.; Wang, J.; Long, M. Timesnet: Temporal 2d-variation modeling for general time series analysis. arXiv 2022, arXiv:2210.02186. [Google Scholar]
- Zeng, A.; Chen, M.; Zhang, L.; Xu, Q. Are transformers effective for time series forecasting? Proc. AAAI Conf. Artif. Intell. 2023, 37, 11121–11128. [Google Scholar] [CrossRef]
- Graves, A.; Graves, A. Long short-term memory. In Supervised Sequence Labelling with Recurrent Neural Networks; Springer: Berlin/Heidelberg, Germany, 2012; pp. 37–45. [Google Scholar] [CrossRef]
- Zhou, P.; Shi, W.; Tian, J.; Qi, Z.; Li, B.; Hao, H.; Xu, B. Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016; Volume 2. Short papers. [Google Scholar]
- Meulman, J.J. Optimal Scaling Methods for Multivariate Categorical Data Analysis. SPSS White Paper Chicago 1998. Available online: https://www.researchgate.net/profile/Jacqueline-Meulman/publication/268274402_Optimal_scaling_methods_for_multivariate_categorical_data_analysis/links/553625040cf218056e92cab7/Optimal-scaling-methods-for-multivariate-categorical-data-analysis.pdf (accessed on 5 April 2024).
MEAN | KNN | MRF | RNN | Bi-RNN | TIDER | GRIN | TIMSNET | Transformer | DLinear | TSFNN | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PEMS03 | 30% | 86.5960 | 13.5931 | 8.8696 | 20.2834 | 14.4200 | 13.6782 | 22.0279 | 14.3159 | 17.0793 | 17.4783 | 7.8933 |
50% | 86.6192 | 14.5375 | 10.3390 | 20.6516 | 13.1034 | 14.9002 | 22.8457 | 15.1542 | 17.5090 | 20.6887 | 9.2397 | |
70% | 86.6089 | 16.8791 | 12.6183 | 21.3428 | 13.6127 | 19.3608 | 53.8453 | 16.7718 | 17.9871 | 25.4095 | 12.0002 | |
PEMS04 | 30% | 104.1736 | 19.5579 | 17.4829 | 27.4679 | 18.6534 | 24.3212 | 29.6091 | 20.6891 | 23.2935 | 22.7144 | 17.0629 |
50% | 104.4697 | 21.3425 | 18.8238 | 28.0665 | 19.1650 | 26.2593 | 30.7867 | 21.7101 | 23.6364 | 26.5238 | 18.3877 | |
70% | 104.3353 | 24.6176 | 21.4658 | 29.1995 | 19.9096 | 30.5007 | 52.4402 | 23.5835 | 24.0626 | 32.1466 | 19.6327 | |
PEMS07 | 30% | 122.9596 | 18.5717 | 15.5705 | 31.4786 | 22.7469 | 23.9575 | 29.6091 | 22.6178 | 30.1796 | 25.5388 | 13.4006 |
50% | 122.9921 | 19.6671 | 17.8137 | 31.4512 | 22.4689 | 25.2355 | 24.5671 | 23.8183 | 30.4364 | 30.4100 | 15.8010 | |
70% | 123.0093 | 22.6324 | 20.3918 | 32.2756 | 23.0151 | 29.1904 | 26.4177 | 26.2248 | 30.7599 | 37.4638 | 19.0602 | |
PEMS08 | 30% | 88.3220 | 15.2928 | 13.5444 | 22.1556 | 14.3491 | 21.4088 | 32.7162 | 15.9736 | 19.9493 | 18.4736 | 13.0557 |
50% | 88.3421 | 17.4871 | 15.0658 | 22.8810 | 15.2291 | 24.5186 | 35.1821 | 16.9278 | 20.5979 | 21.7813 | 14.6855 | |
70% | 88.3246 | 23.6218 | 17.9481 | 24.4446 | 16.2238 | 29.5935 | 56.3692 | 18.6909 | 21.1650 | 26.6519 | 16.1812 |
MEAN | KNN | MRF | RNN | Bi-RNN | TIDER | GRIN | TIMSNET | Transformer | DLinear | TSFNN | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PEMS03 | 30% | 110.1345 | 21.1594 | 15.8544 | 41.4177 | 22.8208 | 24.1594 | 189.5832 | 22.0651 | 30.0170 | 25.4199 | 14.4309 |
50% | 110.1671 | 23.0194 | 18.4147 | 41.7044 | 21.8967 | 25.8220 | 197.9745 | 23.1651 | 30.6173 | 30.2082 | 17.3487 | |
70% | 110.1274 | 27.3572 | 22.1713 | 42.2386 | 22.7241 | 32.9966 | 674.0384 | 25.5019 | 31.2884 | 37.2414 | 21.7693 | |
PEMS04 | 30% | 128.8029 | 31.8871 | 29.9563 | 51.7645 | 31.8932 | 39.4678 | 184.0275 | 32.0212 | 38.1795 | 33.1983 | 29.0194 |
50% | 129.0451 | 35.1147 | 32.3576 | 52.4029 | 32.4044 | 40.7105 | 196.4327 | 33.1468 | 38.5641 | 38.1220 | 30.8753 | |
70% | 129.0190 | 40.4698 | 36.9898 | 53.4372 | 33.7128 | 45.6582 | 364.8943 | 35.4149 | 39.0581 | 45.6298 | 33.8815 | |
PEMS07 | 30% | 150.3760 | 29.1972 | 26.7799 | 61.2508 | 38.4737 | 38.7567 | 184.0275 | 34.9276 | 49.6261 | 36.2022 | 24.9834 |
50% | 150.4317 | 31.0891 | 27.9772 | 61.4552 | 38.02741 | 41.3220 | 77.0239 | 36.2026 | 50.3366 | 42.6641 | 26.3939 | |
70% | 150.4381 | 36.6143 | 39.3241 | 62.1628 | 38.39651 | 48.1088 | 95.9151 | 39.0316 | 51.0977 | 52.2234 | 34.8978 | |
PEMS08 | 30% | 111.1832 | 24.9221 | 24.3443 | 43.5752 | 23.5005 | 35.4572 | 227.4614 | 24.7047 | 31.3339 | 26.5831 | 22.0545 |
50% | 111.2393 | 29.4312 | 27.5831 | 44.5003 | 24.8683 | 39.8298 | 247.0275 | 25.8617 | 32.5438 | 31.1323 | 24.3064 | |
70% | 111.2205 | 40.2518 | 33.0293 | 46.3633 | 26.8602 | 44.8765 | 410.6631 | 28.1603 | 33.6863 | 37.9274 | 26.5616 |
TSFNN-t | TSFNN-s | TSFNN-bi | TSFNN | ||
---|---|---|---|---|---|
PEMS03 | 30% | 16.4354 | 13.5469 | 11.9188 | 7.8933 |
50% | 18.5576 | 14.9184 | 12.3981 | 9.2397 | |
70% | 21.3000 | 15.7012 | 14.4773 | 12.0002 | |
PEMS04 | 30% | 24.5247 | 20.3452 | 19.7419 | 17.0629 |
50% | 27.1700 | 19.7062 | 20.8666 | 18.3877 | |
70% | 30.83740 | 20.6436 | 22.9267 | 19.6327 | |
PEMS07 | 30% | 24.8226 | 21.4891 | 18.2585 | 13.4006 |
50% | 28.1664 | 22.4671 | 20.5230 | 15.8010 | |
70% | 32.7337 | 26.6731 | 25.0748 | 19.0602 | |
PEMS08 | 30% | 21.9738 | 15.0392 | 15.1561 | 13.0557 |
50% | 24.6872 | 16.9425 | 16.5508 | 14.6855 | |
70% | 28.1863 | 17.5790 | 18.5238 | 16.1812 |
TSFNN-t | TSFNN-s | TSFNN-bi | TSFNN | ||
---|---|---|---|---|---|
PEMS03 | 30% | 25.8106 | 22.6489 | 20.9601 | 14.4309 |
50% | 28.5744 | 22.7909 | 20.8367 | 17.3487 | |
70% | 32.1357 | 24.0021 | 22.1713 | 21.7693 | |
PEMS04 | 30% | 38.4176 | 31.6457 | 32.9907 | 29.0194 |
50% | 41.4574 | 32.6511 | 34.4222 | 30.8753 | |
70% | 45.8229 | 34.5772 | 37.0240 | 33.8815 | |
PEMS07 | 30% | 39.1665 | 34.8289 | 31.7419 | 24.9834 |
50% | 43.7269 | 34.7189 | 34.7457 | 26.3939 | |
70% | 49.5546 | 39.0075 | 40.3500 | 34.8978 | |
PEMS08 | 30% | 35.4606 | 25.4237 | 25.4066 | 22.0545 |
50% | 38.8308 | 28.5472 | 27.7381 | 24.3064 | |
70% | 43.0485 | 27.4608 | 31.0172 | 26.5616 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Mao, Y.; Liu, X.; Liang, H.; Li, K. Spatio-Temporal Recursive Method for Traffic Flow Interpolation. Symmetry 2025, 17, 1577. https://doi.org/10.3390/sym17091577
Wang G, Mao Y, Liu X, Liang H, Li K. Spatio-Temporal Recursive Method for Traffic Flow Interpolation. Symmetry. 2025; 17(9):1577. https://doi.org/10.3390/sym17091577
Chicago/Turabian StyleWang, Gang, Yuhao Mao, Xu Liu, Haohan Liang, and Keqiang Li. 2025. "Spatio-Temporal Recursive Method for Traffic Flow Interpolation" Symmetry 17, no. 9: 1577. https://doi.org/10.3390/sym17091577
APA StyleWang, G., Mao, Y., Liu, X., Liang, H., & Li, K. (2025). Spatio-Temporal Recursive Method for Traffic Flow Interpolation. Symmetry, 17(9), 1577. https://doi.org/10.3390/sym17091577